1
|
Urui T, Shionoya T, Mizuno M, Inoue K, Kandori H, Mizutani Y. Chromophore-Protein Interactions Affecting the Polyene Twist and π-π* Energy Gap of the Retinal Chromophore in Schizorhodopsins. J Phys Chem B 2024; 128:2389-2397. [PMID: 38433395 DOI: 10.1021/acs.jpcb.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The properties of a prosthetic group are broadened by interactions with its neighboring residues in proteins. The retinal chromophore in rhodopsins absorbs light, undergoes structural changes, and drives functionally important structural changes in proteins during the photocycle. It is therefore crucial to understand how chromophore-protein interactions regulate the molecular structure and electronic state of chromophores in rhodopsins. Schizorhodopsin is a newly discovered subfamily of rhodopsins found in the genomes of Asgard archaea, which are extant prokaryotes closest to the last common ancestor of eukaryotes and of other microbial species. Here, we report the effects of a hydrogen bond between a retinal Schiff base and its counterion on the twist of the polyene chain and the color of the retinal chromophore. Correlations between spectral features revealed the unexpected fact that the twist of the polyene chain is reduced as the hydrogen bond becomes stronger, suggesting that the twist is caused by tight atomic contacts between the chromophore and nearby residues. In addition, the strength of the hydrogen bond is the primary factor affecting the color-tuning of the retinal chromophore in schizorhodopsins. The findings of this study are valuable for manipulating the molecular structure and electronic state of the chromophore by controlling chromophore-protein interactions.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Li Z, Mizuno M, Ejiri T, Hayashi S, Kandori H, Mizutani Y. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins. J Phys Chem B 2023; 127:9873-9886. [PMID: 37940604 DOI: 10.1021/acs.jpcb.3c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Photoisomerization of an all-trans-retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S1) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S1-state chromophore in Natronomonas pharaonis halorhodopsin (NpHR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy. The spectral patterns of the S1-state chromophore were completely different from those of the ground-state chromophore, resulting from unique vibrational characteristics and the structure of the S1 state. Mode assignments were based on a combination of deuteration shifts of the Raman bands and hybrid quantum mechanics-molecular mechanics calculations. The present observations suggest a weakened bond alternation in the π conjugation system. A strong hydrogen-out-of-plane bending band was observed in the Raman spectra of the S1-state chromophore in NpHR, indicating a twisted polyene structure. Similar frequency shifts for the C═N/C═C and C-C stretching modes of the S1-state chromophore in NpHR were observed in the Raman spectra of sodium ion-pumping and proton-pumping rhodopsins, suggesting that these unique features are common to the S1 states of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Tomo Ejiri
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| |
Collapse
|
3
|
Saliminasab M, Yamazaki Y, Palmateer A, Harris A, Schubert L, Langner P, Heberle J, Bondar AN, Brown LS. A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B 2023; 127:7872-7886. [PMID: 37694950 PMCID: PMC10519204 DOI: 10.1021/acs.jpcb.3c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Microbial rhodopsins are light-activated retinal-binding membrane proteins that perform a variety of ion transport and photosensory functions. They display several cases of convergent evolution where the same function is present in unrelated or very distant protein groups. Here we report another possible case of such convergent evolution, describing the biophysical properties of a new group of sensory rhodopsins. The first representative of this group was identified in 2004 but none of the members had been expressed and characterized. The well-studied haloarchaeal sensory rhodopsins interacting with methyl-accepting Htr transducers are close relatives of the halobacterial proton pump bacteriorhodopsin. In contrast, the sensory rhodopsins we describe here are relatives of proteobacterial proton pumps, proteorhodopsins, but appear to interact with Htr-like transducers likewise, even though they do not conserve the residues important for the interaction of haloarchaeal sensory rhodopsins with their transducers. The new sensory rhodopsins display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C. To characterize their unique sequence motifs, we augment the spectroscopy and biochemistry data by structural modeling of the wild-type and three mutants. Taken together, the experimental data, bioinformatics sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad.
Collapse
Affiliation(s)
- Maryam Saliminasab
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yoichi Yamazaki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Alyssa Palmateer
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Harris
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luiz Schubert
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics Group, Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- University
of Bucharest, Faculty of Physics, Atomiştilor 405, Măgurele 077125, Romania
- Forschungszentrum
Jülich, Institute for Neuroscience and Medicine and Institute
for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Leonid S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Shibata K, Oda K, Nishizawa T, Hazama Y, Ono R, Takaramoto S, Bagherzadeh R, Yawo H, Nureki O, Inoue K, Akiyama H. Twisting and Protonation of Retinal Chromophore Regulate Channel Gating of Channelrhodopsin C1C2. J Am Chem Soc 2023; 145:10779-10789. [PMID: 37129501 DOI: 10.1021/jacs.3c01879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels and central optogenetic tools that can control neuronal activity with high temporal resolution at the single-cell level. Although their application in optogenetics has rapidly progressed, it is unsolved how their channels open and close. ChRs transport ions through a series of interlocking elementary processes that occur over a broad time scale of subpicoseconds to seconds. During these processes, the retinal chromophore functions as a channel regulatory domain and transfers the optical input as local structural changes to the channel operating domain, the helices, leading to channel gating. Thus, the core question on channel gating dynamics is how the retinal chromophore structure changes throughout the photocycle and what rate-limits the kinetics. Here, we investigated the structural changes in the retinal chromophore of canonical ChR, C1C2, in all photointermediates using time-resolved resonance Raman spectroscopy. Moreover, to reveal the rate-limiting factors of the photocycle and channel gating, we measured the kinetic isotope effect of all photoreaction processes using laser flash photolysis and laser patch clamp, respectively. Spectroscopic and electrophysiological results provided the following understanding of the channel gating: the retinal chromophore highly twists upon the retinal Schiff base (RSB) deprotonation, causing the surrounding helices to move and open the channel. The ion-conducting pathway includes the RSB, where inflowing water mediates the proton to the deprotonated RSB. The twisting of the retinal chromophore relaxes upon the RSB reprotonation, which closes the channel. The RSB reprotonation rate-limits the channel closing.
