1
|
Haase M, Weiergräber OH, David B, Pfirmann EL, Paschold B, Gohlke H, Pietruszka J. Characterization of a C-methyltransferase from Streptomyces griseoviridis - crystal structure, mechanism, and substrate scope. Chem Sci 2025:d4sc07300b. [PMID: 39926702 PMCID: PMC11804793 DOI: 10.1039/d4sc07300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Despite the presence of pyrroloindoles in many natural products with diverse biological activities, their synthesis remains challenging in terms of stereoselectivity, especially with respect to methylation at the indole C3 position. In the present study, the pyrroloindole motif in tryptophan-based diketopiperazines (DKPs) is synthesized using the SAM-dependent methyltransferase SgMT from Streptomyces griseoviridis. The three-dimensional structure of this indole C3-methyltransferase was determined by X-ray crystallography, providing insights into the enzyme. The complex active site was explored by site-directed mutagenesis, highlighting an intriguing network of tyrosine side chains that is involved in catalytic activity. The enzyme's precise substrate requirements were characterized using a broad panel of methylation educts, while molecular docking and molecular dynamics simulations revealed the catalytic binding mode of the cyclo-(ll)-ditryptophan substrate. This study provides an in-depth account of the structure and catalytic properties of SgMT, which may apply to other diketopiperazine-targeting indole C3-methyltransferases, thus paving the way for their optimization as biocatalysts.
Collapse
Affiliation(s)
- Mona Haase
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Oliver H Weiergräber
- Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-7: Structural Biochemistry) 52425 Jülich Germany
| | - Benoit David
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) 52426 Jülich Germany
| | - Elias L Pfirmann
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Beatrix Paschold
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Holger Gohlke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) 52426 Jülich Germany
- Heinrich Heine University Düsseldorf, Institute for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science Center (BioSC) 40225 Düsseldorf Germany
| | - Jörg Pietruszka
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| |
Collapse
|
2
|
Dou PH, Fu XH, Chen Y, Ge ZZ, Zhou MQ, Wang ZH, You Y, Yang L, Zhang YP, Zhao JQ, Yuan WC. Palladium-Catalyzed Asymmetric Decarboxylation of 5-Vinyloxazolidine-2,4-Diones Triggering the Dearomatization of Electron-Deficient Indoles for the Synthesis of Chiral Highly Functionalized Pyrroloindolines. Org Lett 2024; 26:3310-3315. [PMID: 38587335 DOI: 10.1021/acs.orglett.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A catalyst system consisting of a chiral phosphoramidite ligand and Pd2(dba)3·CHCl3 causes the decarboxylation of 5-vinyloxazolidine-2,4-diones to generate amide-containing aza-π-allylpalladium 1,3-dipole intermediates, which are capable of triggering the dearomatization of 3-nitroindoles for diastereo- and enantioselective [3+2] cycloaddition, leading to the formation of a series of highly functionalized pyrroloindolines containing three contiguous stereogenic centers with excellent results (up to 99% yield, 88:12 dr, and 96% ee).
Collapse
Affiliation(s)
- Pei-Hao Dou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Sun XY, Song JY, Wang BL, Zhou SS, Ou ZX, Li LB, Wang Z, Wang XW. Chiral Phosphine Ligands of COAP and SKP Switched Regiodivergent Asymmetric Allylic Alkylation of MBH Adducts. J Org Chem 2024; 89:4904-4915. [PMID: 38500413 DOI: 10.1021/acs.joc.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The palladium-catalyzed highly regioselective asymmetric allylic alkylation of 3'-indolyl-3-oxindole derivatives with Morita-Baylis-Hillman (MBH) carbonates was developed to facilely construct chiral 3,3'-bisindole derivatives under mild reaction conditions. The regioselectivity (α/γ) of MBH carbonates was efficiently switched in the presence of chiral oxalamide phosphine or spiroketal-based diphosphine/Pd(0) complexes as a chiral catalyst. A series of multifunctional 3,3'-bisindole derivatives with all-carbon quaternary stereogenic centers were obtained in high yields with good to excellent enantio-, diastereo-, and regioselectivity. The present process is endowed with some salient features such as broad substrate scope, N-protecting group-free, excellent stereoselectivity, as well as adjustable regioselectivity.
