1
|
Yoneda Y, Konishi T, Suga K, Saito S, Kuramochi H. Excited-State Aromatization Drives Nonequilibrium Planarization Dynamics. J Am Chem Soc 2025; 147:12051-12060. [PMID: 40059351 PMCID: PMC11987032 DOI: 10.1021/jacs.4c18623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
Excited-state aromaticity is one of the most widely applied concepts in the field of chemistry, often used as a rational guideline for predicting conformational changes of cyclic π-conjugated systems induced by photoexcitation. Yet, the details of the relationship between the corresponding photoinduced electronic and structural dynamics have remained unclear. In this work, we applied femtosecond transient absorption and time-resolved time-domain Raman spectroscopies to track the nonequilibrium planarization dynamics of a cyclooctatetraene (COT) derivative associated with the excited-state aromaticity. In the femtosecond time-resolved Raman data, the bent-to-planar structural change was clearly captured as a continuous peak shift of the marker band, which was unambiguously identified with 13C labeling. Our findings show that the planarization occurs after a significant change in the electronic structure, suggesting that the system first becomes aromatic, followed by a conformational change. This work provides a unique framework for understanding the excited-state aromaticity from a dynamical aspect.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research
Center of Integrative Molecular Systems (CIMoS), Institute for Molecular
Science, National Institutes of Natural
Sciences, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Tomoaki Konishi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kensuke Suga
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka 560-0043, Japan
| | - Shohei Saito
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka 560-0043, Japan
| | - Hikaru Kuramochi
- Research
Center of Integrative Molecular Systems (CIMoS), Institute for Molecular
Science, National Institutes of Natural
Sciences, 38 Nishigo-Naka,
Myodaiji, Okazaki 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Yoneda Y, Kuramochi H. Rapid-Scan Resonant Two-Dimensional Impulsive Stimulated Raman Spectroscopy of Excited States. J Phys Chem A 2023. [PMID: 37289973 DOI: 10.1021/acs.jpca.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photochemical reactions occur in the electronically excited state, which is effectively represented by a multidimensional potential energy surface (PES) with a vast degree of freedom of nuclear coordinates. The elucidation of the intricate shape of the PES constitutes an important topic in the field of photochemistry and has long been studied both experimentally and theoretically. Recently, fully time-domain resonant two-dimensional Raman spectroscopy has emerged as a potentially powerful tool to provide unique information about the coupling between vibrational manifolds in the excited state. However, the wide application of this technique has been significantly hampered by the technical difficulties associated with experimental implementation and remains challenging. Herein, we demonstrate time-domain resonant two-dimensional impulsive stimulated Raman spectroscopy (2D-ISRS) of excited states using sub-10 fs pulses based on the rapid scan of the time delay, which facilitates the efficient collection of time-domain vibrational signals with high sensitivity. As a proof-of-principle experiment, we performed 2D-ISRS of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) in solution. Through 2D Fourier transformation of the high-quality time-time oscillatory signal, we obtained a 2D frequency-frequency correlation map of excited-state TIPS-pentacene in the broad frequency window of 0-2000 cm-1. The data clearly resolve a number of cross peaks that signify the correlations among excited-state vibrational manifolds. The high capability of the rapid-scan-based 2D-ISRS spectrometer presented in this study enables the systematic investigation of various photochemical reaction systems, thereby further promoting the understanding and applications of this new multidimensional spectroscopy.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
3
|
