1
|
Wang W, Yang G, Wang Y. Single Molecular Investigation of Influence of Silver Ions on Double-Stranded and Single-Stranded DNA. J Phys Chem B 2025. [PMID: 39998121 DOI: 10.1021/acs.jpcb.4c08212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The effect of metal ions on DNA base pairs is crucial for understanding the molecular mechanisms underlying metal-ion-associated gene mutations and has broad applications across various fields. We investigated the interaction between silver ions (Ag+) and DNA using single-molecule magnetic tweezers (MT), atomic force microscopy (AFM), and dynamic light scattering (DLS). Our findings reveal that monovalent Ag+ can compact DNA directly even at very low concentrations, unlike canonical monovalent ions such as sodium and potassium, which have no effect. We attribute this to the specific binding of Ag+ to DNA. For both double-stranded DNA (ds-DNA) and single-stranded DNA (ss-DNA), the critical condensing force (Fc) induced by Ag+ initially increases with cationic concentration, reaches a maximum value, and then decreases. We found that the variation in condensing force is due to the rise and fall of silver ions associated with DNA, which is different from the monotonous increase of associated regular cations such as La3+ or CoHex3+. Notably, the condensing forces for partially denatured DNA by DMSO (including ss-DNA) are larger than those for ds-DNA under the same conditions.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Guangcan Yang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Haimov E, Hedley JG, Kornyshev AA. Nonlocal structural effects of water on DNA homology recognition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:40LT01. [PMID: 38936395 DOI: 10.1088/1361-648x/ad5cb7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
The mechanism behind mutual recognition of homologous DNA sequences prior to genetic recombination is one of the remaining puzzles in molecular biology. Leading models of homology recognition, based on classical electrostatics, neglect the short-range nonlocal screening effects arising from structured water around DNA, and hence may only provide insight for relatively large separations between interacting DNAs. We elucidate the role of the effects of the nonlocal dielectric response of water on DNA-DNA interaction and show that these can dramatically enhance the driving force for recognition.
Collapse
Affiliation(s)
- Ehud Haimov
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane W12 0BZ, United Kingdom
| | - Jonathan G Hedley
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane W12 0BZ, United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane W12 0BZ, United Kingdom
| |
Collapse
|
3
|
Zhang Y, Yan M, Huang T, Wang X. Understanding the Structural Elasticity of RNA and DNA: All‐Atom Molecular Dynamics. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingtong Zhang
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Miao Yan
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Tingting Huang
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| | - Xianghong Wang
- Department of Physics Wenzhou University Wenzhou 325035 China
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
4
|
Ru XM, Yang ZY, Ran SY. Lanthanide ions induce DNA compaction with ionic specificity. Int J Biol Macromol 2022; 210:292-299. [DOI: 10.1016/j.ijbiomac.2022.04.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022]
|
5
|
Liu YF, Ran SY. Divalent metal ions and intermolecular interactions facilitate DNA network formation. Colloids Surf B Biointerfaces 2020; 194:111117. [PMID: 32512310 DOI: 10.1016/j.colsurfb.2020.111117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
The interactions between divalent metal ions and DNA are crucial for basic life processes. These interactions are also important in advanced technological products such as DNA-based ion sensors. Current polyelectrolyte theories cannot describe these interactions well and do not consider the corresponding dynamics. In this study, we report the single-molecule dynamics of the binding of divalent metal ions to a single DNA molecule and the morphology characterization of the complex. We found that most of the divalent metal ions (Mn2+, Zn2+, Co2+, Ni2+, and Cd2+), except Mg2+ and Ca2+, could cause monomolecular DNA condensation. For transition metal ions, different ionic strengths were required to induce the compaction, and different shortening speeds were displayed in the dynamics, indicating ionic specificity. Atomic force microscopy revealed that the morphologies of the metal ion-DNA complexes were affected by the ionic strength of the metal ion, DNA chain length, and DNA concentration. At low metal ion concentration, DNA tended to adopt a random coil conformation. Increasing the ionic strength led to network-like condensed structures, suggesting that divalent metal ions can induce attraction between DNA molecules. Furthermore, higher DNA concentration and longer chain length enhanced intermolecular interactions and consequently resulted in network structures with a higher degree of interconnectivity.
Collapse
Affiliation(s)
- Yin-Feng Liu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Liu KT, Ran SY. Multistage dynamics of Hg 2+-DNA interactions: a single-molecule study. Phys Chem Chem Phys 2019; 21:2919-2928. [PMID: 30675618 DOI: 10.1039/c8cp07399f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The metal ion-DNA interaction is key to biochemical processes and has applications in areas such as metal ion sensors and DNA nanomachines. For example, the formation of the T-Hg2+-T structure has been used in technologies such as DNA-based mercuric ion sensors. Though the interaction is widely used for practical purposes, the underlying mechanism has not been fully understood. In the present study, we used magnetic tweezers to explore the interactions between λ-DNA and two metal ions, Hg2+ and Cd2+, at the single-molecule level. Both metal ions caused considerable DNA conformational changes. The resulting DNA compaction dynamics were related to the ion concentration and the exerted force. The increase in the ion concentration promoted DNA compaction, whereas exerting greater forces inhibited this process. Application of a high force generated two-stage dynamics of the Hg2+-DNA interaction. However, at a sufficiently high Hg2+ concentration, a lower force led to a three-stage process. In contrast, the curves of the binding of Cd2+ ions to DNA had a stepwise pattern. Both the AFM scanning results and the single-molecule measurements confirmed that Hg2+ influences the DNA conformation in a more pronounced manner than Cd2+. The multistage Hg2+-DNA interaction was considered to be a result of the different binding mechanisms, including the mismatched base-pair formation. A model was then proposed to explain the peculiar dynamics.