Collapse
Affiliation(s)
- Xing-Yun Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jia-Yu Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sheng-Suo Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhi-Xiong Ou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Bo Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Zhou Y, Ma S, Li X, Liu X, Gao J, Lü D, Wang Y, Zheng S. Synthesis and antifungal activity of hexahydropyrrolidoindole alkaloids. Nat Prod Res 2024:1-9. [PMID: 38529798 DOI: 10.1080/14786419.2024.2333047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Twenty-one hexahydropyrrolidoindole alkaloids were designed and synthesised via acylation reaction at the 3-N position from the commercially available indole-3-acetonitrile as the starting material in excellent yields. The effects of all target compounds against Verticillium dahlia, Fusarium oxysperium sp., Cytospora juglandis, Aspergillu sflavu, Aspergillus niger and Fusarium oxysporum were determined. The results of bioassays indicated that the majority of tested compounds displayed comparable or better in vitro bioactivity than the positive control. Notably, compounds 8 and 17 revealed potent activity against C. juglandis and A. sflavu, both with the same minimum inhibitory concentration value of 1.9 µg mL-1, which has fungicidal activity far exceeded that of amphotericin B and chlorothalonil.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shoude Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaohan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xinye Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jie Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dingding Lü
- School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Ya Wang
- School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
5
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
6
|
You X, Yao Y, Liu P, Chen L, Xie Y, Li G, Hong L. Synthesis of Isoquinuclidines via Dearomative Diels-Alder Reaction of Cyclic Amidines with Indoles. J Org Chem 2024; 89:3635-3643. [PMID: 38359465 DOI: 10.1021/acs.joc.3c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The development and utilization of new dienes and dienophiles for the controlled synthesis of isoquinuclidines is highly appealing. Herein, we describe a novel strategy for diastereoselective synthesis of indoline-fused isoquinuclidines via copper-catalyzed dearomative Diels-Alder reaction of cyclic amidines with indoles. This protocol avoids the use of unstable DHPs and activated alkenes, offering a more efficient and selective approach to synthesize isoquinuclidines.
Collapse
Affiliation(s)
- Xiaobin You
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Yao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengyutian Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lu Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Haase M, David B, Paschold B, Classen T, Schneider P, Pozhydaieva N, Gohlke H, Pietruszka J. Application of the C3-Methyltransferase StspM1 for the Synthesis of the Natural Pyrroloindole Motif. ACS Catal 2024; 14:227-236. [PMID: 38205025 PMCID: PMC10775177 DOI: 10.1021/acscatal.3c04952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Even though pyrroloindoles are widely present in natural products with different kinds of biological activities, their selective synthesis remains challenging with existing tools in organic chemistry, and there is furthermore a demand for stereoselective and mild methods to access this structural motif. Nature uses C3-methyltransferases to form the pyrroloindole framework, starting from the amino acid tryptophan. In the present study, the SAM-dependent methyltransferase StspM1 from Streptomyces sp. HPH0547 is used to build the pyrroloindole structural motif in tryptophan-based diketopiperazines (DKP). The substrate scope of the enzyme regarding different Trp-Trp-DKP isomers was investigated on an experimental and computational level. After further characterization and optimization of the methylation reaction with a design of experiment approach, a preparative scale reaction with the immobilized enzyme including a SAM regeneration system was performed to show the synthetic use of this biocatalytic tool to access the pyrroloindole structural motif.
Collapse
Affiliation(s)
- Mona Haase
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Benoit David
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics) Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Beatrix Paschold
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Thomas Classen
- Institute
of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy
Science Center (BioSC), Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Pascal Schneider
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Nadiia Pozhydaieva
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Holger Gohlke
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics) Forschungszentrum
Jülich, 52426 Jülich, Germany
- Institute
for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science
Center (BioSC), Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
- Institute
of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy
Science Center (BioSC), Forschungszentrum
Jülich, 52426 Jülich, Germany
| |
Collapse
|
8
|
Peng L, Wang M, Huang J, Guo C, Gong LZ, Song J. Enantio- and Diastereodivergent N-Heterocyclic Carbene/Nickel Dual-Catalyzed Umpolung Propargylic Substitutions of Enals. J Am Chem Soc 2023; 145:28085-28095. [PMID: 38032206 DOI: 10.1021/jacs.3c09569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The creation of full stereoisomers of an organic compound comprising multiple contiguous stereocenters with simultaneous control over both relative and absolute configurations remains a significant challenge in synthetic chemistry. Using a cooperative catalysis strategy, we established an N-heterocyclic carbene/nickel-catalyzed enantio- and diastereodivergent propargylation reaction to access 3,3'-disubstituted oxindoles, enabling the incorporation of internal alkyne functionality and the introduction of a single quaternary or vicinal quaternary/tertiary stereogenic center. By selecting the appropriate combination of catalyst chirality, all four potential stereoisomers of α-quaternary propargylated oxindoles were synthesized in a predictable and precise way with remarkable yields, diastereoselectivities, and enantioselectivities from identical starting materials. The synthetic utility of this method was demonstrated in the concise asymmetric total synthesis of (-)-debromoflustramine B and (-)-C(β-Me)-debromoflustramine B.