Kumar P, Kuramochi H, Takeuchi S, Tahara T. Photoexcited Plasmon-Driven Ultrafast Dynamics of the Adsorbate Probed by Femtosecond Time-Resolved Surface-Enhanced Time-Domain Raman Spectroscopy. J Phys Chem Lett 2023; 14:2845-2853. [PMID: 36916655 PMCID: PMC10042161 DOI: 10.1021/acs.jpclett.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles have high potential in light-harvesting applications by transferring absorbed photon energy to the adsorbates. However, photoexcited plasmon-driven ultrafast dynamics of the adsorbate on metal nanoparticles have not been clearly understood. We studied ultrafast plasmon-driven processes of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on gold nanoparticle assemblies (GNAs) using time-resolved surface-enhanced impulsive stimulated Raman spectroscopy (TR-SE-ISRS). After photoexciting the localized surface plasmon resonance (LSPR) band of the GNAs, we measured femtosecond time-resolved surface-enhanced Raman spectra of the adsorbate, which exhibited transient bleach in the Raman signal and following biphasic recovery that proceeds on the time scale of a few tens of picoseconds. The TR-SE-ISRS data were analyzed with singular value decomposition, and the obtained species-associated Raman spectra indicated that photoexcitation of the LSPR band alters chemical interaction between BPE and the GNAs on an ultrafast time scale; initial steady-state BPE is recovered through a precursor state that has weaker interaction with the GNAs.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
4
|
Dhamija S, Bhutani G, Jayachandran A, De AK. A Revisit on Impulsive Stimulated Raman Spectroscopy: Importance of Spectral Dispersion of Chirped Broadband Probe. J Phys Chem A 2022; 126:1019-1032. [PMID: 35142494 DOI: 10.1021/acs.jpca.1c10566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl4, CHCl3, and CH2Cl2) are used. Observation of periodic intensity modulation along detection wavelengths for particular modes is explained using a simple electric field interaction picture. This method is extended to diatomic molecule (iodine) and polyatomic molecules (Nile blue and methylene blue) to assign vibrational frequencies in ground/excited electronic state that are supported by density functional theory calculations. A comparison between frequency-domain and time-domain counterparts, i.e., stimulated Raman scattering and impulsive stimulated Raman scattering using degenerate pump-probe pairs is presented, and most importantly, it is shown how impulsive stimulated Raman scattering using chirped broadband probe retains unique advantages offered by both.
Collapse
Affiliation(s)
- Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ajay Jayachandran
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
5
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Skeletal Structure of the Chromophore of Photoactive Yellow Protein in the Excited State Investigated by Ultraviolet Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:6154-6161. [PMID: 34102843 DOI: 10.1021/acs.jpcb.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ultrafast structural dynamics of photoactive yellow protein (PYP) using ultraviolet femtosecond stimulated Raman spectroscopy. By employing the Raman pump and probe pulses in the ultraviolet region, resonantly enhanced, rich vibrational features of the excited-state chromophore were observed in the fingerprint region. In contrast to the marked spectral change reported for the excited-state chromophore in solution, in the protein, all of the observed Raman bands in the fingerprint region did not show any noticeable spectral shifts nor band shape changes during the excited-state lifetime of PYP. This indicates that the significant skeletal change does not occur on the chromophore in the excited state of PYP and that the trans conformation is retained in its lifetime. Based on the femtosecond Raman data of PYP obtained so far, we discuss a comprehensive picture of the excited-state structural dynamics of PYP.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
6
|
Kuramochi H, Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J Am Chem Soc 2021; 143:9699-9717. [PMID: 34096295 PMCID: PMC9344463 DOI: 10.1021/jacs.1c02545] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In traditional Raman spectroscopy,
narrow-band light is irradiated
on a sample, and its inelastic scattering, i.e., Raman scattering,
is detected. The energy difference between the Raman scattering and
the incident light corresponds to the vibrational energy of the molecule,
providing the Raman spectrum that contains rich information about
the molecular-level properties of the materials. On the other hand,
by using ultrashort optical pulses, it is possible to induce Raman-active
coherent nuclear motion of the molecule and to observe the molecular
vibration in real time. Moreover, this time-domain Raman measurement
can be combined with femtosecond photoexcitation, triggering chemical
changes, which enables tracking ultrafast structural dynamics in a
form of “time-resolved” time-domain Raman spectroscopy,
also known as time-resolved impulsive stimulated Raman spectroscopy.