Collapse
Affiliation(s)
- Kang-Tao Liu
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | | |
Collapse
|
7
|
Ngoubi H, Ben-Bolie GH, Kofané TC. Charge transport in a DNA model with solvent interaction. J Biol Phys 2018; 44:483-500. [PMID: 29971755 PMCID: PMC6082793 DOI: 10.1007/s10867-018-9503-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
The charge transport in the modified DNA model is studied by taking into account the factor of solvent and the effect of coupling motions of nucleotides. We report on the presence of the modulational instability (MI) of a plane wave for charge migration in DNA and the generation of soliton-like excitations in DNA nucleotides. By applying the continuum approximation, we show that the original differential-difference equation for the DNA dynamics can be reduced to a set of three coupled nonlinear equations. The linear stability analysis of wave solutions of the coupled systems is performed and the growth rate of instability is found numerically. We also investigate the impact of solvent interaction. The solvent factor introduces a new behavior to the wave patterns, modifying also the intrinsic properties of localized structures. In the numerical simulations, we show that the solitons exists when taking into account the effect of solvent and confirms an highest propagation of localized structures in the systems. The effect of solvent forces introduces a robustness behavior to the formed patterns, reinforcing the idea that the information in the DNA model is confined and concentrated to specific regions for efficiency. We also show that the localized structures can be disappeared with the highest value of solvent factor and thereafter the information within the molecule is not perceptible or not transmitted to another sites.
Collapse
Affiliation(s)
- H Ngoubi
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - G H Ben-Bolie
- Laboratory of Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - T C Kofané
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
8
|
O' Lee DJ. Introducing a model of pairing based on base pair specific interactions between identical DNA sequences. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:075102. [PMID: 29219116 DOI: 10.1088/1361-648x/aaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.
Collapse
Affiliation(s)
- Dominic J O' Lee
- Department of Chemistry, Imperial College London, SW7 2AZ, London, United Kingdom
| |
Collapse
|
9
|
Kochugaeva MP, Shvets AA, Kolomeisky AB. On the Mechanism of Homology Search by RecA Protein Filaments. Biophys J 2017; 112:859-867. [PMID: 28297645 DOI: 10.1016/j.bpj.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022] Open
Abstract
Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein filaments formed on single-stranded segments of DNA. A critical step in the homologous recombination is a search for a corresponding homologous region on DNA, which is called a homology search. Recent single-molecule experiments clarified some aspects of this process, but its molecular mechanisms remain not well understood. We developed a quantitative theoretical approach to analyze the homology search. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the homology search is presented. It is found that the search dynamics depends on the degree of extension of DNA molecules and on the size of RecA nucleoprotein filaments, in agreement with experimental single-molecule measurements of DNA pairing by RecA proteins. Our theoretical calculations, supported by extensive Monte Carlo computer simulations, provide a molecular description of the mechanisms of the homology search.
Collapse
Affiliation(s)
- Maria P Kochugaeva
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Alexey A Shvets
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas; Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
10
|
Lee DJO. Statistical mechanical model for a closed loop plectoneme with weak helix specific forces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:145101. [PMID: 28251958 DOI: 10.1088/1361-648x/aa521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We develop a statistical mechanical framework, based on a variational approximation, to describe closed loop plectonemes. This framework incorporates weak helix structure dependent forces into the determination of the free energy and average structure of a plectoneme. Notably, due to their chiral nature, helix structure dependent forces break the symmetry between left and right handed supercoiling. The theoretical approach, presented here, also provides a systematic way of enforcing the topological constraint of closed loop supercoiling in the variational approximation. At large plectoneme lengths, by considering correlation functions in an expansion in terms of the spatial mean twist density about its thermally averaged value, it can be argued that topological constraint may be approximated by replacing twist and writhe by their thermal averages. A Lagrange multiplier, containing the sum of average twist and writhe, can be added to the free energy to conveniently inforce this result. The average writhe can be calculated through the thermal average of the Gauss' integral in the variational approximation. Furthermore, this approach allows for a possible way to calculate finite size corrections due to the topological constraint. Using interaction energy terms from the mean-field Kornyshev-Leikin theory, for parameter values that correspond to weak helix dependent forces, we calculate the free energy, fluctuation magnitudes and mean geometric parameters for the plectoneme. We see a slight asymmetry, where interestingly, left handed supercoils have a looser structure than right handed ones, although with a lower free energy, unlike what the previous ground state calculations would suggest.
Collapse
Affiliation(s)
- Dominic J O' Lee
- Department of Chemistry, Imperial College London, SW7 2AZ, London, United Kingdom
| |
Collapse
|
11
|
O' Lee DJ, Danilowicz C, Rochester C, Kornyshev AA, Prentiss M. Evidence of protein-free homology recognition in magnetic bead force-extension experiments. Proc Math Phys Eng Sci 2016; 472:20160186. [PMID: 27493568 PMCID: PMC4971244 DOI: 10.1098/rspa.2016.0186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.
Collapse
Affiliation(s)
- D J O' Lee
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - C Danilowicz
- Department of Physics , Harvard University, Cambridge , MA 02138, USA
| | - C Rochester
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - A A Kornyshev
- Department of Chemistry , Imperial College London , London SW7 2AZ, UK
| | - M Prentiss
- Department of Physics , Harvard University, Cambridge , MA 02138, USA
| |
Collapse
|
12
|
Direct Evidence of Divalent Manganese Ion-Induced DNA Condensation at Room Temperature. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
O' Lee DJ, Wynveen A, Albrecht T, Kornyshev AA. Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignments. J Chem Phys 2015; 142:045101. [PMID: 25638008 DOI: 10.1063/1.4905291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Homologous gene shuffling between DNA molecules promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition has remained an unsolved puzzle of molecular biology. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has, however, been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular, electrostatic ones. In this proposed mechanism, sequences that have the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts. The difference between the two energies is termed the "recognition energy." Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding is termed the "recognition well." We find there is a recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations and consider more rigorously the optimization of the orientations of the fragments about their long axes upon calculating these recognition energies. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. When torsional flexibility of the DNA molecules is introduced, we find excellent agreement between the analytical approximation and simulations.
Collapse
Affiliation(s)
- Dominic J O' Lee
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| | - Aaron Wynveen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
14
|
Kavitha L, Priya R, Ayyappan N, Gopi D, Jayanthi S. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain. J Biol Phys 2015. [PMID: 26198375 DOI: 10.1007/s10867-015-9389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.
