1
|
Khanifaev J, Schrader T, Perlt E. The effect of machine learning predicted anharmonic frequencies on thermodynamic properties of fluid hydrogen fluoride. J Chem Phys 2024; 160:124302. [PMID: 38516969 DOI: 10.1063/5.0195386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Anharmonic effects play a crucial role in determining thermochemical properties of liquids and gases. For such extended phases, the inclusion of anharmonicity in reliable electronic structure methods is computationally extremely demanding, and hence, anharmonic effects are often lacking in thermochemical calculations. In this study, we apply the quantum cluster equilibrium method to transfer density functional theory calculations at the cluster level to the macroscopic, liquid, and gaseous phase of hydrogen fluoride. This allows us to include anharmonicity, either via vibrational self-consistent field calculations for smaller clusters or using a regression model for larger clusters. We obtain the structural composition of the fluid phases in terms of the population of different clusters as well as isobaric heat capacities as an example for thermodynamic properties. We study the role of anharmonicities for these analyses and observe that, in particular, the dominating structural motifs are rather sensitive to the anharmonicity in vibrational frequencies. The regression model proves to be a promising way to get access to anharmonic features, and the extension to more sophisticated machine-learning models is promising.
Collapse
Affiliation(s)
- Jamoliddin Khanifaev
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tim Schrader
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Markutsya S, Haley A, Gordon MS. Coarse-Grained Water Model Development for Accurate Dynamics and Structure Prediction. ACS OMEGA 2022; 7:25898-25904. [PMID: 35910114 PMCID: PMC9330847 DOI: 10.1021/acsomega.2c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Several coarse-graining (CG) methods have been combined to develop a CG model of water capable of the accurate prediction of structure and dynamics properties. The multiscale coarse-graining (MS-CG) method based on force matching and the PDF-based coarse-graining method were used for accurate dynamics prediction. The iterative Boltzmann inversion (IBI) method was added for accurate structure representation. The approach is applied to bulk water, and the results show close reproduction of the CG structure when compared with the reference atomistic data. The combination of MS-CG and IBI methods facilitates the development of CG force fields at different temperatures based on a single MS-CG coarse-graining procedure. The dynamic properties of the CG water model closely match those obtained from the reference atomistic system. The general application of this approach to any existing coarse-graining methods is discussed.
Collapse
Affiliation(s)
- Sergiy Markutsya
- Department
of Mechanical Engineering, University of
Kentucky, Paducah, Kentucky 42001, United States
| | - Austin Haley
- Department
of Mechanical Engineering, University of
Kentucky, Paducah, Kentucky 42001, United States
| | - Mark S. Gordon
- Department
of Chemistry and Ames Laboratory, Iowa State
University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Stoffel TD, Haskins JB, Lawson JW, Markutsya S. Coarse-Grained Dynamically Accurate Simulations of Ionic Liquids: [pyr14][TFSI] and [EMIM][BF 4]. J Phys Chem B 2022; 126:1819-1829. [PMID: 35171594 DOI: 10.1021/acs.jpcb.1c08107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, coarse-grained (CG) models for two different sets of ionic liquids were developed from atomistic molecular dynamics (MD) reference systems, expanding their system size and time duration capabilities. The bonded force field of the CG systems was built using harmonic oscillator potential (HOP) fitting, while the nonbonded force field was generated with the multiscale coarse-graining (MS-CG) approach based on force matching. The dynamics of each system were corrected using the probability distribution function-based coarse-grained molecular dynamics (PDF-based CGMD) method. The structure and dynamics of each system were proven to match reference system data at two temperature scales. CG models and force fields for these liquids were developed to exemplify a general purpose methodology for producing MD results of ionic liquids and other fluids with accurate structural as well as dynamic properties. As an application, developed ionic liquids CG models were then applied to study vacuum-interface interaction. Density profile results of vacuum-interface exposure show significant deviation from bulk behavior. At the interface, multilayer ordering of ionic liquids is predicted to be similar to those observed from an experimental work. This ordering is intensified by decreasing temperature and use of the PDF-based CGMD method as opposed to conventional CG methods.
Collapse
Affiliation(s)
- Tyler D Stoffel
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Justin B Haskins
- Thermal Protections Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - John W Lawson
- Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Sergiy Markutsya
- Department of Mechanical Engineering, University of Kentucky, Paducah, Kentucky 42001, United States
| |
Collapse
|
4
|
Mattsson S, Paulus B. First principle calculations including ab initio molecular dynamics studies for the activation of hydrogen fluoride on Ni(111). Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Saito K, Torii H. Hidden Halogen-Bonding Ability of Fluorine Manifesting in the Hydrogen-Bond Configurations of Hydrogen Fluoride. J Phys Chem B 2021; 125:11742-11750. [PMID: 34662140 DOI: 10.1021/acs.jpcb.1c07211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elucidating how the intermolecular interactions of a covalently bonded fluorine atom are similar to and different from those of the other halogen atoms will be helpful for a better unified understanding of them. In the present study, the case of hydrogen fluoride is theoretically studied from this viewpoint by using the techniques of electron density analysis, molecular dynamics of liquid, and others. It is shown that the extra-point model, which locates an additional charge site on the line extended from (not within) the covalent bond and has been adopted for halogen-bonding systems as a key to the generation of proper stability and directionality, works well also in this case. A significantly bent hydrogen-bond configuration, which is characteristic of the intermolecular interactions of hydrogen fluoride, is reasonably well reproduced, meaning that it is a manifestation of the latent halogen-bonding ability, which is hidden by the strongly electronegative nature.