Collapse
Affiliation(s)
- Keisei Shibata
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Kazumasa Oda
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Yuji Hazama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ryohei Ono
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shunki Takaramoto
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Reza Bagherzadeh
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hiromu Yawo
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Nureki
- Department of Biological Sciences Graduate School of Science, The University of Tokyo, Tokyo 113-0034, Japan
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
5
|
Proteorhodopsin Overproduction Enhances the Long-Term Viability of Escherichia coli. Appl Environ Microbiol 2019; 86:AEM.02087-19. [PMID: 31653788 PMCID: PMC6912077 DOI: 10.1128/aem.02087-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Proteorhodopsin (PR) is part of a diverse, abundant, and widespread superfamily of photoreactive proteins, the microbial rhodopsins. PR, a light-driven proton pump, enhances the ability of the marine bacterium Vibrio strain AND4 to survive and recover from periods of starvation, and heterologously produced PR extends the viability of nutrient-limited Shewanella oneidensis. We show that heterologously produced PR enhances the viability of E. coli cultures over long periods of several weeks and use single-cell Raman spectroscopy (SCRS) to detect PR in 9-month-old cells. We identify a densely packed and consequently stabilized cell membrane as the likely basis for extended viability. Similar considerations are suggested to apply to marine bacteria, for which high PR levels represent a significant investment in scarce metabolic resources. PR-stabilized cell membranes in marine bacteria are proposed to keep a population viable during extended periods of light or nutrient limitation, until conditions improve. Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Escherichia coli. Quantitative mass spectrometry shows that E. coli, exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∼148,000 apo-PR molecules per cell. We show that populations of E. coli cells containing PR exhibit significantly extended viability over many weeks, and we use single-cell Raman spectroscopy (SCRS) to detect holo-PR in 9-month-old cells. SCRS shows that such cells, even incubated in the dark and therefore with inactive PR, maintain cellular levels of DNA and RNA and avoid deterioration of the cytoplasmic membrane, a likely basis for extended viability. The substantial proportion of the E. coli membrane required to accommodate high levels of PR likely fosters extensive intermolecular contacts, suggested to physically stabilize the cell membrane and impart a long-term benefit manifested as extended viability in the dark. We propose that marine bacteria could benefit similarly from a high PR content, with a stabilized cell membrane extending survival when those bacteria experience periods of severe nutrient or light limitation in the oceans. IMPORTANCE Proteorhodopsin (PR) is part of a diverse, abundant, and widespread superfamily of photoreactive proteins, the microbial rhodopsins. PR, a light-driven proton pump, enhances the ability of the marine bacterium Vibrio strain AND4 to survive and recover from periods of starvation, and heterologously produced PR extends the viability of nutrient-limited Shewanella oneidensis. We show that heterologously produced PR enhances the viability of E. coli cultures over long periods of several weeks and use single-cell Raman spectroscopy (SCRS) to detect PR in 9-month-old cells. We identify a densely packed and consequently stabilized cell membrane as the likely basis for extended viability. Similar considerations are suggested to apply to marine bacteria, for which high PR levels represent a significant investment in scarce metabolic resources. PR-stabilized cell membranes in marine bacteria are proposed to keep a population viable during extended periods of light or nutrient limitation, until conditions improve.
Collapse
|
6
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
7
|
Chang CF, Kuramochi H, Singh M, Abe-Yoshizumi R, Tsukuda T, Kandori H, Tahara T. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Phys Chem Chem Phys 2019; 21:25728-25734. [PMID: 31720623 DOI: 10.1039/c9cp04991f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteorhodopsin (PR) is a proton-pumping rhodopsin, and it is known to exhibit a multi-phasic decay of the excited-state population in the primary process. So far, this complex excited-state decay has been attributed to the branching of the relaxation pathway on the excited-state potential energy surface. However, a recent ultrafast spectroscopic study on a sodium-pumping rhodopsin suggested that such a complex decay may originate from the heterogeneity in the ground state due to the acid-base equilibrium of the counterion of the protonated retinal Schiff base (PRSB). In this study, we studied the excited-state dynamics of PR at pH 11 and 4, in which the counterion of the PRSB, Asp97, is completely deprotonated and protonated, respectively. The obtained time-resolved absorption data revealed that the excited-state lifetime is decisively governed by the protonation state of Asp97, and the photoisomerization of the PRSB chromophore proceeds faster and more efficiently when Asp97 is deprotonated. This conclusion was further supported by high similarity of the excited-state dynamics between PR at pH 4 and the D97N mutant in which Asp97 is replaced with neutral Asn. The results of this study suggest that the protonation state of the PRSB counterion plays a decisive role in determining the excited-state dynamics and the photoisomerization reactivity of rhodopsins in general, by making a significant influence on the exited-state potential energy surface of the PRSB chromophore.