Collapse
Affiliation(s)
- L Kavitha
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur, 610 101, Tamilnadu, India. .,The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
| | - R Priya
- Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - N Ayyappan
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu, Thiruvarur, 610 101, Tamilnadu, India
| | - D Gopi
- Center for Nanoscience and Nanotechnology, Periyar University, Salem, 636 011, Tamilnadu, India.,Department of Chemistry, Periyar University, Salem, 636 011, Tamilnadu, India
| | - S Jayanthi
- Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| |
Collapse
|
15
|
Kornyshev AA, Leikin S. Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Biophys J 2013; 104:2031-41. [PMID: 23663846 DOI: 10.1016/j.bpj.2013.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation.
Collapse
Affiliation(s)
- Alexei A Kornyshev
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | |
Collapse
|
16
|
Cherstvy AG, Teif VB. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. J Biol Phys 2013; 39:363-85. [PMID: 23860914 PMCID: PMC3689366 DOI: 10.1007/s10867-012-9294-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022] Open
Abstract
Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
| | | |
Collapse
|
17
|
|
18
|
DeRouchey J, Hoover B, Rau DC. A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protamines. Biochemistry 2013; 52:3000-9. [PMID: 23540557 DOI: 10.1021/bi4001408] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protamines are small, highly positively charged peptides used to package DNA at very high densities in sperm nuclei. Tight DNA packing is considered essential for the minimization of DNA damage by mutagens and reactive oxidizing species. A striking and general feature of protamines is the almost exclusive use of arginine over lysine for the positive charge to neutralize DNA. We have investigated whether this preference for arginine might arise from a difference in DNA condensation by arginine and lysine peptides. The forces underlying DNA compaction by arginine, lysine, and ornithine peptides are measured using the osmotic stress technique coupled with X-ray scattering. The equilibrium spacings between DNA helices condensed by lysine and ornithine peptides are significantly larger than the interhelical distances with comparable arginine peptides. The DNA surface-to-surface separation, for example, is some 50% larger with polylysine than with polyarginine. DNA packing by lysine rich peptides in sperm nuclei would allow much greater accessibility to small molecules that could damage DNA. The larger spacing with lysine peptides is caused by both a weaker attraction and a stronger short-range repulsion relative to that of the arginine peptides. A previously proposed model for binding of polyarginine and protamine to DNA provides a convenient framework for understanding the differences between the ability of lysine and arginine peptides to assemble DNA.
Collapse
Affiliation(s)
- Jason DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
19
|
Cortini R, Lee DJ, Kornyshev A. Chiral electrostatics breaks the mirror symmetry of DNA supercoiling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:162203. [PMID: 22467204 DOI: 10.1088/0953-8984/24/16/162203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DNA supercoiling plays a fundamental role in regulating cellular activity and in the packaging of genetic material. In this communication, we analyse the effect of attractive chiral forces on the conformation of a closed circular DNA molecule, arising due to the helical patterns of charges on the DNA. We propose a model for closed loop DNA which uses the results of the recent theory of electrostatic interactions of a braid of two free-ended DNA molecules. Our model reproduces the known features of DNA supercoiling in an environment of low ionic strength. In high salt conditions, and in the presence of counterions that have high affinity to the DNA grooves, helix-specific forces significantly affect the conformation of the molecule by favouring a state characterized by a central left-handed braided section where there is close contact between distant portions of the loop. In such an environment we predict a previously unexplored possibility that nicked or topologically relaxed DNA molecules adopt a writhed state. This prediction suggests an alternative explanation for experiments in which it was assumed that the most stable topoisomer is always an open circle. Our results also give the first plausible explanation for the occurrence of tightly interwound molecules observed in cryo-electron microscopy and atomic force microscopy in a high ionic strength environment. We suggest several new experiments to test the predictions of this theory.
Collapse
Affiliation(s)
- R Cortini
- Chemistry Department, Faculty of Natural Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
20
|
Cortini R, Kornyshev AA, Lee DJ, Leikin S. Electrostatic braiding and homologous pairing of DNA double helices. Biophys J 2011; 101:875-84. [PMID: 21843478 DOI: 10.1016/j.bpj.2011.06.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 10/17/2022] Open
Abstract
Homologous pairing and braiding (supercoiling) have crucial effects on genome organization, maintenance, and evolution. Generally, the pairing and braiding processes are discussed in different contexts, independently of each other. However, analysis of electrostatic interactions between DNA double helices suggests that in some situations these processes may be related. Here we present a theory of DNA braiding that accounts for the elastic energy of DNA double helices as well as for the chiral nature of the discrete helical patterns of DNA charges. This theory shows that DNA braiding may be affected, stabilized, or even driven by chiral electrostatic interactions. For example, electrostatically driven braiding may explain the surprising recent observation of stable pairing of homologous double-stranded DNA in solutions containing only monovalent salt. Electrostatic stabilization of left-handed braids may stand behind the chiral selectivity of type II topoisomerases and positive plasmid supercoiling in hyperthermophilic bacteria and archea.
Collapse
Affiliation(s)
- Ruggero Cortini
- Department of Chemistry, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
21
|
Kornyshev AA, Lee DJ, Wynveen A, Leikin S. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns. Nucleic Acids Res 2011; 39:7289-99. [PMID: 21593127 PMCID: PMC3167609 DOI: 10.1093/nar/gkr260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.
