1
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
2
|
Akhtar P, Caspy I, Nowakowski PJ, Malavath T, Nelson N, Tan HS, Lambrev PH. Two-Dimensional Electronic Spectroscopy of a Minimal Photosystem I Complex Reveals the Rate of Primary Charge Separation. J Am Chem Soc 2021; 143:14601-14612. [PMID: 34472838 DOI: 10.1021/jacs.1c05010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem I (PSI), found in all oxygenic photosynthetic organisms, uses solar energy to drive electron transport with nearly 100% quantum efficiency, thanks to fast energy transfer among antenna chlorophylls and charge separation in the reaction center. There is no complete consensus regarding the kinetics of the elementary steps involved in the overall trapping, especially the rate of primary charge separation. In this work, we employed two-dimensional coherent electronic spectroscopy to follow the dynamics of energy and electron transfer in a monomeric PSI complex from Synechocystis PCC 6803, containing only subunits A-E, K, and M, at 77 K. We also determined the structure of the complex to 4.3 Å resolution by cryoelectron microscopy with refinements to 2.5 Å. We applied structure-based modeling using a combined Redfield-Förster theory to compute the excitation dynamics. The absorptive 2D electronic spectra revealed fast excitonic/vibronic relaxation on time scales of 50-100 fs from the high-energy side of the absorption spectrum. Antenna excitations were funneled within 1 ps to a small pool of chlorophylls absorbing around 687 nm, thereafter decaying with 4-20 ps lifetimes, independently of excitation wavelength. Redfield-Förster energy transfer computations showed that the kinetics is limited by transfer from these red-shifted pigments. The rate of primary charge separation, upon direct excitation of the reaction center, was determined to be 1.2-1.5 ps-1. This result implies activationless electron transfer in PSI.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore.,Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.,ELI-ALPS, ELI-HU Non-profit Ltd., Wolfgang Sandner u. 3, Szeged 6728, Hungary
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paweł J Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Tirupathi Malavath
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, 637371 Singapore
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary
| |
Collapse
|
3
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Direct Evidence for Excitation Energy Transfer Limitations Imposed by Low-Energy Chlorophylls in Photosystem I-Light Harvesting Complex I of Land Plants. J Phys Chem B 2021; 125:3566-3573. [PMID: 33788560 PMCID: PMC8154617 DOI: 10.1021/acs.jpcb.1c01498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The overall efficiency
of photosynthetic energy conversion depends
both on photochemical and excitation energy transfer processes from
extended light-harvesting antenna networks. Understanding the trade-offs
between increase in the antenna cross section and bandwidth and photochemical
conversion efficiency is of central importance both from a biological
perspective and for the design of biomimetic artificial photosynthetic
complexes. Here, we employ two-dimensional electronic spectroscopy
to spectrally resolve the excitation energy transfer dynamics and
directly correlate them with the initial site of excitation in photosystem
I–light harvesting complex I (PSI-LHCI) supercomplex of land
plants, which has both a large antenna dimension and a wide optical
bandwidth extending to energies lower than the peak of the reaction
center chlorophylls. Upon preferential excitation of the low-energy
chlorophylls (red forms), the average relaxation time in the bulk
supercomplex increases by a factor of 2–3 with respect to unselective
excitation at higher photon energies. This slowdown is interpreted
in terms of an excitation energy transfer limitation from low-energy
chlorophyll forms in the PSI-LHCI. These results aid in defining the
optimum balance between the extension of the antenna bandwidth to
the near-infrared region, which increases light-harvesting capacity,
and high photoconversion quantum efficiency.