With the advent of stable, ultrashort laser pulse sources, time-resolved
impulsive stimulated Raman spectroscopy now realizes high sensitivity
and a wide detection frequency window from THz to 3000 cm–1, and has seen success in unveiling the molecular mechanisms underlying
the efficient functions of complex molecular systems. In this Perspective,
we overview the present status of time-domain Raman spectroscopy,
particularly focusing on its application to the study of femtosecond
structural dynamics. We first explain the principle and a brief history
of time-domain Raman spectroscopy and then describe the apparatus
and recent applications to the femtosecond dynamics of complex molecular
systems, including proteins, molecular assemblies, and functional
materials. We also discuss future directions for time-domain Raman
spectroscopy, which has reached a status allowing a wide range of
applications.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
7
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
8
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020; 59:8571-8578. [DOI: 10.1002/anie.202002733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
9
|
Kuramochi H, Takeuchi S, Iwamura M, Nozaki K, Tahara T. Tracking Photoinduced Au–Au Bond Formation through Transient Terahertz Vibrations Observed by Femtosecond Time-Domain Raman Spectroscopy. J Am Chem Soc 2019; 141:19296-19303. [DOI: 10.1021/jacs.9b06950] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Munetaka Iwamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
10
|
Kuramochi H, Takeuchi S, Kamikubo H, Kataoka M, Tahara T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. SCIENCE ADVANCES 2019; 5:eaau4490. [PMID: 31187055 PMCID: PMC6555629 DOI: 10.1126/sciadv.aau4490] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/26/2019] [Indexed: 05/15/2023]
Abstract
We report fifth-order time-domain Raman spectroscopy of photoactive yellow protein (PYP), with the aim to visualize vibrational coupling in its excited state. After the ultrashort actinic pump pulse prepared the vibrational coherence and population in the excited state, the evolving vibrational structure was tracked by time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses. The obtained fifth-order time-domain Raman data were translated to a two-dimensional (2D) frequency-frequency correlation map, which visualizes the correlation between low- and high-frequency vibrational modes of the excited state. The 2D map of PYP reveals a cross peak, indicating the coupling between the phenolic C─O stretch mode of the chromophore and the low-frequency modes (~160 cm-1), assignable to the intermolecular motions involving the surrounding hydrogen-bonded amino acids. The unveiled coupling suggests the importance of the low-frequency vibrational motion in the primary photoreaction of PYP, highlighting the unique capability of this spectroscopic approach for studying ultrafast reaction dynamics.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Corresponding author. (S.T.); (T.T.)
| |
Collapse
|
11
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
12
|
Kuramochi H, Takeuchi S, Tahara T. Ultrafast photodissociation dynamics of diphenylcyclopropenone studied by time-resolved impulsive stimulated Raman spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 2017. [PMID: 28644485 DOI: 10.1038/nchem.2717] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm-1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.
Collapse
|
14
|
Kuramochi H, Takeuchi S, Tahara T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:043107. [PMID: 27131654 DOI: 10.1063/1.4945259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/18/2016] [Indexed: 05/24/2023]
Abstract
We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm(-1) region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
15
|
Fujisawa T, Kuramochi H, Hosoi H, Takeuchi S, Tahara T. Role of Coherent Low-Frequency Motion in Excited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy. J Am Chem Soc 2016; 138:3942-5. [PMID: 26943852 DOI: 10.1021/jacs.5b11038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Green fluorescent protein (GFP) from jellyfish Aequorea victoria, an essential bioimaging tool, luminesces via excited-state proton transfer (ESPT) in which the phenolic proton of the p-hydroxybenzylideneimidazolinone chromophore is transferred to Glu222 through a hydrogen-bond network. In this process, the ESPT mediated by the low-frequency motion of the chromophore has been proposed. We address this issue using femtosecond time-resolved impulsive stimulated Raman spectroscopy. After coherently exciting low-frequency modes (<300 cm(-1)) in the excited state of GFP, we examined the excited-state structural evolution and the ESPT dynamics within the dephasing time of the low-frequency vibration. A clear anharmonic vibrational coupling is found between one high-frequency mode of the chromophore (phenolic CH bend) and a low-frequency mode at ∼104 cm(-1). However, the data show that this low-frequency motion does not substantially affect the ESPT dynamics.