Collapse
Affiliation(s)
- Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mingxu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianming Huang
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Chen XH, Li YM, Huang X, Cui HL. POCl 3/Sulfoxide-Promoted Synthesis of Indolizino[8,7- b]indoles. J Org Chem 2023; 88:16400-16409. [PMID: 37983977 DOI: 10.1021/acs.joc.3c01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A mild chlorocyclization of pyrrole-tethered indoles has been realized using POCl3 as the chlorine source and tetramethylene sulfoxide as the promoter. A variety of chlorinated indolizino[8,7-b]indole derivatives have been constructed efficiently under this reaction system in moderate to good yields (19 examples, up to 93% yield).
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Yun-Meng Li
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
10
|
Shu H, Mo JN, Liu WD, Zhao J. Synthesis of Pyrroloindolines via N-Heterocyclic Carbene Catalyzed Dearomative Amidoacylation of Indole Derivatives. Org Lett 2023. [PMID: 37996081 DOI: 10.1021/acs.orglett.3c03588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Pyrroloindoline is a privileged heterocyclic motif that is widely present in many natural products and pharmaceutical compounds. Herein, we report an amidyl radical-mediated dearomatization for synthesizing a series of pyrroloindolines via N-heterocyclic carbene catalysis. In this organocatalytic process, the Breslow enolate served as both a single electron donor and an acyl radical equivalent to assemble C3a-acyl pyrroloindolines with a broad substrate scope. Sequential reduction of the indole derivatives provided the analogues of (±)-desoxyeseroline, which exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Chang X, Zhang F, Zhu S, Yang Z, Feng X, Liu Y. Photoredox-catalyzed diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indole derivatives. Nat Commun 2023; 14:3876. [PMID: 37391418 PMCID: PMC10313782 DOI: 10.1038/s41467-023-39633-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Prenylated and reverse-prenylated indolines are privileged scaffolds in numerous naturally occurring indole alkaloids with a broad spectrum of important biological properties. Development of straightforward and stereoselective methods to enable the synthesis of structurally diverse prenylated and reverse-prenylated indoline derivatives is highly desirable and challenging. In this context, the most direct approaches to achieve this goal generally rely on transition-metal-catalyzed dearomative allylic alkylation of electron-rich indoles. However, the electron-deficient indoles are much less explored, probably due to their diminished nucleophilicity. Herein, a photoredox-catalyzed tandem Giese radical addition/Ireland-Claisen rearrangement is disclosed. Diastereoselective dearomative prenylation and reverse-prenylation of electron-deficient indoles proceed smoothly under mild conditions. An array of tertiary α-silylamines as radical precursors is readily incorporated in 2,3-disubstituted indolines with high functional compatibility and excellent diastereoselectivity (>20:1 d.r.). The corresponding transformations of the secondary α-silylamines provide the biologically important lactam-fused indolines in one-pot synthesis. Subsequently, a plausible photoredox pathway is proposed based on control experiments. The preliminary bioactivity study reveals a potential anticancer property of these structurally appealing indolines.
Collapse
Affiliation(s)
- Xuexue Chang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fangqing Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shibo Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
12
|
Sun C, Ma BD, Li G, Tian W, Yang L, Peng H, Lin Z, Deng Z, Kong XD, Qu X. Engineering the Substrate Specificity of a P450 Dimerase Enables the Collective Biosynthesis of Heterodimeric Tryptophan-Containing Diketopiperazines. Angew Chem Int Ed Engl 2023; 62:e202304994. [PMID: 37083030 DOI: 10.1002/anie.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. Biosynthesis offers a practical opportunity to access their bioactive structural diversity, however, it is restricted by the limited substrate scopes of the HTDKPs-forming P450 dimerases. Herein, by genome mining and investigation of the sequence-product relationships, we unveiled three important residues (F387, F388 and E73) in these P450s that are pivotal for selecting different diketopiperazine (DKP) substrates in the upper binding pocket. Engineering these residues in NasF5053 significantly expanded its substrate specificity and enabled the collective biosynthesis, including 12 self-dimerized and at least 81 cross-dimerized HTDKPs. Structural and molecular dynamics analysis of F387G and E73S revealed that they control the substrate specificity via reducing steric hindrance and regulating substrate tunnels, respectively.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Bao-Di Ma
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Guangjun Li
- Abiochem Biotechnology Co. Ltd., 200240, Shanghai, China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Haidong Peng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
| | - Xu-Dong Kong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China
| |
Collapse
|
13
|
Adam S, Zheng D, Klein A, Volz C, Mullen W, Shirran SL, Smith BO, Kalinina OV, Müller R, Koehnke J. Unusual peptide-binding proteins guide pyrroloindoline alkaloid formation in crocagin biosynthesis. Nat Chem 2023; 15:560-568. [PMID: 36894702 PMCID: PMC10070186 DOI: 10.1038/s41557-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.