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Mei G, Mamaeva N, Ganapathy S, Wang P, DeGrip WJ, Rothschild KJ. Analog Retinal Redshifts Visible Absorption of QuasAr Transmembrane Voltage Sensors into Near-infrared. Photochem Photobiol 2019; 96:55-66. [PMID: 31556123 PMCID: PMC7004139 DOI: 10.1111/php.13169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/01/2022]
Abstract
Opsin‐based transmembrane voltage sensors (OTVSs) are increasingly important tools for neuroscience enabling neural function in complex brain circuits to be explored in live, behaving animals. However, the visible wavelengths required for fluorescence excitation of the current generation of OTVSs limit optogenetic imaging in the brain to depths of only a few mm due to the strong absorption and scattering of visible light by biological tissues. We report that substitution of the native A1 retinal chromophore of the widely used QuasAr1/2 OTVSs with the retinal analog MMAR containing a methylamino‐modified dimethylphenyl ring results in over a 100‐nm redshift of the maxima of the absorption and fluorescence emission bands to near 700 and 840 nm, respectively. FT‐Raman spectroscopy reveals that at pH 7 QuasAr1 with both the A1 and MMAR chromophores possess predominantly an all‐trans protonated Schiff base configuration with the MMAR chromophore exhibiting increased torsion of the polyene single‐/double‐bond system similar to the O‐intermediate of the BR photocycle. In contrast, the A1 and the MMAR chromophores of QuasAr2 exist partially in a 13‐cis PSB configuration. These results demonstrate that QuasArs containing the MMAR chromophore are attractive candidates for use as NIR‐OTVSs, especially for applications such as deep brain imaging.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| |
Collapse
|
9
|
Borin VA, Wiebeler C, Schapiro I. A QM/MM study of the initial excited state dynamics of green-absorbing proteorhodopsin. Faraday Discuss 2019; 207:137-152. [PMID: 29393940 DOI: 10.1039/c7fd00198c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The primary photochemical reaction of the green-absorbing proteorhodopsin is studied by means of a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The simulations are based on a homology model derived from the blue-absorbing proteorhodopsin crystal structure. The geometry of retinal and the surrounding sidechains in the protein binding pocket were optimized using the QM/MM method. Starting from this geometry the isomerization was studied with a relaxed scan along the C13[double bond, length as m-dash]C14 dihedral. It revealed an "aborted bicycle pedal" mechanism of isomerization that was originally proposed by Warshel for bovine rhodopsin and bacteriorhodopsin. However, the isomerization involved the concerted rotation about C13[double bond, length as m-dash]C14 and C15[double bond, length as m-dash]N, with the latter being highly twisted but not isomerized. Further, the simulation showed an increased steric interaction between the hydrogen at the C14 of the isomerizing bond and the hydroxyl group at the neighbouring tyrosine 200. In addition, we have simulated a nonadiabatic trajectory which showed the timing of the isomerization. In the first 20 fs upon excitation the order of the conjugated double and single bonds is inverted, consecutively the C13[double bond, length as m-dash]C14 rotation is activated for 200 fs until the S1-S0 transition is detected. However, the isomerization is reverted due to the specific interaction with the tyrosine as observed along the relaxed scan calculation. Our simulations indicate that the retinal - tyrosine 200 interaction plays an important role in the outcome of the photoisomerization.
Collapse
Affiliation(s)
- Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
10
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019; 123:4242-4250. [PMID: 30998011 PMCID: PMC6526469 DOI: 10.1021/acs.jpcb.9b01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Microbial rhodopsins
constitute a key protein family in optobiotechnological
applications such as optogenetics and voltage imaging. Spectral tuning
of rhodopsins into the deep-red and near-infrared spectral regions
is of great demand in such applications because more bathochromic
light into the near-infrared range penetrates deeper in living tissue.
Recently, retinal analogues have been successfully used in ion transporting
and fluorescent rhodopsins to achieve red-shifted absorption, activity,
and emission properties. Understanding their photochemical mechanism
is essential for further design of appropriate retinal analogues but
is yet only poorly understood for most retinal analogue pigments.
Here, we report the photoreaction dynamics of red-shifted analogue
pigments of the proton pump proteorhodopsin (PR) containing A2 (all-trans-3,4-dehydroretinal), MOA2 (all-trans-3-methoxy-3,4-dehydroretinal), or DMAR (all-trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto-
to submillisecond transient absorption spectroscopy. We found that
the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510
nm light illumination, which is comparable to the native retinal (A1)
in PR. On the other hand, the deprotonation of the A2 pigment Schiff
base was observed with a dominant time constant of 67 μs, which
is significantly slower than the A1 pigment. In the MOA2 pigment,
no isomerization or photoproduct formation was detected upon 520 nm
excitation, implying that all the excited molecules returned to the
initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very
slow excited state dynamics similar to the previously studied MMAR
pigment, but only very little photoproduct was formed. The low efficiency
of the photoproduct formation likely is the reason why DMAR analogue
pigments of PR showed very weak proton pumping activity.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands
| | - Sean Frehan
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Miroslav Kloz
- ELI-Beamlines , Institute of Physics , Na Slovance 2 , Praha 8 182 21 , Czech Republic
| | - Willem J de Grip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands.,Department of Biochemistry , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|
11
|
Nishimura N, Mizuno M, Kandori H, Mizutani Y. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. J Phys Chem B 2019; 123:3430-3440. [DOI: 10.1021/acs.jpcb.9b00928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nao Nishimura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:49-58. [PMID: 30719609 DOI: 10.1007/s10858-019-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The isomerization of a covalently bound retinal is an integral part of both microbial and animal rhodopsin function. As such, detailed structure and conformational changes in the retinal binding pocket are of significant interest and are studied in various NMR, FTIR, and Raman spectroscopy experiments, which commonly require isotopic labeling of retinal. Unfortunately, the de novo organic synthesis of an isotopically-labeled retinal is complex and often cost-prohibitive, especially for large scale expression required for solid-state NMR. We present the novel protocol for biosynthetic production of an isotopically labeled retinal ligand concurrently with an apoprotein in E. coli as a cost-effective alternative to the de novo organic synthesis. Previously, the biosynthesis of a retinal precursor, β-carotene, has been introduced into many different organisms. We extended this system to the prototrophic E. coli expression strain BL21 in conjunction with the inducible expression of a β-dioxygenase and proteo-opsin. To demonstrate the applicability of this system, we were able to assign several new carbon resonances for proteorhodopsin-bound retinal by using fully 13C-labeled glucose as the sole carbon source. Furthermore, we demonstrated that this biosynthetically produced retinal can be extracted from E. coli cells by applying a hydrophobic solvent layer to the growth medium and reconstituted into an externally produced opsin of any desired labeling pattern.