Collapse
Affiliation(s)
- Mattia Russo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
4
|
Cherepanov DA, Brady NG, Shelaev IV, Nguyen J, Gostev FE, Mamedov MD, Nadtochenko VA, Bruce BD. PSI-SMALP, a Detergent-free Cyanobacterial Photosystem I, Reveals Faster Femtosecond Photochemistry. Biophys J 2020; 118:337-351. [PMID: 31882247 PMCID: PMC6976803 DOI: 10.1016/j.bpj.2019.11.3391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Cyanobacterial photosystem I (PSI) functions as a light-driven cyt c6-ferredoxin/oxidoreductase located in the thylakoid membrane. In this work, the energy and charge transfer processes in PSI complexes isolated from Thermosynechococcus elongatus via conventional n-dodecyl-β-D-maltoside solubilization (DM-PSI) and a, to our knowledge, new detergent-free method using styrene-maleic acid copolymers (SMA-PSI) have been investigated by pump-to-probe femtosecond laser spectroscopy. In DM-PSI preparations excited at 740 nm, the excitation remained localized on the long-wavelength chlorophyll forms within 0.1-20 ps and revealed little or no charge separation and oxidation of the special pair, P700. The formation of ion-radical pair P700+A1- occurred with a characteristic time of 36 ps, being kinetically controlled by energy transfer from the long-wavelength chlorophyll to P700. Quite surprisingly, the detergent-free SMA-PSI complexes upon excitation by these long-wave pulses undergo an ultrafast (<100 fs) charge separation in ∼45% of particles. In the remaining complexes (∼55%), the energy transfer to P700 occurred at ∼36 ps, similar to the DM-PSI. Both isolation methods result in a trimeric form of PSI, yet the SMA-PSI complexes display a heterogenous kinetic behavior. The much faster rate of charge separation suggests the existence of an ultrafast pathway for charge separation in the SMA-PSI that may be disrupted during detergent isolation.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Nathan G Brady
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Jon Nguyen
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Barry D Bruce
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee; Energy Science & Engineering Program, The Bredesen Center, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
5
|
Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:895-905. [DOI: 10.1016/j.bbabio.2017.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/23/2022]
|
6
|
Molotokaite E, Remelli W, Casazza AP, Zucchelli G, Polli D, Cerullo G, Santabarbara S. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation. J Phys Chem B 2017; 121:9816-9830. [DOI: 10.1021/acs.jpcb.7b07064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Egle Molotokaite
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - William Remelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Dario Polli
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
7
|
Sun Y, Su Y, Dai Z, Wang W. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Mamedov M, Nadtochenko V, Semenov A. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. PHOTOSYNTHESIS RESEARCH 2015; 125:51-63. [PMID: 25648636 DOI: 10.1007/s11120-015-0088-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/12/2015] [Indexed: 05/22/2023]
Abstract
This minireview is written in honor of Vladimir A. Shuvalov, a pioneer in the area of primary photochemistry of both oxygenic and anoxygenic photosyntheses (See a News Report: Allakhverdiev et al. 2014). In the present paper, we describe the current state of the formation of the primary and secondary ion-radical pairs within photosystems (PS) II and I in oxygenic organisms. Spectral-kinetic studies of primary events in PS II and PS I, upon excitation by ~20 fs laser pulses, are now available and reviewed here; for PS II, excitation was centered at 710 nm, and for PS I, it was at 720 nm. In PS I, conditions were chosen to maximally increase the relative contribution of the direct excitation of the reaction center (RC) in order to separate the kinetics of the primary steps of charge separation in the RC from that of the excitation energy transfer in the antenna. Our results suggest that the sequence of the primary electron transfer reactions is P680 → ChlD1 → PheD1 → QA (PS II) and P700 → A 0A/A 0B → A 1A/A 1B (PS I). However, alternate routes of charge separation in PS II, under different excitation conditions, are not ruled out.
Collapse
Affiliation(s)
- Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991, Moscow, Russia,
| | | | | |
Collapse
|
9
|
Semenov AY, Petrova AA, Mamedov MD, Nadtochenko VA. Electron transfer in photosystem I containing native and modified quinone acceptors. BIOCHEMISTRY (MOSCOW) 2015; 80:654-61. [DOI: 10.1134/s0006297915060024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abstract
We demonstrate the ability of two-dimensional electronic spectroscopy (2DES) to
map ultrafast energy transfer and dynamics in two systems: the pigment–protein
complex photosystem I (PSI) and aggregates of the conjugated polymer
poly(3-hexylthiophene) (P3HT). A detailed description of our experimental set-up
and data processing procedure is also given.