Collapse
Affiliation(s)
- Sebastian Adam
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Dazhong Zheng
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Andreas Klein
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carsten Volz
- Department of Microbial Natural Products, HIPS; HZI; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sally L Shirran
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Brian O Smith
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Olga V Kalinina
- Drug Bioinformatics Group, HIPS, HZI, Saarland University, Saarbrücken, Germany
- Medical Faculty, Saarland University, Homburg, Germany
- Center for Bioinformatics, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, HIPS; HZI; Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Hannover-Braunschweig Site, German Centre for Infection Research (DZIF), Hanover, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Xu Y, Fan H, Yang F, Xu S, Zhao X, Liao X, Zhang X. PPh 3-Mediated Cascade Reaction of 2-Alkynylnitrobenzenes and Thioureas for the Construction of Imidazo[4,5- b]indole-2-thiones. J Org Chem 2023. [PMID: 36800292 DOI: 10.1021/acs.joc.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple method for the preparation of imidazo[4,5-b]indole-2-thiones from 2-alkynylnitrobenzenes and thioureas is described. In the reaction, a Wittig-like process was triggered by PPh3 and followed by a cyclization step. The products were afforded in yields of 70-98% under mild conditions. Additionally, the 2-alkynylnitrobenzenes were stable and could be prepared via a simple coupling step.
Collapse
Affiliation(s)
- Yao Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hui Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fan Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shijie Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xuechun Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoming Liao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoxiang Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
15
|
Shen L, Zheng Y, Lin Z, Qin T, Huang Z, Zi W. Copper-Catalyzed Enantioselective C1,N-Dipolar (3+2) Cycloadditions of 2-Aminoallyl Cations with Indoles. Angew Chem Int Ed Engl 2023; 62:e202217051. [PMID: 36562702 DOI: 10.1002/anie.202217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
2-Aminoallyl cations are versatile 1,3-dipoles that could potentially be used for diverse (3+n) cycloaddition reactions. Despite some preliminary studies, the asymmetric catalytic transformation of these species is still underdeveloped. We herein report a binuclear copper-catalyzed generation of 2-aminoallyl cations from ethynyl methylene cyclic carbamates and their enantioselective (3+2) cycloaddition reaction with indoles to construct chiral pyrroloindolines. This transformation features a novel C1,N-dipolar reactivity for 2-aminoallyl cations.
Collapse
Affiliation(s)
- Lulu Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
| | - Zitong Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Tianzhu Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
16
|
Asymmetric catalytic alkylation of vinyl azides with 3-bromo oxindoles: water-assisted chemo- and enantiocontrol. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Chen Z, Shen Z. Nickel-catalyzed asymmetric reductive arylcyanation of alkenes with acetonitrile as the cyano source. Org Chem Front 2023. [DOI: 10.1039/d2qo01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chiral 3-cyanomethyl oxindoles were synthesized in high enantioselectivities and yields. The employment of acetonitrile as a cyano source via Zn(OTf)2-assisted β-carbon elimination is distinct from the common cyanation reaction modes.
