1
|
Zhao G, Dong F, Lao X, Zheng H. Strategies to Increase the Production of Biosynthetic Riboflavin. Mol Biotechnol 2021; 63:909-918. [PMID: 34156642 DOI: 10.1007/s12033-021-00318-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.
Collapse
Affiliation(s)
- Guiling Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Fanyi Dong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
|
3
|
Rostas A, Einholz C, Illarionov B, Heidinger L, Said TA, Bauss A, Fischer M, Bacher A, Weber S, Schleicher E. Long-Lived Hydrated FMN Radicals: EPR Characterization and Implications for Catalytic Variability in Flavoproteins. J Am Chem Soc 2018; 140:16521-16527. [PMID: 30412389 DOI: 10.1021/jacs.8b07544] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Until now, FMN/FAD radicals could not be stabilized in aqueous solution or other protic solvents because of rapid and efficient dismutation reactions. In this contribution, a novel system for stabilizing flavin radicals in aqueous solution is reported. Subsequent to trapping FMN in an agarose matrix, light-generated FMN radicals could be produced that were stable for days even under aerobic conditions, and their concentrations were high enough for extensive EPR characterization. All large hyperfine couplings could be extracted by using a combination of continuous-wave EPR and low-temperature ENDOR spectroscopy. To map differences in the electronic structure of flavin radicals, two exemplary proton hyperfine couplings were compared with published values from various neutral and anionic flavoprotein radicals: C(6)H and C(8α)H 3. It turned out that FMN•- in an aqueous environment shows the largest hyperfine couplings, whereas for FMNH• under similar conditions, hyperfine couplings are at the lower end and the values of both vary by up to 30%. This finding demonstrates that protein-cofactor interactions in neutral and anionic flavoprotein radicals can alter their electron spin density in different directions. With this aqueous system that allows the characterization of flavin radicals without protein interactions and that can be extended by using selective isotope labeling, a powerful tool is now at hand to quantify interactions in flavin radicals that modulate the reactivity in different flavoproteins.
Collapse
Affiliation(s)
- Arpad Rostas
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Christopher Einholz
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Boris Illarionov
- Hamburg School of Food Science , Institut für Lebensmittelchemie, Universität Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Lorenz Heidinger
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Tarek Al Said
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Anna Bauss
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Markus Fischer
- Hamburg School of Food Science , Institut für Lebensmittelchemie, Universität Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Adelbert Bacher
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Stefan Weber
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| |
Collapse
|
4
|
Neti SS, Poulter CD. Site-Selective Synthesis of (15)N- and (13)C-Enriched Flavin Mononucleotide Coenzyme Isotopologues. J Org Chem 2016; 81:5087-92. [PMID: 27176708 DOI: 10.1021/acs.joc.6b00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - C Dale Poulter
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|