Collapse
Affiliation(s)
| | | | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University , 2-2-1 Miyama, Funabashi 274-8510, Japan
| | | | | |
Collapse
|
16
|
Multidimensional Incoherent Time-Resolved Spectroscopy and Complex Kinetics. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118197714.ch1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
17
|
Zgrablić G, Novello AM, Parmigiani F. Population Branching in the Conical Intersection of the Retinal Chromophore Revealed by Multipulse Ultrafast Optical Spectroscopy. J Am Chem Soc 2011; 134:955-61. [DOI: 10.1021/ja205763x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Goran Zgrablić
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
| | - Anna Maria Novello
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Condensed Matter
Physics, University of Geneva, Rue du Général-
Dufour 24, 1204 Geneva, Switzerland
| | - Fulvio Parmigiani
- T-ReX Laboratory, Sincrotrone Trieste, S.S. 14 km 163.5 in Area Science
Park, I-34012 Basovizza Trieste, Italy
- Department of Physics, Università degli studi di Trieste, Piazzale
Europa 1, I-34127 Trieste, Italy
| |
Collapse
|
18
|
Kraack JP, Buckup T, Hampp N, Motzkus M. Ground- and Excited-State Vibrational Coherence Dynamics in Bacteriorhodopsin Probed With Degenerate Four-Wave-Mixing Experiments. Chemphyschem 2011; 12:1851-9. [DOI: 10.1002/cphc.201100032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/24/2011] [Indexed: 11/06/2022]
|
19
|
Kraack JP, Buckup T, Motzkus M. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Phys Chem Chem Phys 2011; 13:21402-10. [DOI: 10.1039/c1cp22245g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Bismuth O, Komm P, Friedman N, Eliash T, Sheves M, Ruhman S. Deciphering Excited State Evolution in Halorhodopsin with Stimulated Emission Pumping. J Phys Chem B 2010; 114:3046-51. [DOI: 10.1021/jp910853n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oshrat Bismuth
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pavel Komm
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noga Friedman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Eliash
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel, and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Wand A, Kallush S, Shoshanim O, Bismuth O, Kosloff R, Ruhman S. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective. Phys Chem Chem Phys 2010; 12:2149-63. [DOI: 10.1039/b920356g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Takeuchi S, Ruhman S, Tsuneda T, Chiba M, Taketsugu T, Tahara T. Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization. Science 2008; 322:1073-7. [PMID: 19008439 DOI: 10.1126/science.1160902] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Understanding a chemical reaction ultimately requires the knowledge of how each atom in the reactants moves during product formation. Such knowledge is seldom complete and is often limited to an oversimplified reaction coordinate that neglects global motions across the molecular framework. To overcome this limit, we recorded transient impulsive Raman spectra during ultrafast photoisomerization of cis-stilbene in solution. The results demonstrate a gradual frequency shift of a low-frequency spectator vibration, reflecting changes in the restoring force along this coordinate throughout the isomerization. A high-level quantum-chemical calculation reproduces this feature and associates it with a continuous structural change leading to the twisted configuration. This combined spectroscopic and computational approach should be amenable to detailed reaction visualization in other photoisomerizing systems as well.
Collapse
Affiliation(s)
- Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Khurmi C, Berg MA. Analyzing Nonexponential Kinetics with Multiple Population-Period Transient Spectroscopy (MUPPETS). J Phys Chem A 2008; 112:3364-75. [DOI: 10.1021/jp710711w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Champak Khurmi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
24
|
Florean AC, Carroll EC, Spears KG, Sension RJ, Bucksbaum PH. Optical control of excited-state vibrational coherences of a molecule in solution: The influence of the excitation pulse spectrum and phase in LD690. J Phys Chem B 2007; 110:20023-31. [PMID: 17020390 DOI: 10.1021/jp0627628] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectral and phase shaping of femtosecond laser pulses is used to selectively excite vibrational wave packets on the ground (S0) and excited (S1) electronic states in the laser dye LD690. The transient absorption signals observed following excitation near the peak of the ground-state absorption spectrum are characterized by a dominant 586 cm(-1) vibrational mode. This vibration is assigned to a wave packet on the S0 potential energy surface. When the excitation pulse is tuned to the blue wing of the absorption spectrum, a lower frequency 568 cm(-1) vibration dominates the response. This lower frequency mode is assigned to a vibrational wave packet on the S1 electronic state. The spectrum and phase of the excitation pulse also influence both the dephasing of the vibrational wave packet and the amplitude profiles of the oscillations as a function of probe wavelength. Excitation by blue-tuned, positively chirped pulses slows the apparent dephasing of the vibrational coherences compared with a transform-limited pulse having the same spectrum. Blue-tuned negatively chirped excitation pulses suppress the observation of coherent oscillations in the ground state.