Collapse
Affiliation(s)
- Zhenbang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
Luo ML, Hou Q, Liu SJ, Zhao Q, Qin R, Peng C, Han B, Zhan G. One-Step Synthesis of Hydropyrrolo[3,2- b]indoles via Cascade Reactions of Oxindole-Derived Nitrones with Allenoates. Org Lett 2022; 24:8493-8497. [DOI: 10.1021/acs.orglett.2c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qiumeng Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
19
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
20
|
Varlet T, Bouchet D, Van Elslande E, Masson G. Decatungstate‐Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2‐Acylindolines. Chemistry 2022; 28:e202201707. [DOI: 10.1002/chem.202201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Damien Bouchet
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN) CNRS University Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- HitCat Seqens-CNRS joint laboratory Seqens'Lab 8 Rue de Rouen 78440 Porcheville France
| |
Collapse
|
21
|
Chouhan R, Das AJ, Das SK. Diastereoselective Synthesis of Indoline- and Pyrrole-Embedded Tetracycles via an Unprecedented Dearomative Indole-C3-Alkylation/Aza-Friedel-Crafts Cascade Reaction. J Org Chem 2022; 87:11534-11546. [PMID: 35973061 DOI: 10.1021/acs.joc.2c01121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dearomative indole C3-alkylation─intramolecular iminium trapping cascade reaction of indole-C3-tethered nucleophiles is a well-known blueprint for accessing 2,3-fused indolines. In exploring this strategy, synthetic chemists have utilized diverse classes of electrophilic reagents. However, the tethered nucleophiles have mainly been limited to heteronucleophiles and enolates; exploitation of tethered arenes/heteroarenes remains unknown. We herein describe the first examples of pyrrole-intercepted dearomative indole C3-allylation and benzylation of indole-tethered pyrroles toward the synthesis of 2,3-cis-fused tetracyclic indolines featuring a C3 all-carbon quaternary stereocentre. Our methodology capitalizes on the capability of NaOtBu/Et3B combination to direct the intermolecular alkylation to take place regioselectively at the indole C3 position over the other reactive sites (indole N and C2 and pyrrole C2 positions) and leverages the high nucleophilicity of the pyrrole template for the concomitant aza-Friedel-Crafts ring closure that traditionally would require an additional acid-catalyzed synthetic step. This cascade reaction is accomplished with broad substrate scope and excellent yields and chemo-, regio-, and diastereoselectivities.
Collapse
Affiliation(s)
- Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Arup Jyoti Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
22
|
Liu B, Duan XY, Li J, Wu Y, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 2] Annulation of 3,3'-Bisoxindoles with α-Bromoenals: Enantioselective Construction of Contiguous Quaternary Stereocenters. Org Lett 2022; 24:5929-5934. [PMID: 35947030 DOI: 10.1021/acs.orglett.2c02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed enantio- and diastereoselective [3 + 2] annulation of α-bromoenals with bisoxindoles is developed, affording efficient access to various spirocyclic bisoxindole alkaloids. This protocol tolerates a broad substrates scope, with various spirocyclic bisoxindoles obtained in generally excellent enantioselectivities. More importantly, two contiguous sterically congested all-carbon quaternary stereocenters are successfully created during this process.
Collapse
Affiliation(s)
- Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Jiahan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yatong Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
23
|
Shaum JB, Nikolaev A, Steffens HC, Gonzalez L, Walker S, Samoshin AV, Hammersley G, La EH, Read de Alaniz J. Copper-Mediated Single-Electron Approach to Indoline Amination: Scope, Mechanism, and Total Synthesis of Asperazine A. J Org Chem 2022; 87:9907-9914. [PMID: 35876810 DOI: 10.1021/acs.joc.2c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrroloindolines bearing a C3-N linkage comprise the core of many biologically active natural products, but many methods toward their synthesis are limited by the sterics or electronics of the product. We report a single electron-based approach for the synthesis of this scaffold and demonstrate high-yielding aminations, regardless of electronic or steric demands. The transformation uses copper wire and isopropanol to promote the reaction. The broad synthetic utility of this heterogeneous copper-catalyzed approach to access pyrroloindolines, diketopiperazine, furoindoline, and (+)-asperazine is included, along with experiments to provide insight into the mechanism of this new process.
Collapse
Affiliation(s)
- James B Shaum
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrei Nikolaev
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Helena C Steffens
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Luis Gonzalez
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Shamon Walker
- Materials Department and Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrey V Samoshin
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Gabrielle Hammersley
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Ellia H La
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
26
|
Patel K, Lanke V, Marek I. Stereospecific Construction of Quaternary Carbon Stereocenters from Quaternary Carbon Stereocenters. J Am Chem Soc 2022; 144:7066-7071. [PMID: 35412821 PMCID: PMC9052742 DOI: 10.1021/jacs.2c01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Organoaluminum species
promote a smooth nucleophilic substitution
at the quaternary carbon stereocenter of stereodefined polysubstituted
cyclopropyl methyl phosphate with a complete inversion of configuration,
even when more reactive functional groups are present. The regio-
and diastereoselectivity of the substitution is attributed to the
existence of a bicyclobutonium intermediate.