Collapse
Affiliation(s)
- Rachel A Munro
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jeffrey de Vlugt
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Meaghan E Ward
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - So Young Kim
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Keon Ah Lee
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Vladimir Ladizhansky
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
13
|
Mei G, Mamaeva N, Ganapathy S, Wang P, DeGrip WJ, Rothschild KJ. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate. PLoS One 2018; 13:e0209506. [PMID: 30586409 PMCID: PMC6306260 DOI: 10.1371/journal.pone.0209506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial rhodopsins have become an important tool in the field of optogenetics. However, effective in vivo optogenetics is in many cases severely limited due to the strong absorption and scattering of visible light by biological tissues. Recently, a combination of opsin site-directed mutagenesis and analog retinal substitution has produced variants of proteorhodopsin which absorb maximally in the near-infrared (NIR). In this study, UV-Visible-NIR absorption and resonance Raman spectroscopy were used to study the double mutant, D212N/F234S, of green absorbing proteorhodopsin (GPR) regenerated with MMAR, a retinal analog containing a methylamino modified β-ionone ring. Four distinct subcomponent absorption bands with peak maxima near 560, 620, 710 and 780 nm are detected with the NIR bands dominant at pH <7.3, and the visible bands dominant at pH 9.5. FT-Raman using 1064-nm excitation reveal two strong ethylenic bands at 1482 and 1498 cm-1 corresponding to the NIR subcomponent absorption bands based on an extended linear correlation between λmax and γC = C. This spectrum exhibits two intense bands in the fingerprint and HOOP mode regions that are highly characteristic of the O640 photointermediate from the light-adapted bacteriorhodopsin photocycle. In contrast, 532-nm excitation enhances the 560-nm component, which exhibits bands very similar to light-adapted bacteriorhodopsin and/or the acid-purple form of bacteriorhodopsin. Native GPR and its mutant D97N when regenerated with MMAR also exhibit similar absorption and Raman bands but with weaker contributions from the NIR absorbing components. Based on these results it is proposed that the NIR absorption in GPR-D212N/F234S with MMAR arises from an O-like chromophore, where the Schiff base counterion D97 is protonated and the MMAR adopts an all-trans configuration with a non-planar geometry due to twists in the conjugated polyene segment. This configuration is characterized by extensive charge delocalization, most likely involving nitrogens atoms in the MMAR chromophore.
Collapse
Affiliation(s)
- Gaoxiang Mei
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden UniversityAR Leiden, The Netherlands
| | - Peng Wang
- Bruker Corporation, Billerica, MA, United States of America
| | - Willem J. DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden UniversityAR Leiden, The Netherlands
| | - Kenneth J. Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J Phys Chem Lett 2018; 9:6469-6474. [PMID: 30376338 PMCID: PMC6240888 DOI: 10.1021/acs.jpclett.8b02780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Srividya Ganapathy
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sean Frehan
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
- ELI-Beamlines,
Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Willem J. de Grip
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
- Department
of Biochemistry, Radboud University Medical
Center, Nijmegen 6500 HB, The Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
15
|
Otomo A, Mizuno M, Singh M, Shihoya W, Inoue K, Nureki O, Béjà O, Kandori H, Mizutani Y. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. J Phys Chem Lett 2018; 9:6431-6436. [PMID: 30351947 DOI: 10.1021/acs.jpclett.8b02741] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heliorhodopsins (HeRs) are a new category of retinal-bound proteins recently discovered through functional metagenomics analysis that exhibit obvious differences from type-1 microbial rhodopsins. We conducted the first detailed structural characterization of the retinal chromophore in HeRs using resonance Raman spectroscopy. The observed spectra clearly show that the Schiff base of the chromophore is protonated and forms a strong hydrogen bond to a species other than a water molecule, highly likely a counterion residue. The vibrational mode of the Schiff base of HeRs exhibits similarities with that of photosensory microbial rhodopsins, that is consistent with the previous proposal that HeRs function as photosensors. We also revealed unusual spectral features of the in-plane chain vibrations of the chromophore, suggesting an unprecedented geometry of the Schiff base caused by a difference in the retinal pocket structure of HeRs. These data demonstrate structural characteristics of the photoreceptive site in this novel type of rhodopsin family.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry , Graduate School of Science, Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Misao Mizuno
- Department of Chemistry , Graduate School of Science, Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Wataru Shihoya
- Department of Biological Sciences , Graduate School of Science, The University of Tokyo , 2-11-16 Yayoi , Bunkyo-ku, Tokyo 113-0032 , Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- The Institute for Solid State Physics , The University of Tokyo , Kashiwa 277-8581 , Japan
| | - Osamu Nureki
- Department of Biological Sciences , Graduate School of Science, The University of Tokyo , 2-11-16 Yayoi , Bunkyo-ku, Tokyo 113-0032 , Japan
| | - Oded Béjà
- Faculty of Biology , Technion Israel Institute of Technology , Haifa 32000 , Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
- OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Yasuhisa Mizutani
- Department of Chemistry , Graduate School of Science, Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
16
|
Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y. Demonstration of a Light-Driven SO42– Transporter and Its Spectroscopic Characteristics. J Am Chem Soc 2017; 139:4376-4389. [DOI: 10.1021/jacs.6b12139] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akiko Niho
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Marie Kurihara
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shinya Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yu Nakajima
- Atmosphere
and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hikaru Kuramochi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- Faculty
of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Song Y, Kaster AK, Vollmers J, Song Y, Davison PA, Frentrup M, Preston GM, Thompson IP, Murrell JC, Yin H, Hunter CN, Huang WE. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea. Microb Biotechnol 2016; 10:125-137. [PMID: 27748032 PMCID: PMC5270752 DOI: 10.1111/1751-7915.12420] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Cell sorting coupled with single-cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial 'dark matter'. Single-cell Raman spectra (SCRSs) are label-free biochemical 'fingerprints' of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman-activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS. Carotenoids are highly diverse pigments and play an important role in phototrophic bacteria, giving strong and distinctive Raman spectra. Here, we showed that individual carotenoid-containing cells from a Red Sea sample were isolated based on the characteristic SCRS. RACE-based single-cell genomics revealed putative novel functional genes related to carotenoid and isoprenoid biosynthesis, as well as previously unknown phototrophic microorganisms including an unculturable Cyanobacteria spp. The potential of Raman sorting coupled to single-cell genomics has been demonstrated.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Yanqing Song
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul A Davison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martinique Frentrup
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
18
|
Herz J, Verhoefen MK, Weber I, Bamann C, Glaubitz C, Wachtveitl J. Critical role of Asp227 in the photocycle of proteorhodopsin. Biochemistry 2012; 51:5589-600. [PMID: 22738119 DOI: 10.1021/bi3003764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photocycle of the proton acceptor complex mutant D227N of the bacterial retinal protein proteorhodopsin is investigated employing steady state pH-titration experiments in the UV-visible range as well as femtosecond-pump-probe spectroscopy and flash photolysis in the visible spectral range. The evaluation of the pH-dependent spectra showed that the neutralization of the charge at position 227 has a remarkable influence on the ground state properties of the protein. Both the pK(a) values of the primary proton acceptor and of the Schiff base are considerably decreased. Femtosecond-time-resolved measurements demonstrate that the general S(1) deactivation pathway; that is, the K-state formation is preserved in the D227N mutant. However, the pH-dependence of the reaction rate is lost by the substitution of Asp227 with an asparagine. Also no significant kinetic differences are observed upon deuteration. This is explained by the lack of a strongly hydrogen-bonded water in the vicinity of Asp97, Asp227, and the Schiff base or a change in the hydrogen bonding of it (Ikeda et al. (2007) Biochemistry 46, 5365-5373). The flash photolysis measurements prove a considerably elongated photocycle with pronounced pH-dependence. Interestingly, at pH 9 the M-state is visible until the end of the reaction cycle, leading to the conclusion that the mutation does not only lower the pK(a) of the Schiff base in the unphotolyzed ground state but also prevents an efficient reprotonation reaction.