Collapse
|
11
|
Anna JM, Ostroumov EE, Maghlaoui K, Barber J, Scholes GD. Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Downhill Energy Transfer in Photosystem I Trimers of the Cyanobacterium Thermosynechococcus elongatus. J Phys Chem Lett 2012; 3:3677-84. [PMID: 26291095 DOI: 10.1021/jz3018013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) was used to investigate the ultrafast energy-transfer dynamics of trimeric photosystem I of the cyanobacterium Thermosynechococcus elongatus. We demonstrate the ability of 2DES to resolve dynamics in a large pigment-protein complex containing ∼300 chromophores with both high frequency and time resolution. Monitoring the waiting-time-dependent changes of the line shape of the inhomogeneously broadened Qy(0-0) transition, we directly observe downhill energy equilibration on the 50 fs time scale.
Collapse
Affiliation(s)
- Jessica M Anna
- †Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Evgeny E Ostroumov
- †Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Karim Maghlaoui
- ‡Division of Molecular Bioscience, Department of Life Sciences, Imperial College London, Sir Ernst Chain Building - Wolfson Laboratories, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - James Barber
- ‡Division of Molecular Bioscience, Department of Life Sciences, Imperial College London, Sir Ernst Chain Building - Wolfson Laboratories, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Gregory D Scholes
- †Department of Chemistry, Institute for Optical Sciences and Centre for Quantum Information and Quantum Control, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
12
|
Semenov AY, Shelaev IV, Gostev FE, Mamedov MD, Shuvalov VA, Sarkisov OM, Nadtochenko VA. Primary steps of electron and energy transfer in photosystem I: Effect of excitation pulse wavelength. BIOCHEMISTRY (MOSCOW) 2012; 77:1011-20. [DOI: 10.1134/s0006297912090088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Hiyama M, Koga N. Theoretical study of electron transfer in Rhodobacter sphaeroides reaction center. Photochem Photobiol 2011; 87:1297-307. [PMID: 21895666 DOI: 10.1111/j.1751-1097.2011.00997.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the substitution effects on electron transfer in Rhodobacter (Rb.) sphaeroides reaction center using ab initio calculations. The overlap of molecular orbitals in the X-ray structure of 1PCR of the protein data bank using Gaussian09 can qualitatively explain the tendency of the experimental transition time. The charge effects of proteins on electron transfer in Rb. sphaeroides reaction center are also investigated, by employing a simple point charge approximation for proteins. We have found that the primary effect for the route A orientation is the effect of long side chains. For the route A orientation on the electron transfer, the influence of the charges of proteins operates through the long side chains indirectly as well as directly work to increase the value of overlap integrals.
Collapse
Affiliation(s)
- Miyabi Hiyama
- Graduate School of Information Science, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
14
|
Di Donato M, Stahl AD, van Stokkum IHM, van Grondelle R, Groot ML. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2010; 50:480-90. [DOI: 10.1021/bi101565w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Di Donato
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Andreas D. Stahl
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie-Louise Groot
- Faculty of Sciences, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1410-20. [PMID: 20219440 DOI: 10.1016/j.bbabio.2010.02.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/25/2010] [Accepted: 02/23/2010] [Indexed: 11/21/2022]
Abstract
The ultrafast (<100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first approximately 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next approximately 40 fs the formation of a new broad band centered at approximately 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0- ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An*-->k1[(PA0)*A1--><100 fs P+A0-A1]-->k2P+A0A1-, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (<100 fs) charge separation with the formation of the P700+A0-A1 state in approximately one half of the RCs, the approximately 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and approximately 25-ps formation of the secondary radical pair P700+A0A1-.