Collapse
Affiliation(s)
- Kaushalendra Patel
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Veeranjaneyulu Lanke
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
27
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
28
|
Ma Z, Zhou A, Xia C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Nat Prod Rep 2022; 39:1015-1044. [PMID: 35297915 DOI: 10.1039/d1np00060h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering up to 2021Complex cyclotryptamine alkaloids with a bispyrrolidino[2,3-b]indoline (BPI) skeleton are an intriguing family of natural products, exhibiting wide systematic occurrences, large structural diversity, and multiple biological activities. Based on their structural characteristics, BPI alkaloids can be classified into chimonanthine-type BPI alkaloids, BPI diketopiperazines, and BPI epipolythiodiketopiperazines. These intricate molecules have captivated great attention soon after their isolation and identification in the 1960s. Due to the structural complexity, the total synthesis of these cyclotryptamine alkaloids is challenging. Nevertheless, remarkable progress has been achieved in the last six decades; in particular, several methods have been successfully established for the construction of vicinal all-carbon quaternary stereocenters. In this review, the structural diversity and chemical synthesis of these BPI alkaloids were summarized. BPI alkaloids are mainly synthesized by the methods of oxidative dimerization, reductive dimerization, and alkylation of bisoxindole. The purpose of this review is to present overall strategies for assembling the BPI skeleton and efforts towards controlling the stereocenters.
Collapse
Affiliation(s)
- Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Ankun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| |
Collapse
|
29
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
30
|
Munda M, Niyogi S, Shaw K, Kundu S, Nandi R, Bisai A. Electrocatalysis as a key strategy for the total synthesis of natural products. Org Biomol Chem 2022; 20:727-748. [PMID: 34989383 DOI: 10.1039/d1ob02115j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrochemical strategies have been a powerful approach for the synthesis of valuable intermediates, in particular heterocyclic motifs. Because of the mild nature, a wide range of nonclassical bond disconnections have been achieved via in situ-generated radical intermediates in a highly efficient manner. In particular, anodic electrochemical oxidative strategies have been utilized for the total synthesis of many structurally intriguing natural products. In this review article, we have discussed a number of total syntheses of structurally intriguing alkaloids and terpenoids in which electrochemical processes play an important role as a key methodology.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Sovan Niyogi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Sourav Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| |
Collapse
|
31
|
Yan J, Zhou Z, He Q, Chen G, Wei H, Xie W. The applications of catalytic asymmetric halocyclization in natural product synthesis. Org Chem Front 2022. [DOI: 10.1039/d1qo01395e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalytic asymmetric halocyclization of olefinic substrate has evolved rapidly and been well utilized as a practical strategy for constructing enantioenriched cyclic skeletons in natural product synthesis.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
32
|
WANG W, Zou PS, PANG L, LEI R, HUANG ZY, Chen NY, Mo DL, Pan C, SU GF. Synthesis of Spiroindolenine-3,3'-pyrrolo[2,1-b]quinazolinones through Gold(I)-Catalyzed Dearomative Cyclization of N-Alkynyl Quinazolinone-Tethered Indoles. Org Biomol Chem 2022; 20:2069-2074. [DOI: 10.1039/d1ob02492b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of functionalized spiroindolenine-3,3'-pyrrolo[2,1-b]quinazolinones were prepared in good to excellent yields through a gold(I)-catalyzed dearomative cyclization of N-alkynyl quinazolinone-tethered C2-substituted indoles. The reaction features broad substrate scope, good functional...
Collapse
|
33
|
Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
34
|
Dotson JJ, Garg NK, Garcia-Garibay MA. Evaluation of the photodecarbonylation of crystalline ketones for the installation of reverse prenyl groups on the pyrrolidinoindoline scaffold. Tetrahedron 2021; 76. [PMID: 34898726 DOI: 10.1016/j.tet.2020.131181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report synthetic efforts toward the regiocontrolled installation of the prenyl moiety in debromoflustramine A by the regiospecific photodecarbonylation of a prenyl-substituted ketone. Synthetic approaches to access the plausible photodecarbonylation substrates beginning from tryptamine were evaluated. Initial attempts to synthesize a suitable substrate for photodecarbonylation were hampered by a lack of substrate crystallinity (a prerequisite for solid-state photochemistry). Ultimately, a crystalline substrate could be accessed to attempt the key step by judicious selection of N-substituents. Although the photodecarbonylation did not result in the desired reverse prenylation, this study highlights the troubleshooting and optimization required for crystal phase photochemistry and underscores methods that can be used to control substrate crystallinity.