Collapse
Affiliation(s)
- A A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, UK.
| | | | | | | |
Collapse
|
22
|
Lee DJ. Correlation forces between helical macro-ions in the weak coupling limit. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:105102. [PMID: 21335632 DOI: 10.1088/0953-8984/23/10/105102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When correlation effects are relatively weak, electrostatic interaction forces between cylindrical macro-ions may be divided into two contributions (Lee 2010 J. Phys.: Condens. Matter 22 414101). Firstly, there is a mean field contribution, described by the theory of Kornyshev and Leikin (1997 J. Chem. Phys. 107 3656) at large separations. Secondly, we have correlation forces, which we analyze by performing an expansion in the number density of condensed ions. We see three distinct contributions, for which analytical expressions are given for both general and helical contributions. Firstly, there is a term (of leading order in the expansion) that is a change in the solvation energies of uncondensed counter-ions due to two macro-molecular interfaces. Secondly, we have a contribution that comes from fluctuations in the condensed ion charge density being repelled by their 'images' in the other molecule. Both of these contributions are repulsive. Lastly, there exists an attractive Oosawa contribution that arises from fluctuations in the condensed ions about one molecule correlating with those about the other molecule. The first two forces do not depend on the orientation of the molecules about their long axes. However, the Oosawa force may do so, depending on the pattern of bound and fixed charges. For a DNA like charge distribution, we see that the strength of this dependence is governed by the relative proportion of bound ions, between two positions that represent the DNA groove centers. We see that, at a Debye screening length equivalent to physiological salt concentrations, the correlation forces can be neglected for univalent ions. For divalent ions, they contribute a small, albeit significant, correction. Our calculations suggest that increasing the salt concentration reduces the size of these forces.
Collapse
Affiliation(s)
- D J Lee
- Max-Planck Institute für Physik Komplexer Systeme, Nöthnizer Straße 38, D-01187, Dresden, Germany.
| |
Collapse
|
23
|
Kornyshev AA. Physics of DNA: unravelling hidden abilities encoded in the structure of ‘the most important molecule’. Phys Chem Chem Phys 2011; 12:12352-78. [PMID: 20945523 DOI: 10.1039/c004107f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A comprehensive article “Structure and Interactions of Biological Helices”, published in 2007 in Reviews of Modern Physics, overviewed various aspects of the effect of DNA structure on DNA–DNA interactions in solution and related phenomena, with a thorough analysis of the theory of these effects. Here, an updated qualitative account of this area is presented without any sophisticated ‘algebra’. It overviews the basic principles of the structure-specific interactions between double-stranded DNA and focuses on the physics behind several related properties encoded in the structure of DNA. Among them are (i) DNA condensation and aptitude to pack into small compartments of cells or viral capcids, (ii) the structure of DNA mesophases, and (iii) the ability of homologous genes to recognize each other prior to recombination from a distance. Highlighted are some of latest developments of the theory, including the shape of the ‘recognition well’. The article ends with a brief discussion of the first experimental evidence of the protein-free homology recognition in a ‘test tube’.
Collapse
Affiliation(s)
- Alexei A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Phys Chem Chem Phys 2011; 13:9942-68. [DOI: 10.1039/c0cp02796k] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Lee DJ. Charge renormalization of helical macromolecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:414101. [PMID: 21386584 DOI: 10.1088/0953-8984/22/41/414101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Some time ago a theory of electrostatic interaction between helical macromolecules was proposed (Kornyshev and Leikin 1997 J. Chem. Phys. 107 3656): the Kornyshev-Leikin (KL) theory. We place this theory on a more rigorous statistical mechanical grounding, starting from the free energy that can be derived from a grand partition function. We see that the long range behaviour of the force is indeed given by the KL theory, no matter whether the distributions of 'condensed' ionic charge are at the surface of the macromolecule or extend away from it. Thus, for the limiting behaviour, we need only self-consistently calculate the distribution of the condensed fraction of ions for a single macro-ion. This distribution can be related back to interaction parameters: KL parameters. Furthermore, we are able to see within the formalism where corrections due to the hard core radius of the ion enter. For the adjustment of the 'condensed' ions, we show an expression for the leading order contribution, as well as relevant decay lengths. As a demonstration of the theoretical 'machinery', as well as a study of qualitative effects, we calculate the KL parameters in one instance. We use a DNA-like surface charge distribution, where a fraction of the ions are assumed to be bound in the grooves at the surface of a DNA molecule, whereas the rest of the charge distribution is calculated self-consistently. Also, the electrostatic contribution to the counter-ion binding potentials that ions experience within the grooves can be calculated.
Collapse
Affiliation(s)
- D J Lee
- Max-Planck Institute für Physik Komplexer Systeme, Nöthnizter Strasse 38, Dresden D-01187, Germany.
| |
Collapse
|
26
|
Abstract
The recognition of homologous sequences of DNA before strand exchange is considered to be the most puzzling stage of homologous recombination. A mechanism for two homologous dsDNAs to recognize each other from a distance in electrolytic solution without unzipping had been proposed in an earlier paper [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 366 (2001)]. In that work, the difference in the electrostatic interaction energy between homologous duplexes and between nonhomologous duplexes, termed the recognition energy, has been calculated. That calculation was later extended in a series of papers to account for torsional elasticity of the molecules. A recent paper [A. A. Kornyshev and A. Wynveen, Proc. Natl. Acad. Sci. U.S.A. 106, 4683 (2009)] investigated the form of the potential well that homologous DNA molecules may feel when sliding along each other. A simple formula for the shape of the well was obtained. However, this latter study was performed under the approximation that the sliding molecules are torsionally rigid. Following on from this work, in the present article we investigate the effect of torsional flexibility of the molecules on the shape of the well. A variational approach to this problem results in a transcendental equation that is easily solved numerically. Its solutions show that at large interaxial separations the recognition well becomes wider and shallower, whereas at closer distances further unexpected features arise related to an abrupt change in the mean azimuthal alignment of the molecules. The energy surface as a function of interaxial separation and the axial shift defines what we call the recognition funnel. We show that it depends dramatically on the patterns of adsorption of counterions on DNA.