Collapse
Affiliation(s)
- Julia Herz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1583-90. [DOI: 10.1016/j.bbabio.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/25/2011] [Accepted: 09/05/2011] [Indexed: 11/15/2022]
|
20
|
Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME JOURNAL 2011; 6:875-85. [PMID: 22113377 DOI: 10.1038/ismej.2011.150] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Photosynthetic microorganisms play crucial roles in aquatic ecosystems and are the major primary producers in global marine ecosystems. The discovery of new bacteria and microalgae that play key roles in CO(2) fixation is hampered by the lack of methods to identify hitherto-unculturable microorganisms. To overcome this problem we studied single microbial cells using stable-isotope probing (SIP) together with resonance Raman (RR) microspectroscopy of carotenoids, the light-absorbing pigments present in most photosynthetic microorganisms. We show that fixation of (13)CO(2) into carotenoids produces a red shift in single-cell RR (SCRR) spectra and that this SCRR-SIP technique is sufficiently sensitive to detect as little as 10% of (13)C incorporation. Mass spectrometry (MS) analysis of labelled cellular proteins verifies that the red shift in carotenoid SCRR spectra acts as a reporter of the (13)C content of single cells. Millisecond Raman imaging of cells in mixed cultures and natural seawater samples was used to identify cells actively fixing CO(2), demonstrating that the SCRR-SIP is a noninvasive method for the rapid and quantitative detection of CO(2) fixation at the single cell level in a microbial community. The SCRR-SIP technique may provide a direct method for screening environmental samples, and could help to reveal the ecophysiology of hitherto-unculturable microorganisms, linking microbial species to their ecological function in the natural environment.
Collapse
|
21
|
Kralj JM, Spudich EN, Spudich JL, Rothschild KJ. Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins. J Phys Chem B 2008; 112:11770-6. [PMID: 18717545 PMCID: PMC3608850 DOI: 10.1021/jp802629e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteorhodopsins are an extensive family of photoactive membrane proteins found in proteobacteria distributed throughout the world's oceans which are often classified as green- or blue-absorbing (GPR and BPR, respectively) on the basis of their visible absorption maxima. GPR and BPR have significantly different properties including photocycle lifetimes and wavelength dependence on pH. Previous studies revealed that these different properties are correlated with a single residue, Leu105 in GPR and Gln105 in BPR, although the molecular basis for the different properties of GPR and BPR has not yet been elucidated. We have studied the unexcited states of GPR and BPR using resonance Raman spectroscopy which enhances almost exclusively chromophore vibrations. We find that both spectra are remarkably similar, indicating that the retinylidene structure of GPR and BPR are almost identical. However, the frequency of a band assigned to the retinal C13-methyl-rock vibration is shifted from 1006 cm (-1) in GPR to 1012 cm (-1) in BPR. A similar shift is observed in the GPR mutant L105Q indicating Leu and Gln residues interact differently with the retinal C13-methyl group. The environment of the Schiff base of GPR and BPR differ as indicated by differences in the H/D induced down-shift of the Schiff base vibration. Residues located in transmembrane helices (D-G) do not contribute to the observed differences in the protein-chromophore interaction between BPR and GPR based on the Raman spectra of chimeras. These results support a model whereby the substitution of the hydrophilic Gln105 in BPR with the smaller hydrophobic Leu105 in GPR directly alters the environment of both the retinal C13 group and the Schiff base.
Collapse
Affiliation(s)
- Joel M. Kralj
- Department of Physics, Molecular Biophysics Laboratory, Photonics Center, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
| | - Elena N. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030
| | - Kenneth J. Rothschild
- Department of Physics, Molecular Biophysics Laboratory, Photonics Center, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
| |
Collapse
|
22
|
Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys J 2008; 94:4020-30. [PMID: 18234812 DOI: 10.1529/biophysj.107.121376] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin is an ion-translocating member of the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization, leading to transmembrane translocation of a proton toward the extracellular side of the cytoplasmic membrane. Here we report a study on the photoisomerization dynamics of the retinal chromophore of proteorhodopsin, using femtosecond time-resolved spectroscopy, by probing in the visible- and in the midinfrared spectral regions. Experiments were performed both at pH 9.5 (a physiologically relevant pH value in which the primary proton acceptor of the protonated Schiff base, Asp(97), is deprotonated) and at pH 6.5 (with Asp(97) protonated). Simultaneous analysis of the data sets recorded in the two spectral regions and at both pH values reveals a multiexponential excited state decay, with time constants of approximately 0.2 ps, approximately 2 ps, and approximately 20 ps. From the difference spectra associated with these dynamics, we conclude that there are two chromophore-isomerization pathways that lead to the K-state: one with an effective rate of approximately (2 ps)(-1) and the other with a rate of approximately (20 ps)(-1). At high pH, both pathways are equally effective, with an estimated quantum yield for K-formation of approximately 0.7. At pH 6.5, the slower pathway is less productive, which results in an isomerization quantum yield of 0.5. We further observe an ultrafast response of residue Asp(227), which forms part of the counterion complex, corresponding to a strengthening of its hydrogen bond with the Schiff base on K-state formation; and a feature that develops on the 0.2 ps and 2 ps timescale and probably reflects a response of an amide II band in reaction to the isomerization process.