Collapse
|
16
|
Effect of the P700 pre-oxidation and point mutations near A(0) on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:106-12. [PMID: 19761751 DOI: 10.1016/j.bbabio.2009.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/31/2009] [Accepted: 09/09/2009] [Indexed: 11/22/2022]
Abstract
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A(0), has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the "primary electron donor," P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of approximately 7 ps and approximately 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A(0): both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A(0). We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A(0)(-)-->AA(0) charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A(0) axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A(0)(-).
Collapse
|
17
|
Shibata Y, Akai S, Kasahara T, Ikegami I, Itoh S. Temperature-dependent energy gap of the primary charge separation in photosystem I: study of delayed fluorescence at 77-268 K. J Phys Chem B 2008; 112:6695-702. [PMID: 18461984 DOI: 10.1021/jp710551e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dynamics of fluorescence decay and charge recombination were studied in the ether-extracted photosystem I reaction center isolated from spinach with picosecond resolution over a wide time range up to 100 ns. At all temperatures from 268 to 77 K, a slow fluorescence decay component with a 30-40 ns lifetime was detected. This component was interpreted as a delayed fluorescence emitted from the singlet excited state of the primary donor P700*, which is repopulated through charge recombination that was increased by the lack of secondary acceptor phylloquinone in the sample. Analysis of the fluorescence kinetics allowed estimation of the standard free-energy difference -DeltaG between P700* and the primary radical pair (P700(+)A0(-)) state over a wide temperature range. The values of -DeltaG were estimated to be 160/36 meV at 268/77 K, indicating its high sensitivity to temperature. A temperature-dependent -DeltaG value was also estimated in the delayed fluorescence of the isolated photosystem I in which the secondary acceptor quinone was partially prereduced by preillumination in the presence of dithionite. The results revealed that the temperature-dependent -DeltaG is a universal phenomenon common with the purple bacterial reaction centers, photosystem II and photosystem I reaction centers.
Collapse
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | |
Collapse
|
18
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
19
|
Mimuro M, Tsuchiya T, Inoue H, Sakuragi Y, Itoh Y, Gotoh T, Miyashita H, Bryant DA, Kobayashi M. The secondary electron acceptor of photosystem I inGloeobacter violaceusPCC 7421 is menaquinone-4 that is synthesized by a unique but unknown pathway. FEBS Lett 2005; 579:3493-6. [PMID: 15955532 DOI: 10.1016/j.febslet.2005.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
The secondary electron acceptor of photosystem (PS) I in the cyanobacterium Gloeobacter violaceus PCC 7421 was identified as menaquinone-4 (MQ-4) by comparing high performance liquid chromatograms and absorption spectra with an authentic compound. The MQ-4 content was estimated to be two molecules per one molecule of chlorophyll (Chl) a', a constituent of P700. Comparative genomic analyses showed that six of eight men genes, encoding phylloquinone/MQ biosynthetic enzymes, are missing from the G. violaceus genome. Since G. violaceus clearly synthesizes MQ-4, the combined results indicate that this cyanobacterium must have a novel pathway for the synthesis of 1,4-dihydroxy-2-naphthoic acid.
Collapse
Affiliation(s)
- Mamoru Mimuro
- Department of Technology and Ecology, Hall of Global Environmental Research, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Charge Recombination Fluorescence in Photosystem I Reaction Centers from Chlamydomonas reinhardtii. J Phys Chem B 2005; 109:5903-11. [PMID: 16851643 DOI: 10.1021/jp046299f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fluorescence kinetics of photosystem I core particles from Chlamydomonas reinhardtii have been measured with picosecond resolution in order to test a previous hypothesis suggesting a charge recombination mechanism for the early electron-transfer steps and the fluorescence kinetics (Müller et al. Biophys. J. 2003, 85, 3899-3922). Performing global target analyses for various kinetic models on the original fluorescence data confirms the "charge recombination" model as the only acceptable one of the models tested while all of the other models can be excluded. The analysis allowed a precise determination of (i) the effective charge separation rate constant from the equilibrated reaction center excited state (438 ns(-1)) confirming our previous assignment based on transient absorption data (Müller et al. Biophys. J. 2003, 85, 3899-3922), (ii) the effective charge recombination rate constant back to the excited state (52 ns(-1)), and (iii) the intrinsic secondary electron-transfer rate constant (80 ns(-1)). The average energy equilibration lifetime core antenna/RC is about 1 ps in the "charge recombination" model, in agreement with previous transient absorption data, vs the 18-20 ps energy transfer lifetime from antenna to RC within "transfer-to-the-trap-limited" models. The apparent charge separation lifetime in the recombination model is about three times faster than in the "transfer-to-the-trap-limited" model. We conclude that the charge separation kinetics is trap-limited in PS I cores devoid of red antenna states such as in C. reinhardtii.