Collapse
Affiliation(s)
- Dominic Lee
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany.
| | | |
Collapse
|
27
|
Lee DJ, Wynveen A, Kornyshev AA, Leikin S. Undulations enhance the effect of helical structure on DNA interactions. J Phys Chem B 2010; 114:11668-80. [PMID: 20718454 PMCID: PMC2937169 DOI: 10.1021/jp104552u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the past decade, theory and experiments have provided clear evidence that specific helical patterns of charged groups and adsorbed (condensed) counterions on the DNA surface are responsible for many important features of DNA-DNA interactions in hydrated aggregates. The effects of helical structure on DNA-DNA interactions result from a preferential juxtaposition of the negatively charged sugar phosphate backbone with counterions bound within the grooves of the opposing molecule. Analysis of X-ray diffraction experiments confirmed the mutual alignment of parallel molecules in hydrated aggregates required for such juxtaposition. However, it remained unclear how this alignment and molecular interactions might be affected by intrinsic and thermal fluctuations, which cause structural deviations away from an ideal double helical conformation. We previously argued that the torsional flexibility of DNA allows the molecules to adapt their structure to accommodate a more electrostatically favorable alignment between molecules, partially compensating disruptive fluctuation effects. In the present work, we develop a more comprehensive theory, incorporating also stretching and bending fluctuations of DNA. We found the effects of stretching to be qualitatively and quantitatively similar to those of twisting fluctuations. However, this theory predicts more dramatic and surprising effects of bending. Undulations of DNA in hydrated aggregates strongly amplify rather than weaken the helical structure effects. They enhance the structural adaptation, leading to better alignment of neighboring molecules and pushing the geometry of the DNA backbone closer to that of an ideal helix. These predictions are supported by a quantitative comparison of the calculated and measured osmotic pressures in DNA.
Collapse
Affiliation(s)
- D. J. Lee
- To whom correspondence should be addressed. (D.J.L.) . (A.W.) . (A.A.K.) . (S.L.) Tel: 1-301-594-8314; FAX: 1-301-402-0292;
| | - A. Wynveen
- To whom correspondence should be addressed. (D.J.L.) . (A.W.) . (A.A.K.) . (S.L.) Tel: 1-301-594-8314; FAX: 1-301-402-0292;
| | - A. A Kornyshev
- To whom correspondence should be addressed. (D.J.L.) . (A.W.) . (A.A.K.) . (S.L.) Tel: 1-301-594-8314; FAX: 1-301-402-0292;
| | - S. Leikin
- To whom correspondence should be addressed. (D.J.L.) . (A.W.) . (A.A.K.) . (S.L.) Tel: 1-301-594-8314; FAX: 1-301-402-0292;
| |
Collapse
|
28
|
Cherstvy AG. DNA-DNA sequence homology recognition: physical mechanisms and open questions. J Mol Recognit 2010; 24:283-7. [DOI: 10.1002/jmr.1050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 11/11/2022]
|
29
|
Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, Tuffet S. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Res 2009; 38:1531-46. [PMID: 19969539 PMCID: PMC2836546 DOI: 10.1093/nar/gkp1060] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is currently wide interest in room temperature storage of dehydrated DNA. However, there is insufficient knowledge about its chemical and structural stability. Here, we show that solid-state DNA degradation is greatly affected by atmospheric water and oxygen at room temperature. In these conditions DNA can even be lost by aggregation. These are major concerns since laboratory plastic ware is not airtight. Chain-breaking rates measured between 70 degrees C and 140 degrees C seemed to follow Arrhenius' law. Extrapolation to 25 degrees C gave a degradation rate of about 1-40 cuts/10(5) nucleotides/century. However, these figures are to be taken as very tentative since they depend on the validity of the extrapolation and the positive or negative effect of contaminants, buffers or additives. Regarding the secondary structure, denaturation experiments showed that DNA secondary structure could be preserved or fully restored upon rehydration, except possibly for small fragments. Indeed, below about 500 bp, DNA fragments underwent a very slow evolution (almost suppressed in the presence of trehalose) which could end in an irreversible denaturation. Thus, this work validates using room temperature for storage of DNA if completely protected from water and oxygen.
Collapse
Affiliation(s)
- Jacques Bonnet
- Université de Bordeaux-plateforme Génomique Fonctionnelle, Institut Bergonié-INSERM U916 VINCO, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Using a parallel single molecule magnetic tweezers assay we demonstrate homologous pairing of two double-stranded (ds) DNA molecules in the absence of proteins, divalent metal ions, crowding agents, or free DNA ends. Pairing is accurate and rapid under physiological conditions of temperature and monovalent salt, even at DNA molecule concentrations orders of magnitude below those found in vivo, and in the presence of a large excess of nonspecific competitor DNA. Crowding agents further increase the reaction rate. Pairing is readily detected between regions of homology of 5 kb or more. Detected pairs are stable against thermal forces and shear forces up to 10 pN. These results strongly suggest that direct recognition of homology between chemically intact B-DNA molecules should be possible in vivo. The robustness of the observed signal raises the possibility that pairing might even be the "default" option, limited to desired situations by specific features. Protein-independent homologous pairing of intact dsDNA has been predicted theoretically, but further studies are needed to determine whether existing theories fit sequence length, temperature, and salt dependencies described here.
Collapse
|
31
|
Mamasakhlisov YS, Todd BA, Badasyan AV, Mkrtchyan AV, Morozov VF, Parsegian VA. DNA stretching and multivalent-cation-induced condensation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031915. [PMID: 19905154 DOI: 10.1103/physreve.80.031915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/28/2009] [Indexed: 05/28/2023]
Abstract
Motivated by measurements on stretched double-stranded DNA in the presence of multivalent cations, we develop a statistical mechanical model for the compaction of an insoluble semiflexible polymer under tension. Using a mean-field approach, we determine the order of the extended-to-compact transition and provide an interpretation for the magnitude and interval of tensions over which compaction takes place. In the simplest thermodynamic limit of an infinitely long homogeneous polymer, compaction is a first-order transition that occurs at a single value of tension. For finite length chains or for heterogeneous polymers, the transition progresses over an interval of tension. Our theory provides an interpretation for the result of single-molecule experiments in terms of microscopic parameters such as persistence length and free energy of condensation.