Collapse
|
23
|
Pfleger N, Lorch M, Woerner AC, Shastri S, Glaubitz C. Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2008; 40:15-21. [PMID: 17968661 DOI: 10.1007/s10858-007-9203-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 05/25/2023]
Abstract
The proteorhodopsin family consists of hundreds of homologous retinal containing membrane proteins found in bacteria in the photic zone of the oceans. They are colour tuned to their environment and act as light-driven proton pumps with a potential energetic and regulatory function. Precise structural details are still unknown. Here, the green proteorhodopsin variant has been selected for a chemical shift analysis of retinal and Schiff base by solid-state NMR. Our data show that the chromophore exists in mainly all-trans configuration in the proteorhodopsin ground state. The optical absorption maximum together with retinal and Schiff base chemical shifts indicate a strong interaction network between chromophore and opsin.
Collapse
Affiliation(s)
- Nicole Pfleger
- Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
24
|
Amsden JJ, Kralj JM, Chieffo LR, Wang X, Erramilli S, Spudich EN, Spudich JL, Ziegler LD, Rothschild KJ. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction. J Phys Chem B 2007; 111:11824-31. [PMID: 17880126 DOI: 10.1021/jp073490r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.
Collapse
Affiliation(s)
- Jason J Amsden
- Department of Physics, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ikeda D, Furutani Y, Kandori H. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Biochemistry 2007; 46:5365-73. [PMID: 17428036 DOI: 10.1021/bi700143g] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR), an archaeal-type rhodopsin found in marine bacteria, is a light-driven proton pump similar to bacteriorhodopsin (BR). It is known that Asp97, a counterion of the protonated Schiff base, possesses a higher pKa ( approximately 7) compared to that of homologous Asp85 in BR (<3). This suggests that PR has a hydrogen-bonding network different from that of BR. We previously reported that a strongly hydrogen-bonded water molecule is observed only in the alkaline form of PR, where Asp97 is deprotonated (Furutani, Y., Ikeda, D., Shibata, M., and Kandori, H. (2006) Chem. Phys. 324, 705-708). This is probably correlated with the pH-dependent proton pumping activity of PR. In this work, we studied the water-containing hydrogen-bonding network in the Schiff base region of PR by means of Fourier-transform infrared (FTIR) spectroscopy at 77 K. [zeta-15N]Lys-labeling and 18O water were used for assigning the Schiff base N-D and water O-D stretching vibrations in D2O, respectively. The frequency upshift of the N-D stretch in the primary K intermediate is much smaller for PR than for BR, indicating that the Schiff base forms a hydrogen bond after retinal photoisomerization. We then measured FTIR spectra of the mutants of Asp97 (D97N and D97E) and Asp227 (D227N and D227E) to identify the amino acid interacting with the Schiff base in the K state. The PRK minus PR spectra of D97N and D97E were similar to those of the acidic and alkaline forms, respectively, of the wild type implying that the structural changes upon retinal photoisomerization are not influenced by the mutation at Asp97. In contrast, clear spectral differences were observed in D227N and D227E, including vibrational bands of the Schiff base and water molecules. It is concluded that Asp227 plays a crucial role during the photoisomerization process, though Asp97 acts as the primary counterion in the unphotolyzed state of PR.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
26
|
Ward KR, Torres Filho I, Barbee RW, Torres L, Tiba MH, Reynolds PS, Pittman RN, Ivatury RR, Terner J. Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring. Crit Care Med 2006; 34:792-9. [PMID: 16521273 DOI: 10.1097/01.ccm.0000201898.43135.3f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate resonance Raman spectroscopy for the detection of changes in sublingual mucosal hemoglobin oxygen saturation (Smo2) in response to hemorrhage and resuscitation, and to compare Smo2 with other indicators of tissue oxygenation including central venous oxygen saturation (Scvo2), lactate, base excess, and shed blood volume. DESIGN Prospective single group pilot study. SETTING University laboratory. SUBJECTS Five Sprague-Dawley rats. INTERVENTIONS Animals were anesthetized and instrumented for measurement of arterial and central venous blood gases. Raman spectroscopy was performed using a krypton ion laser providing excitation at 406.7 nm (5 mW). A 1-mm2 region of the sublingual tongue surface was chosen for investigation. Animals were subjected to stepwise hemorrhage until approximately 50% of the blood volume was removed. At each hemorrhage and resuscitation interval, Raman spectroscopy was performed and corresponding arterial and central venous blood gas and lactate measurements were made. Smo2 was calculated as the ratio of the oxygenated heme spectral peak height to the sum of the oxy- and deoxyhemoglobin spectral peak heights. Raman spectroscopy-derived Smo2 measurements were compared with Scvo2 as well as with other indicators of oxygenation. MEASUREMENTS AND MAIN RESULTS The mean difference between Smo2 and Scvo2 for all paired measurements was 5.8+/-11.7 absolute saturation points. Smo2 was significantly (p<.0001) correlated with Scvo2 (r=.80), lactate (r=-.78), base excess (r=.80), and shed blood volume (r=-.75). Smo2 and Scvo2 showed similar levels of precision for predicting elevated lactate and base deficit. CONCLUSIONS These studies demonstrate the ability of Raman spectroscopy to noninvasively track microvascular hemoglobin oxygenation in tissue and favorably correlate with other important indicators of tissue oxygenation such as Scvo2, lactate, base deficit, and shed blood volume. The technique shows promise as a method to noninvasively monitor tissue oxygenation.