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | | | | | | |
Collapse
|
21
|
Müller MG, Niklas J, Lubitz W, Holzwarth AR. Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J 2004; 85:3899-922. [PMID: 14645079 PMCID: PMC1303691 DOI: 10.1016/s0006-3495(03)74804-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.
Collapse
Affiliation(s)
- Marc G Müller
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr 34-36, D-45470 Mülheim ad Ruhr, Germany
| | | | | | | |
Collapse
|
22
|
Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW, Webber AN. Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J 2004; 85:2547-59. [PMID: 14507717 PMCID: PMC1303478 DOI: 10.1016/s0006-3495(03)74677-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Femtosecond excitation of the red edge of the chlorophyll a Q(Y) transition band in photosystem I (PSI), with light of wavelength > or = 700 nm, leads to wide transient (subpicosecond) absorbance changes: positive DeltaA between 635 and 665 nm, and four negative DeltaA bands at 667, 675, 683, and 695 nm. Here we compare the transient absorbance changes after excitation at 700, 705, and 710 nm at 20 K in several PSI preparations of Chlamydomonas reinhardtii where amino acid ligands of the primary donor, primary acceptor, or connecting chlorophylls have been mutated. Most of these mutations influence the spectrum of the absorbance changes. This supports the view that the chlorophylls of the electron transfer chain as well as the connecting chlorophylls are engaged in the observed absorbance changes. The wide absorption spectrum of the electron transfer chain revealed by the transient measurements may contribute to the high efficiency of energy trapping in photosystem 1. Exciton calculations, based on the recent PSI structure, allow an assignment of the DeltaA bands to particular chlorophylls: the bands at 675 and 695 nm to the dimers of primary acceptor and accessory chlorophyll and the band at 683 nm to the connecting chlorophylls. The subpicosecond transient absorption bands decay may reflect rapid charge separation in the PSI reaction center.
Collapse
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601 USA
| | | | | | | | | | | |
Collapse
|
23
|
Yang M, Damjanović A, Vaswani HM, Fleming GR. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 2003; 85:140-58. [PMID: 12829471 PMCID: PMC1303072 DOI: 10.1016/s0006-3495(03)74461-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/07/2003] [Indexed: 10/21/2022] Open
Abstract
We model the energy transfer and trapping kinetics in PSI. Rather than simply applying Förster theory, we develop a new approach to self-consistently describe energy transfer in a complex with heterogeneous couplings. Experimentally determined spectral densities are employed to calculate the energy transfer rates. The absorption spectrum and fluorescence decay time components of the complex at room temperature were reasonably reproduced. The roles of the special chlorophylls (red, linker, and reaction center, respectively) molecules are discussed. A formally exact expression for the trapping time is derived in terms of the intrinsic trapping time, mean first passage time to trap, and detrapping time. The energy transfer mechanism is discussed and the slowest steps of the arrival at the primary electron donor are found to contain two dominant steps: transfer-to-reaction-center, and transfer-to-trap-from-reaction-center. The intrinsic charge transfer time is estimated to be 0.8 approximately 1.7 ps. The optimality with respect to the trapping time of the calculated transition energies and the orientation of Chls is discussed.