Collapse
Affiliation(s)
- Jordan J Dotson
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| | - Miguel A Garcia-Garibay
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA, 90095, USA
| |
Collapse
|
35
|
Zhang J, Xia W, Qu M, Huda S, Ward JS, Rissanen K, Albrecht M. Synthesis of Polycyclic Indolines by Utilizing a Reduction/Cyclization Cascade Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyu Zhang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Wei Xia
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Meilin Qu
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| |
Collapse
|
36
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Shaw K, Sharma S, Khatua A, Paul A, Bisai A. Oxidative electro-organic synthesis of dimeric hexahydropyrrolo-[2,3- b]indole alkaloids involving PCET: total synthesis of (±)-folicanthine. Org Biomol Chem 2021; 19:9390-9395. [PMID: 34705000 DOI: 10.1039/d1ob01463c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrochemical oxidation strategy for the total synthesis of a dimeric hexahydropyrrolo[2,3-b]indole alkaloid, (±)-folicanthine (1b), has been envisioned. Control experiments suggest that a PCET pathway involving stepwise electron transfer followed by proton transfer (ET-PT) was involved in the key oxidative dimerization process.
Collapse
Affiliation(s)
- Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India.
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal - 462 066, Madhya Pradesh, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia - 741246, West Bengal, India
| |
Collapse
|
38
|
Zhu M, Huang XL, Sun S, Zheng C, You SL. Visible-Light-Induced Dearomatization of Indoles/Pyrroles with Vinylcyclopropanes: Expedient Synthesis of Structurally Diverse Polycyclic Indolines/Pyrrolines. J Am Chem Soc 2021; 143:13441-13449. [PMID: 34398603 DOI: 10.1021/jacs.1c07082] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visible-light-induced cycloaddition reactions initiated via energy-transfer processes have recently evolved as powerful methods for the construction of strained cyclic molecules that are not easily accessed using known ground-state synthetic methods. Particularly, the reactions initiated by the excitation of aromatic rings provide an alternative solution to the direct transformations of aromatic feedstocks under the scheme of dearomatization. Vinylcyclopropanes (VCPs) are well-known reagents in radical clock experiments, working as a probe to detect transient radical intermediates. However, the synthetic applications in this regard still remain limited due to uncontrollable selectivities. Herein, we report visible-light-induced dearomatization of indole- or pyrrole-tethered VCPs, in which several competitive reaction pathways, including [5 + 2], [2 + 2], interrupted [5 + 2], and [5 + 4] cycloadditions, can be well regulated by engineering substrate structures and tuning reaction conditions. The reaction mechanism has been explored by combined experimental and computational investigations. These reactions provide a convenient method to synthesize structurally diverse polycyclic molecules with high efficiency and good selectivity.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xu-Lun Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Shuo Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
39
|
Joshi BD, Chisholm JD. Formation of Pyrroloindolines via the Alkylation of Tryptamines with Trichloroacetimidates. Tetrahedron Lett 2021; 77:153256. [PMID: 34334833 PMCID: PMC8321311 DOI: 10.1016/j.tetlet.2021.153256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pyrroloindolines and related systems are present in a large number of complex natural products. These core structures have generated considerable synthetic interest, as many of the compounds possess challenging, elaborate structures and interesting biological properties. Recently we have focused on using trichloroacetimidates for the synthesis of these fascinating molecules. Trichloroacetimidates can be used as an electrophilic source of an alkyl group to form the pyrroloindoline directly from tryptamine derivatives. In this manner trichloroacetimidates provide a flexible solution to forming highly functionalized pyrroloindoline core structures, needing only a catalytic amount of a Lewis acid to effect the requisite transformations.
Collapse
Affiliation(s)
- Bhaskar D Joshi
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| | - John D Chisholm
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, NY 13244
| |
Collapse
|
40
|
Li P, Yang F, Hu G, Zhang X. Palladium-Catalyzed One-Pot Synthesis of Pyrroloindolines from 2-Alkynyl Arylazides and Thioacetamides. J Org Chem 2021; 86:10360-10367. [PMID: 34281342 DOI: 10.1021/acs.joc.1c01058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient synthetic method for the preparation of various pyrroloindolines from 2-alkynyl arylazides and thioacetamides was developed. The reaction was carried out in a one-pot process under mild reaction conditions to afford the products in moderate to good yields, which has the potential to be used in organic synthesis.