Collapse
Affiliation(s)
- Kevin R Ward
- Department of Emergency Medicine, Virginia Commonwealth University Reanimation Engineering Shock Center, Richmond 23298, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lenz MO, Huber R, Schmidt B, Gilch P, Kalmbach R, Engelhard M, Wachtveitl J. First steps of retinal photoisomerization in proteorhodopsin. Biophys J 2006; 91:255-62. [PMID: 16603495 PMCID: PMC1479053 DOI: 10.1529/biophysj.105.074690] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early steps (<1 ns) in the photocycle of the detergent solubilized proton pump proteorhodopsin are analyzed by ultrafast spectroscopic techniques. A comparison to the first primary events in reconstituted proteorhodopsin as well as to the well known archaeal proton pump bacteriorhodopsin is given. A dynamic Stokes shift observed in fs-time-resolved fluorescence experiments allows a direct observation of early motions on the excited state potential energy surface. The initial dynamics is dominated by sequentially emerging stretching (<150 fs) and torsional (approximately 300 fs) modes of the retinal. The different protonation states of the primary proton acceptor Asp-97 drastically affect the reaction rate and the overall quantum efficiencies of the isomerization reactions, mainly evidenced for time scales above 1 ps. However, no major influence on the fast time scales (approximately 150 fs) could be seen, indicating that the movement out of the Franck-Condon region is fairly robust to electrostatic changes in the retinal binding pocket. Based on fs-time-resolved absorption and fluorescence spectra, ground and exited state contributions can be disentangled and allow to construct a reaction model that consistently explains pH-dependent effects in solubilized and reconstituted proteorhodopsin.
Collapse
Affiliation(s)
- Martin O Lenz
- Institut für Physikalische und Theoretische Chemie, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Imasheva ES, Shimono K, Balashov SP, Wang JM, Zadok U, Sheves M, Kamo N, Lanyi JK. Formation of a Long-Lived Photoproduct with a Deprotonated Schiff Base in Proteorhodopsin, and Its Enhancement by Mutation of Asp227. Biochemistry 2005; 44:10828-38. [PMID: 16086585 DOI: 10.1021/bi050438h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin, a retinal protein of marine proteobacteria similar to bacteriorhodopsin of the archaea, is a light-driven proton pump. Absorption of a light quantum initiates a reaction cycle (turnover time of ca. 50 ms), which includes photoisomerization of the retinal from the all-trans to the 13-cis form and transient deprotonation of the retinal Schiff base, followed by recovery of the initial state. We report here that in addition to this fast cyclic conversion, illumination at high pH results in accumulation of a long-lived photoproduct absorbing at 362 nm. This photoconversion is much more efficient in the D227N mutant in which the anionic Asp227, which together with Asp97 constitutes the Schiff base counterion, is replaced with a neutral residue. Upon illumination at pH 8.5, most of the D227N pigment is converted to the 362 nm species, with a quantum efficiency of ca. 0.2. The pK(a) for this transition in the wild type is 9.6, but decreased to 7.5 after mutation of Asp227. The short wavelength of the absorption maximum of the photoproduct indicates that it has a deprotonated Schiff base. In the dark, this photoproduct is converted back to the initial pigment with a time constant of 30 min (in D227N, at pH 8.5), but it can be reconverted more rapidly by illumination with near-UV light. Experiments with "locked" retinal analogues which selectively exclude rotation around either the C9=C10, C11=C12, or C13=C14 bond show that formation of the 362 nm species involves isomerization around the C13=C14 bond. In agreement with this, retinal extraction indicates that the 362 nm photoproduct is 13-cis whereas the initial state is predominantly all-trans. A rapid shift of the pH from 8.5 to 4 greatly accelerates thermal reconversion of the 362 nm species to the initial pigment, suggesting that its recovery involving the thermal isomerization of the chromophore is controlled by ionizable residues, primarily the Schiff base and Asp97. The transformation to the long-lived 362 nm photoproduct is apparently a side reaction of the photocycle, a response to high pH, caused by alteration of the normal reprotonation and reisomerization pathway of the Schiff base.
Collapse
Affiliation(s)
- Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Partha R, Krebs R, Caterino TL, Braiman MS. Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:6-12. [PMID: 15949979 DOI: 10.1016/j.bbabio.2004.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 12/03/2004] [Accepted: 12/20/2004] [Indexed: 10/26/2022]
Abstract
In wild-type proteorhodopsin (pR), titration of the chromophore's counterion Asp(97) occurs with a pK(a) of 8.2+/-0.1. R94C mutation reduces this slightly to 7.0+/-0.2, irrespective of treatment with ethylguanidinium. This contrasts with the homologous archaeal protein bacteriorhodopsin (bR), where R82C mutation was previously shown to elevate the pK(a) of Asp(85) by approximately 5 units, while reconstitution with ethylguanidinium restores it nearly to the wild-type value of 2.5. We conclude there is much weaker electrostatic coupling between Arg(94) and Asp(97) in the unphotolyzed state of pR, in comparison to Arg(82) and Asp(85) in bR. Therefore, while fast light-driven H(+) release may depend on these two residues in pR as in bR, no tightly conserved pre-photolysis configuration of them is required.
Collapse
Affiliation(s)
- Ranga Partha
- Syracuse University Chemistry Department, Syracuse, NY 13244-4100, United States
| | | | | | | |
Collapse
|
30
|
Huber R, Köhler T, Lenz MO, Bamberg E, Kalmbach R, Engelhard M, Wachtveitl J. pH-dependent photoisomerization of retinal in proteorhodopsin. Biochemistry 2005; 44:1800-6. [PMID: 15697205 DOI: 10.1021/bi048318h] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The early steps in the photocycle of the bacterial proton pump proteorhodopsin (PR) were analyzed by ultrafast pump/probe spectroscopy to compare the rate of retinal isomerization at alkaline and acidic pH values. At pH 9, the functionally important primary proton acceptor (Asp97, pK(a) = 7.7) is negatively charged; consequently, a reaction cycle analogous to the archaeal bacteriorhodopsin (BR) is observed. The excited electronic state of PR displays a pronounced biphasic decay with time constants of 400 fs and 8 ps. At pH 6 where Asp97 is protonated a similar biphasic decay is observed, although it is significantly slower (700 fs and 15 ps). The results indicate, in agreement to similar findings in other retinal proteins, that also in PR the charge distribution within the chromophore binding pocket is a major determinant for the rate and the efficiency of the primary reaction.