Collapse
Affiliation(s)
- Mino Yang
- Department of Chemistry, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
24
|
Kumazaki S, Ikegami I, Furusawa H, Yoshihara K. Energy Equilibration among the Chlorophylls in the Electron-Transfer System of Photosystem I Reaction Center from Spinach. J Phys Chem A 2002. [DOI: 10.1021/jp026532e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeichi Kumazaki
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Isamu Ikegami
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Hiroko Furusawa
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| | - Keitaro Yoshihara
- School of Materials Sciences, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, and Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195, Japan
| |
Collapse
|
25
|
Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S. Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 2002; 530:153-7. [PMID: 12387884 DOI: 10.1016/s0014-5793(02)03446-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary photochemistry in photosystem I (PS I) reaction center complex from Acaryochloris marina that uses chlorophyll d instead of chlorophyll a has been studied with a femtosecond spectroscopy. Upon excitation at 630 nm, almost full excitation equilibration among antenna chlorophylls and 40% of the excitation quenching by the reaction center are completed with time constants of 0.6(+/-0.1) and 4.9(+/-0.6) ps, respectively. The rise and decay of the primary charge-separated state proceed with apparent time constants of 7.2(+/-0.9) and 50(+/-10) ps, suggesting the reduction of the primary electron acceptor chlorophyll (A(0)) and its reoxidation by phylloquinone (A(1)), respectively.
Collapse
Affiliation(s)
- Shigeichi Kumazaki
- School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan.
| | | | | | | | | |
Collapse
|
26
|
Gibasiewicz K, Ramesh VM, Lin S, Woodbury NW, Webber AN. Excitation Dynamics in Eukaryotic PS I from Chlamydomonas reinhardtii CC 2696 at 10 K. Direct Detection of the Reaction Center Exciton States. J Phys Chem B 2002. [DOI: 10.1021/jp014608l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - V. M. Ramesh
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Su Lin
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Neal W. Woodbury
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| | - Andrew N. Webber
- Department of Plant Biology, Department of Chemistry and Biochemistry and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe Arizona 85287-1601, USA and Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61−614 Poznań, Poland
| |
Collapse
|
27
|
Gibasiewicz K, Ramesh VM, Melkozernov AN, Lin S, Woodbury NW, Blankenship RE, Webber AN. Excitation Dynamics in the Core Antenna of PS I from Chlamydomonas reinhardtii CC 2696 at Room Temperature. J Phys Chem B 2001. [DOI: 10.1021/jp012089g] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Krzysztof Gibasiewicz
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - V. M. Ramesh
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Alexander N. Melkozernov
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Su Lin
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Neal W. Woodbury
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Robert E. Blankenship
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Andrew N. Webber
- Department of Plant Biology, Department of Chemistry and Biochemistry, and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
28
|
Gobets B, van Grondelle R. Energy transfer and trapping in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:80-99. [PMID: 11687209 DOI: 10.1016/s0005-2728(01)00203-1] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- B Gobets
- Division of Physics and Astronomy, Faculty of Exact Sciences and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Itoh S, Iwaki M, Ikegami I. Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:115-38. [PMID: 11687211 DOI: 10.1016/s0005-2728(01)00199-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.
Collapse
Affiliation(s)
- S Itoh
- Laboratory of Photobioenergetics, Graduate School of Science, Nagoya University, Japan.
| | | | | |
Collapse
|
30
|
Morimoto A, Yatsuhashi T, Shimada T, Kumazaki S, Yoshihara K, Inoue H. Molecular Mechanism of the Intermolecular Hydrogen Bond between 2-Piperidinoanthraquinone and Alcohol in the Excited State: Direct Observation of the Out-of-Plane Mode Interaction with Alcohol by Transient Absorption Studies. J Phys Chem A 2001. [DOI: 10.1021/jp004560w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akimitsu Morimoto
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| | - Tomoyuki Yatsuhashi
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| | - Tetsuya Shimada
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| | - Shigeichi Kumazaki
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| | - Keitarou Yoshihara
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| | - Haruo Inoue
- Department of Applied Chemistry, Graduate Course of Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiouji, Tokyo 192-0397, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 9 23-12, Japan, and CREST, JST (Japan Science and Technology)
| |
Collapse
|