Collapse
Affiliation(s)
- Yevgeni Sh Mamasakhlisov
- Department of Molecular Physics, Yerevan State University, 1 Al Manougian Str, Yerevan 375025, Armenia
| | | | | | | | | | | |
Collapse
|
32
|
Lee DJ. Correlation effects, image charge effects and finite size in the macro-ion-electrolyte system: a field-theoretic approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 28:419-440. [PMID: 19408022 DOI: 10.1140/epje/i2008-10436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/20/2008] [Accepted: 01/29/2009] [Indexed: 05/27/2023]
Abstract
We consider a model of a macro-ion surrounded by small ions of an electrolyte solution. The finite size of ionic charge distributions of ions, and image charge effects are considered. From such a model it is possible to construct a statistical field theory with a single fluctuating field and derive physical interpretations for both the mean field and two-point correlation function. For point-like charges, at the level of a Gaussian (or saddle point) approximation, we recover the standard Poisson-Boltzmann equation. However, to include ionic correlation effects, as well as image charge effects of individual ions, we must go beyond this. From the field theory considered, it is possible to construct self-consistent approximations. We consider the simplest of these, namely the Hartree approximation. The Hartree equations take the form of two coupled equations. One is a modified Poisson-Boltzmann equation; the other describes both image charge effects on the individual ions, as well as correlations. Such equations are difficult to solve numerically, so we develop an (a WKB-like) approximation for obtaining approximate solutions. This, we apply to a uniformly charged rod in univalent electrolyte solution, for point like ions, as well as for extended spherically symmetric distributions of ionic charge on electrolyte ions. The solutions show how correlation effects and image charge effects modify the Poisson-Boltzmann result. Finite-size charge distributions of the ions reduce both the effects of correlations and image charge effects. For point charges, we test the WKB approximation by calculating a leading-order correction from the exact Hartree result, showing that the WKB-like approximation works reasonably well in describing the full solution to the Hartree equations. From these solutions, we also calculate an effective charge compensation parameter in an analytical formula for the interaction of two charged cylinders.
Collapse
Affiliation(s)
- D J Lee
- Max-Planck Institut für Physik Komplexer Systeme, Nöthnizer Str. 38, D-01187, Dresden, Germany.
| |
Collapse
|
33
|
Cherstvy AG. Probing DNA−DNA Electrostatic Friction in Tight Superhelical DNA Plies. J Phys Chem B 2009; 113:5350-5. [DOI: 10.1021/jp810473m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. G. Cherstvy
- Institute of Solid State Research, IFF, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
34
|
The homology recognition well as an innate property of DNA structure. Proc Natl Acad Sci U S A 2009; 106:4683-8. [PMID: 19273848 DOI: 10.1073/pnas.0811208106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutual recognition of homologous sequences of DNA before strand exchange is considered to be the most puzzling stage of recombination of genes. In 2001, a mechanism was suggested for a double-stranded DNA molecule to recognize from a distance its homologous match in electrolytic solution without unzipping [Kornyshev AA, Leikin S (2001) Phys Rev Lett 86:3666-3669]. Based on a theory of electrostatic interactions between helical molecules, the difference in the electrostatic interaction energy between homologous duplexes and between nonhomologous duplexes, called the recognition energy, was calculated. Here, we report a theoretical investigation of the form of the potential well that DNA molecules may feel sliding along each other. This well, the bottom of which is determined by the recognition energy, leads to trapping of the molecular tracks of the same homology in direct juxtaposition. A simple formula for the shape of the well is obtained. The well is quasi-exponential. Its half-width is determined by the helical coherence length, introduced first in the same 2001 article, the value of which, as the latest study shows, is approximately 10 nm.
Collapse
|
35
|
Wynveen A, Lee DJ, Kornyshev AA, Leikin S. Helical coherence of DNA in crystals and solution. Nucleic Acids Res 2008; 36:5540-51. [PMID: 18755709 PMCID: PMC2553576 DOI: 10.1093/nar/gkn514] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/25/2008] [Accepted: 07/28/2008] [Indexed: 11/15/2022] Open
Abstract
The twist, rise, slide, shift, tilt and roll between adjoining base pairs in DNA depend on the identity of the bases. The resulting dependence of the double helix conformation on the nucleotide sequence is important for DNA recognition by proteins, packaging and maintenance of genetic material, and other interactions involving DNA. This dependence, however, is obscured by poorly understood variations in the stacking geometry of the same adjoining base pairs within different sequence contexts. In this article, we approach the problem of sequence-dependent DNA conformation by statistical analysis of X-ray and NMR structures of DNA oligomers. We evaluate the corresponding helical coherence length--a cumulative parameter quantifying sequence-dependent deviations from the ideal double helix geometry. We find, e.g. that the solution structure of synthetic oligomers is characterized by 100-200 A coherence length, which is similar to approximately 150 A coherence length of natural, salmon-sperm DNA. Packing of oligomers in crystals dramatically alters their helical coherence. The coherence length increases to 800-1200 A, consistent with its theoretically predicted role in interactions between DNA at close separations.
Collapse
Affiliation(s)
- Aaron Wynveen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, UK, Max-Planck-Institut für Physik Komplexer Systeme, Nöthnizer Straße 38, D-01187 Dresden, Germany and Section of Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Dominic J. Lee
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, UK, Max-Planck-Institut für Physik Komplexer Systeme, Nöthnizer Straße 38, D-01187 Dresden, Germany and Section of Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Alexei A. Kornyshev
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, UK, Max-Planck-Institut für Physik Komplexer Systeme, Nöthnizer Straße 38, D-01187 Dresden, Germany and Section of Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Sergey Leikin
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London, UK, Max-Planck-Institut für Physik Komplexer Systeme, Nöthnizer Straße 38, D-01187 Dresden, Germany and Section of Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Falaschi A. Similia similibus: pairing of homologous chromosomes driven by the physicochemical properties of DNA. HFSP JOURNAL 2008; 2:257-61. [PMID: 19404436 DOI: 10.2976/1.2980374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Indexed: 11/19/2022]
Abstract
Genetic recombination in eukaryotes requires the pairing of homologous chromosomes to allow precise molecular exchanges between chromosome pairs at intertwined structures called Holliday junctions, the formation of which requires the action of the RecA protein. The mechanism behind the precise pairing of structures as long as chromosomes remains mysterious. In yeast, during the initial phases of meiosis, chromosomes are paired at approximately 65 kilobase intervals via paranemic interactions that do not involve strand breakage nor the intervention of analogs of the RecA protein. It has been proposed that these paranemic interactions could occur between G-rich chromosomal regions, but putting in register stretches of homologous sequences hundreds of kb long remains challenging. Recent developments on the theory of the physicochemical properties of DNA in aqueous solutions, in presence of di- or multivalent counterions, leads to the prediction that molecules with the same sequence tend to pair spontaneously by paranemic interactions depending on the electrostatic properties of DNA. Experimental support for this prediction has now been provided in vitro with naked DNA. This newly discovered property of DNA duplexes may thus provide a clue to solve the puzzle of the premeiotic pairing.