Collapse
Affiliation(s)
- A C Florean
- FOCUS Center, Randall Laboratory, 450 Church Street, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | | | | | | | | |
Collapse
|
25
|
Delfino I, Manzoni C, Sato K, Dennison C, Cerullo G, Cannistraro S. Ultrafast Pump−Probe Study of Excited-State Charge-Transfer Dynamics in Umecyanin from Horseradish Root. J Phys Chem B 2006; 110:17252-9. [PMID: 16928024 DOI: 10.1021/jp062904y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have applied femtosecond pump-probe spectroscopy to investigate the excited-state dynamics of umecyanin from horseradish roots, by exciting its 600-nm ligand-to-metal charge-transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching is modulated by clearly visible oscillations and occurs exponentially with a time constant depending on the observed spectral component of the transmission difference signal, ranging from 270 fs up to 700 fs. The slower decaying process characterizes the spectral component corresponding to the metal-to-ligand charge-transfer transition. The excited-state decay rate is significantly lower than in other blue copper proteins, probably because of the larger energy gap between ligand- and metal-based orbitals in umecyanin. Wavelength dependence of the recovery times could be due to either the excitation of several transitions or the occurrence of intramolecular vibrational relaxation within the excited state. We also find evidence of a hot ground-state absorption, at 700 nm, persisting for several picoseconds. The vibrational coherence induced by the ultrashort pump pulse allows vibrational activity to be observed, mainly in the ground state, as expected in a system with fast excited-state decay. However, we find evidence of a rapidly damped oscillation, which we assign to the excited state. Finally, the Fourier transform of the oscillatory component of the signal presents additional bands in the low-frequency region which are assigned to collective motions of the protein.
Collapse
Affiliation(s)
- Ines Delfino
- Biophysics and Nanoscience Centre, CNISM - Università della Tuscia, I-01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Observation of all-trans-β-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump–DFWM. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.11.135] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Fujiyoshi S, Ishibashi TA, Onishi H. Fifth-Order Raman Spectroscopy of Excited-State Molecules. J Phys Chem A 2004. [DOI: 10.1021/jp0461899] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Satoru Fujiyoshi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP, Sakado, Takatsu, Kawasaki, 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi, 332-0012, Japan, Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe, 657-8501, Japan, and Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Taka-aki Ishibashi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP, Sakado, Takatsu, Kawasaki, 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi, 332-0012, Japan, Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe, 657-8501, Japan, and Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Onishi
- Surface Chemistry Laboratory, Kanagawa Academy of Science and Technology (KAST), KSP, Sakado, Takatsu, Kawasaki, 213-0012, Japan, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi, 332-0012, Japan, Department of Chemistry, Faculty of Science, Kobe University, Nada, Kobe, 657-8501, Japan, and Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
28
|
Fujiyoshi S, Takeuchi S, Tahara T. Time-Resolved Impulsive Stimulated Raman Studies of 1,1‘-Binaphthyl in the Excited State: Low-Frequency Vibrations and Conformational Relaxation. J Phys Chem A 2004. [DOI: 10.1021/jp048968v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Satoru Fujiyoshi
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, 351-0198, Japan and Department of Structural Molecular Science, The Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, 351-0198, Japan and Department of Structural Molecular Science, The Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, 351-0198, Japan and Department of Structural Molecular Science, The Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|