Collapse
Affiliation(s)
- Ping Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fan Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Guiwen Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
41
|
Lu L, Zheng Z, Yang Y, Liu B, Yin B. Access to Polycyclic Indol(en)ines
via
Base‐Catalyzed
Intramolecular Dearomatizing
3‐Alkenylation
of Alkynyl Indoles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Zuoliang Zheng
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Yongjie Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Bo Liu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine Guangzhou Guangdong 510006 China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
42
|
Shen X, Peng T, Wang F, Li S, Lei X, Yunxiao, Wang, Cheng F, Liu T. Copper(I)‐Catalyzed Cascade Cyclization to the Total Synthesis of Hexahydropyrroloindole Alkaloids: Flustramine B and Debromoflustramine B. ChemistrySelect 2021. [DOI: 10.1002/slct.202101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianfu Shen
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Tianfeng Peng
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Fan Wang
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Shumin Li
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Xingfu Lei
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Yunxiao
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Wang
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| | - Teng Liu
- College of Chemistry and Environmental Science College of Biological Resource and Food Engineering Qujing Normal University Qujing 655011 P. R. China
| |
Collapse
|
43
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
44
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021; 60:14068-14075. [DOI: 10.1002/anie.202102769] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
45
|
Sun C, Peng H, Zhang W, Zheng M, Tian W, Zhang Y, Liu H, Lin Z, Deng Z, Qu X. Production of Heterodimeric Diketopiperazines Employing a Mycobacterium-Based Whole-Cell Biocatalysis System. J Org Chem 2021; 86:11189-11197. [PMID: 33886315 DOI: 10.1021/acs.joc.1c00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodimeric tryptophan-containing diketopiperazines (HTDKPs) are an important class of bioactive secondary metabolites. P450-mediated biocatalysis offers a practical avenue to access their structural diversity; however, many of these enzymes are insoluble in Escherichia coli and difficult to operate in Streptomyces. Through validation of the functions of two pairs Mycobacterium smegmatis sourced redox partners in vitro, and comparing the efficiency of different biocatalytic systems with tricky P450s in vivo, we herein demonstrated that M. smegmatis is much more efficient, robust, and cleaner in metabolites background than the regularly used E. coli or Streptomyces systems. The M. smegmatis-based system can completely convert 1 g L-1 of cyclodipeptide into HTDKPs within 18 h with minimal background metabolites. On the basis of this efficient system, 12 novel HTDPKs were readily obtained by using two HTDKP-forming P450s (NasbB and NASS1868). Among them, five compounds have neuroprotective properties. Our study significantly expands the bioactive chemical scope of HTDKPs and provides an excellent biocatalysis platform for dealing with problematic enzymes from Actinomycetes.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenlu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mei Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Huanhuan Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Song S, Li Y, Chen D, Wang X, Liu Y, Chen L. Synthesis of α‐Amidoacrylates Containing a 3‐Ylideneoxindole Motif. ChemistrySelect 2021. [DOI: 10.1002/slct.202100578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuai Song
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ya Li
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - De‐Yin Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Xiao‐Ping Wang
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Yong‐Liang Liu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| |
Collapse
|
47
|
Gao D, Jiao L. Construction of Indoline/Indolenine Ring Systems by a Palladium-Catalyzed Intramolecular Dearomative Heck Reaction and the Subsequent Aza-semipinacol Rearrangement. J Org Chem 2021; 86:5727-5743. [PMID: 33787262 DOI: 10.1021/acs.joc.1c00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The palladium-catalyzed intramolecular dearomative Heck reaction of 2,3-disubstituted indoles serves as an access to spiro-indoline products. Herein, we report an efficient construction of indoline/indolenine core stuctures via a dearomative Heck reaction of simple 2,3-disubstituted indoles with all-carbon tethers and the subsequent aza-semipinacol rearrangement. The Heck reaction features a high C2-selectivity, and the stereospecific aryl/alkyl migration selectivity has been investigated by DFT calculations. Using this method, we accomplished the formal total synthesis of akuammiline alkaloids vincorine.
Collapse
Affiliation(s)
- Dong Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Alvin Tan CX, Mei GJ, Lu Y. Phosphine-Catalyzed Asymmetric Allylic Alkylation of Achiral MBH Carbonates with 3,3'-Bisindolines: Enantioselective Construction of Quaternary Stereogenic Centers. Org Lett 2021; 23:1787-1792. [PMID: 33615793 DOI: 10.1021/acs.orglett.1c00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The asymmetric allylic alkylation (AAA) of achiral Morita-Baylis-Hillman (MBH) carbonates with 3,3'-bisindolines under the catalysis of amino-acid-derived bifunctional phosphines was accomplished. With the AAA approach introduced herein, challenging 3,3'-bisindolines bearing an all-carbon quaternary stereocenter (C3a) have been constructed in good yields with good to excellent enantioselectivties. In addition, the synthetic value of this protocol was demonstrated by the facile synthesis of the core skeleton of gliocladin C.
Collapse
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.,Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Guang-Jian Mei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.,Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| |
Collapse
|
49
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
50
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021; 60:7036-7040. [DOI: 10.1002/anie.202016899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|