Collapse
Affiliation(s)
- Arturo Falaschi
- Scuola Normale Superiore, Piazza dei Cavalieri 6, I-56126, Pisa, Italy, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012, Trieste, Italy, and Istituto di Fisiologia Clinica, CNR, Via G. Moruzzi 1, I-56124, Pisa, Italy
| |
Collapse
|
37
|
Cherstvy AG. DNA cholesteric phases: the role of DNA molecular chirality and DNA-DNA electrostatic interactions. J Phys Chem B 2008; 112:12585-95. [PMID: 18785770 DOI: 10.1021/jp801220p] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA molecules form dense liquid-crystalline twisted phases both in vivo and in vitro. How the microscopic DNA chirality is transferred into intermolecular twist in these mesophases and what is the role of chiral DNA-DNA electrostatic interactions is still not completely clear. In this paper, we first give an extended overview of experimental observations on DNA cholesteric phases and discuss the factors affecting their stability. Then, we consider the effects of steric and electrostatic interactions of grooved helical molecules on the sign of cholesteric twist. We present some theoretical results on the strength of DNA-DNA chiral electrostatic interactions, on DNA-DNA azimuthal correlations in cholesteric phases, on the value of DNA cholesteric pitch, and on the regions of existence of DNA chiral phases stabilized by electrostatic interactions. We suggest for instance that 146 bp long DNA fragments with stronger affinities for the nucleosome formation can form less chiral cholesteric phases, with a larger left-handed cholesteric pitch. Also, the value of left-handed pitch formed in assemblies of homologous DNA fragments is predicted to be smaller than that of randomly sequenced DNAs. We expect also the cholesteric assemblies of several-kbp-long DNAs to require higher external osmotic pressures for their stability than twisted phases of short nucleosomal DNA fragments at the same DNA lattice density.
Collapse
Affiliation(s)
- A G Cherstvy
- Institut für Festköperforschung, Theorie-II, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
38
|
Cherstvy AG, Kolomeisky AB, Kornyshev AA. Protein−DNA Interactions: Reaching and Recognizing the Targets. J Phys Chem B 2008; 112:4741-50. [DOI: 10.1021/jp076432e] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. G. Cherstvy
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany, Department of Chemistry, Rice University, Houston, Texas 77005, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, U.K., and Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - A. B. Kolomeisky
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany, Department of Chemistry, Rice University, Houston, Texas 77005, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, U.K., and Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - A. A. Kornyshev
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany, Department of Chemistry, Rice University, Houston, Texas 77005, Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ, London, U.K., and Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
39
|
Baldwin GS, Brooks NJ, Robson RE, Wynveen A, Goldar A, Leikin S, Seddon JM, Kornyshev AA. DNA double helices recognize mutual sequence homology in a protein free environment. J Phys Chem B 2008; 112:1060-4. [PMID: 18181611 DOI: 10.1021/jp7112297] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and biological function of the DNA double helix are based on interactions recognizing sequence complementarity between two single strands of DNA. A single DNA strand can also recognize the double helix sequence by binding in its groove and forming a triplex. We now find that sequence recognition occurs between intact DNA duplexes without any single-stranded elements as well. We have imaged a mixture of two fluorescently tagged, double helical DNA molecules that have identical nucleotide composition and length (50% GC; 294 base pairs) but different sequences. In electrolytic solution at minor osmotic stress, these DNAs form discrete liquid-crystalline aggregates (spherulites). We have observed spontaneous segregation of the two kinds of DNA within each spherulite, which reveals that nucleotide sequence recognition occurs between double helices separated by water in the absence of proteins, consistent with our earlier theoretical hypothesis. We thus report experimental evidence and discuss possible mechanisms for the recognition of homologous DNAs from a distance.
Collapse
Affiliation(s)
- Geoff S Baldwin
- Division of Molecular Biosciences, Department of Chemistry, Imperial College London, SW7 2AZ London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cherstvy AG. Effect of a Low-Dielectric Interior on DNA Electrostatic Response to Twisting and Bending. J Phys Chem B 2007; 111:12933-7. [PMID: 17941661 DOI: 10.1021/jp074166z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A. G. Cherstvy
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany, and Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
41
|
Abstract
How does DNA melt in columnar aggregate relative to its melting in diluted solution? Is the melting temperature increased or decreased with the aggregate density? Have DNA-DNA interactions, predominantly of electrostatic nature, an effect on the character of the melting transition? In attempt to answer these questions, we have incorporated the theory of electrostatic interactions between DNA duplexes into the simplest model of DNA melting. The analysis shows that the effect of aggregate density is very different for aggregates built of homologous (or identical) DNA fragments relative to the case of DNA with random base pair sequences. The putative attraction between homologous DNA helices hampers their melting and increases the melting temperature and can even dramatically change the character of the transition. In the aggregate of nonhomologous DNAs, the pattern of electrostatic interactions is more complicated, and their effect could be opposite; in some cases we may even expect electrostatically induced melting. These findings define new directions for melting experiments in dense DNA assemblies.