Collapse
Affiliation(s)
- Robert Huber
- Institut für Physikalische und Theoretische Chemie, Marie-Curie-Strasse 11, Johann Wolfgang Goethe-Universität Frankfurt, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Xiao Y, Partha R, Krebs R, Braiman M. Time-Resolved FTIR Spectroscopy of the Photointermediates Involved in Fast Transient H+ Release by Proteorhodopsin. J Phys Chem B 2004; 109:634-41. [PMID: 16851056 DOI: 10.1021/jp046314g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteorhodopsin (pR) is a homologue of bacteriorhodopsin (bR) that has been recently discovered in oceanic bacterioplankton. Like bR, pR functions as a light-driven proton pump. As previously characterized by laser flash induced absorption spectroscopy (Krebs, R. A.; Alexiev, U.; Partha, R.; DeVita, A. M.; Braiman, M. S. BMC Physiol. 2002, 2, 5), the pR photocycle shows evidence of light-induced H(+) release on the 10-50 micros time scale, and of substantial accumulation of the M intermediate, only at pH values above 9 and after reconstitution into phospholipid followed by extensive washing to remove detergent. We have therefore measured the time-resolved FTIR difference spectra of pR intermediates reconstituted into DMPC vesicles at pH 9.5. A mixture of K- and L-like intermediates, characterized by a 1516 cm(-1) positive band and a 1742 cm(-1) negative band respectively, appears within 20 micros after photolysis. This mixture decays to an M-like state, with a clear band at 1756 cm(-1) due to protonation of Asp-97. The 50-70 micros rise of M at pH 9.5 is similar to (but a little slower than) the rise times for M formation and H(+) release that were reported earlier based on flash photolysis measurements of pR reconstituted into phospholipids with shorter acyl chains. We conclude that, at pH 9.5, H(+) release occurs while Asp-97 is still protonated; i.e., this aspartic acid cannot be the H(+) release group observed by flash photolysis under similar conditions.
Collapse
Affiliation(s)
- Yaowu Xiao
- Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | | | |
Collapse
|
32
|
Bergo V, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ. Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreaction. Biochemistry 2004; 43:9075-83. [PMID: 15248764 DOI: 10.1021/bi0361968] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR), found in marine gamma-proteobacteria, is a newly discovered light-driven proton pump similar to bacteriorhodopsin (BR). Because of the widespread distribution of proteobacteria in the worldwide oceanic waters, this pigment may contribute significantly to the global solar energy input in the biosphere. We examined structural changes that occur during the primary photoreaction (PR --> K) of wild-type pigment and two mutants using low-temperature FTIR difference spectroscopy. Several vibrations detected in the 3500-3700 cm(-1) region are assigned on the basis of H(2)O --> H(2)(18)O exchange to the perturbation of one or more internal water molecules. Substitution of the negatively charged Schiff base counterion, Asp97, with the neutral asparagine caused a downshift of the ethylenic (C=C) and Schiff base (C=N) stretching modes, in agreement with the 27 nm red shift of the visible lambda(max). However, this replacement did not alter the normal all-trans to 13-cis isomerization of the chromophore or the environment of the detected water molecule(s). In contrast, substitution of Asn230, which is in a position to interact with the Schiff base, with Ala induces a 5 nm red shift of the visible lambda(max) and alters the PR chromophore structure, its isomerization to K, and the environment of the detected internal water molecules. The combination of FTIR and site-directed mutagenesis establishes that both Asp97 and Asn230 are perturbed during the primary phototransition. The environment of Asn230 is further altered during the thermal decay of K. These results suggest that significant differences exist in the conformational changes which occur in the photoactive sites of proteorhodopsin and bacteriorhodopsin during the primary photoreaction.
Collapse
Affiliation(s)
- Vladislav Bergo
- Department of Physics, Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
33
|
Kelemen BR, Du M, Jensen RB. Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1618:25-32. [PMID: 14643930 DOI: 10.1016/j.bbamem.2003.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteorhodopsin is a family of over 50 proteins that provide phototrophic capability to marine bacteria by acting as light-powered proton pumps. The potential importance of proteorhodopsin to global ocean ecosystems and the possible applications of proteorhodopsin in optical data storage and optical signal processing have spurred diverse research in this new family of proteins. We show that proteorhodopsin expressed in Escherichia coli is functional and properly inserted in the membrane. At high expression levels, it appears to self-associate. We present a method for determining spectral properties of proteorhodopsin in intact E. coli cells that matches results obtained with detergent-solubilized, purified proteins. Using this method, we observe distinctly different spectra for protonated and deprotonated forms of 21 natural proteorhodopsin proteins in intact E. coli cells. Upon protonation, the wavelength maxima red shifts between 13 and 53 nm. We find that pKa values between 7.1 and 8.5 describe the pH-dependent spectral shift for all of the 21 natural variants of proteorhodopsin. The wavelength maxima of the deprotonated forms of the 21 natural proteorhodopsins cluster in two sequence-related groups: blue proteorhodopsins (B-PR) and green proteorhodopsins (G-PR). The site-directed substitution Leu105Gln in Bac31A8 proteorhodopsin shifts this G-PR's wavelength maximum to a wavelength maximum the same as that of the B-PR Hot75m1 proteorhodopsin. The site-directed substitution Gln107Leu in Hot75m1 proteorhodopsin shifts this B-PR's wavelength maximum to a wavelength maximum as that of Bac31A8 proteorhodopsin.
Collapse
Affiliation(s)
- Bradley R Kelemen
- Genencor International, Inc, 925 Page Mill Road, Palo Alto, CA 94304, USA
| | | | | |
Collapse
|