Collapse
Affiliation(s)
- A G Cherstvy
- Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | |
Collapse
|
42
|
Abstract
We present the exact solutions of the linear Poisson-Boltzmann equation for several problems relevant to electrostatics of DNA complexes with cationic lipids. We calculate the electrostatic potential and electrostatic energy for lamellar and inverted hexagonal phases, concentrating on the effects of dielectric boundaries. We compare our results for the complex energy with the known results of numerical solution of the nonlinear Poisson-Boltzmann equation. Using the solution for the lamellar phase, we calculate the compressibility modulus and compare our findings with the experimental data available. Also, we treat charge-charge interactions across, along, and between two low-dielectric membranes. We obtain an estimate for the strength of electrostatic interactions of one-dimensional DNA smectic layers across the lipid membrane. We discuss in the end some aspects of two-dimensional DNA condensation and DNA-DNA attraction in the DNA-lipid lamellar phase in the presence of di- and trivalent cations. We analyze the equilibrium DNA-DNA separations in lamellar complexes using the recently developed theory of electrostatic interactions of DNA helical charge motifs.
Collapse
Affiliation(s)
- A G Cherstvy
- Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
| |
Collapse
|
43
|
Mao Y, Chang S, Yang S, Ouyang Q, Jiang L. Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. NATURE NANOTECHNOLOGY 2007; 2:366-371. [PMID: 18654309 DOI: 10.1038/nnano.2007.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 04/27/2007] [Indexed: 05/26/2023]
Abstract
Biological nanochannels made from proteins play a central role in cellular signalling. The rapid emergence of DNA nanotechnology in recent years has opened up the possibility of making similar nanochannels from DNA. Building on previous work on switchable DNA nanocompartment, we have constructed complex DNA nanosystems to investigate the gating behaviour of these nanochannels. Here we show that DNA nanochannels can be gated by stress exerted by permeating solute particles at non-equilibrium states due to the high flexibility of the nanochannels. This novel gating mechanism results in tunable ratchet-like transport of solute particles through the nanochannels. A simple model that couples non-equilibrium channel gating with transport flux can quantitatively explain a number of the phenomena we observe. With only one set of model parameters, we can reproduce diverse gating behaviours, modulated by an inherent gating threshold. This work could lead to the development of new devices based on DNA nanochannels.
Collapse
|
44
|
Winkler RG, Cherstvy AG. Adsorption of Weakly Charged Polyelectrolytes onto Oppositely Charged Spherical Colloids. J Phys Chem B 2007; 111:8486-93. [PMID: 17487996 DOI: 10.1021/jp068489r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adsorption of a long weakly charged flexible polyelectrolyte in a salt solution onto an oppositely charged spherical surface is investigated. An analytical solution for Green's function is derived, which is valid for any sphere radius and consistently recovers the result of a planar surface in the limit of large sphere radii, by substituting the Debye-Hückel potential via the Hulthén potential. Expressions for critical quantities like the critical radius and the critical surface charge density are provided. In particular, we find a universal critical line for the sphere radius as a function of the screening length separating adsorbed from desorbed states. Moreover, results for the monomer density distribution, adsorbed layer thickness, and the radius of gyration are presented. A comparison of our theoretical results with experiments and computer simulations yields remarkably good agreement.
Collapse
Affiliation(s)
- Roland G Winkler
- Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
45
|
|
46
|
Cherstvy AG, Winkler RG. Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres. J Chem Phys 2006; 125:64904. [PMID: 16942309 DOI: 10.1063/1.2229205] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthen potential, which is used as an approximation for the screened Debye-Huckel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.
Collapse
Affiliation(s)
- A G Cherstvy
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzerstrasse 38, D-01187 Dresden, Germany.
| | | |
Collapse
|
47
|
Odenheimer J, Kreth G, Heermann DW. Dynamic simulation of active/inactive chromatin domains. J Biol Phys 2005; 31:351-63. [PMID: 23345903 PMCID: PMC3456343 DOI: 10.1007/s10867-005-7286-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA-DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8-20 attractive segments per 1 Mbp domain produces rosettes of 300-800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.
Collapse
Affiliation(s)
- Jens Odenheimer
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
| | - Gregor Kreth
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| | - Dieter W. Heermann
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
| |
Collapse
|
48
|
Kornyshev AA, Lee DJ, Leikin S, Wynveen A, Zimmerman SB. Direct observation of azimuthal correlations between DNA in hydrated aggregates. PHYSICAL REVIEW LETTERS 2005; 95:148102. [PMID: 16241694 DOI: 10.1103/physrevlett.95.148102] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 05/05/2023]
Abstract
This study revisits the classical x-ray diffraction patterns from hydrated, noncrystalline fibers originally used to establish the helical structure of DNA. We argue that changes in these diffraction patterns with DNA packing density reveal strong azimuthally dependent interactions between adjacent molecules up to approximately 40 A interaxial or approximately 20 A surface-to-surface separations. These interactions appear to force significant torsional "straightening" of DNA and strong azimuthal alignment of nearest neighbor molecules. The results are in good agreement with the predictions of recent theoretical models relating DNA-DNA interactions to the helical symmetry of their surface charge patterns.
Collapse
Affiliation(s)
- Alexei A Kornyshev
- Department of Chemistry, Imperial College London, SW7 2AZ London, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Wynveen A, Lee DJ, Kornyshev AA. Statistical mechanics of columnar DNA assemblies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2005; 16:303-318. [PMID: 15696271 DOI: 10.1140/epje/i2004-10087-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 01/06/2005] [Indexed: 05/24/2023]
Abstract
Many physical systems can be mapped onto solved or "solvable" models of magnetism. In this work, we have mapped the statistical mechanics of columnar phases of ideally helical rigid DNA--subject to the earlier found unusual, frustrated pair potential (A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997))--onto an exotic, unknown variant of the XY model on a fixed or restructurable lattice. Here, the role of the "spin" is played by the azimuthal orientation of the molecules. We have solved this model using a Hartree-Fock approximation, ground-state calculations, and finite-temperature Monte Carlo simulations. We have found peculiar spin order transitions, which may also be accompanied by positional restructuring, from hexagonal to rhombohedric lattices. Some of these have been experimentally observed in dense columnar aggregates. Note that DNA columnar phases are of great interest in biophysical research, not only because they are a useful in vitro tool for the study of DNA condensation, but also since these structures have been detected in living matter. Within the approximations made, our study provides insight into the statistical mechanics of these systems.
Collapse
Affiliation(s)
- A Wynveen
- Department of Chemistry, Imperial College London, SW7 2AZ London, UK.
| | | | | |
Collapse
|