Collapse
|
6
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Orabi EA, Faraldo-Gómez JD. New Molecular-Mechanics Model for Simulations of Hydrogen Fluoride in Chemistry and Biology. J Chem Theory Comput 2020; 16:5105-5126. [PMID: 32615034 DOI: 10.1021/acs.jctc.0c00247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen fluoride (HF) is the most polar diatomic molecule and one of the simplest molecules capable of hydrogen-bonding. HF deviates from ideality both in the gas phase and in solution and is thus of great interest from a fundamental standpoint. Pure and aqueous HF solutions are broadly used in chemical and industrial processes, despite their high toxicity. HF is a stable species also in some biological conditions, because it does not readily dissociate in water unlike other hydrogen halides; yet, little is known about how HF interacts with biomolecules. Here, we set out to develop a molecular-mechanics model to enable computer simulations of HF in chemical and biological applications. This model is based on a comprehensive high-level ab initio quantum chemical investigation of the structure and energetics of the HF monomer and dimer; (HF)n clusters, for n = 3-7; various clusters of HF and H2O; and complexes of HF with analogs of all 20 amino acids and of several commonly occurring lipids, both neutral and ionized. This systematic analysis explains the unique properties of this molecule: for example, that interacting HF molecules favor nonlinear geometries despite being diatomic and that HF is a strong H-bond donor but a poor acceptor. The ab initio data also enables us to calibrate a three-site molecular-mechanics model, with which we investigate the structure and thermodynamic properties of gaseous, liquid, and supercritical HF in a wide range of temperatures and pressures; the solvation structure of HF in water and of H2O in liquid HF; and the free diffusion of HF across a lipid bilayer, a key process underlying the high cytotoxicity of HF. Despite its inherent simplifications, the model presented significantly improves upon previous efforts to capture the properties of pure and aqueous HF fluids by molecular-mechanics methods and to our knowledge constitutes the first parameter set calibrated for biomolecular simulations.
Collapse
Affiliation(s)
- Esam A Orabi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| |
Collapse
|
8
|
Wan M, Song J, Li W, Gao L, Fang W. Development of Coarse‐Grained Force Field by Combining Multilinear Interpolation Technique and Simplex Algorithm. J Comput Chem 2019; 41:814-829. [DOI: 10.1002/jcc.26131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mingwei Wan
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Junjie Song
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Wenli Li
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational PhotochemistryMinistry of Education, College of Chemistry, Beijing Normal University 19 Xin‐Jie‐Kou‐Wai Street Beijing 100875 China
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Reinholdt P, Wind S, Wüstner D, Kongsted J. Computational Characterization of a Cholesterol-Based Molecular Rotor in Lipid Membranes. J Phys Chem B 2019; 123:7313-7326. [PMID: 31381343 DOI: 10.1021/acs.jpcb.9b04967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biophysical properties of cellular membranes critically depend on their content of cholesterol and its interaction with various other lipid species. Cholesterol-dependent friction at the nanoscale can be studied with molecular rotors, whose quantum yield depends on rotational dynamics of functional groups during their excited state lifetime. Here, we present a detailed computational analysis of a phenyl-BODIPY-linked cholesterol based molecular rotor in direct comparison with the well-known TopFluor-cholesterol. We describe a new parametrization strategy of force field parameters for the BODIPY moiety and carry out extensive molecular dynamics simulations of the probe in membranes in the absence or presence of cholesterol. Our study quantifies the extent of membrane perturbation by these probes, analyzes their tilting resistance in the bilayer and derives dynamic properties directly related to the rotor propensity. We show that phenyl-BODIPY-cholesterol bears potential as a cholesterol-dependent molecular rotor to report about microviscosity of sterol-containing model and cell membranes.
Collapse
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Signe Wind
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , Campusvej 55 , DK-5230 Odense M , Denmark
| |
Collapse
|
10
|
Fedkin MV, Shin YK, Dasgupta N, Yeon J, Zhang W, van Duin D, van Duin ACT, Mori K, Fujiwara A, Machida M, Nakamura H, Okumura M. Development of the ReaxFF Methodology for Electrolyte-Water Systems. J Phys Chem A 2019; 123:2125-2141. [PMID: 30775922 DOI: 10.1021/acs.jpca.8b10453] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new ReaxFF reactive force field has been developed for water-electrolyte systems including cations Li+, Na+, K+, and Cs+ and anions F-, Cl-, and I-. The reactive force field parameters have been trained against quantum mechanical (QM) calculations related to water binding energies, hydration energies and energies of proton transfer. The new force field has been validated by applying it to molecular dynamics (MD) simulations of the ionization of different electrolytes in water and comparison of the results with experimental observations and thermodynamics. Radial distribution functions (RDF) determined for most of the atom pairs (cation or anion with oxygen and hydrogen of water) show a good agreement with the RDF values obtained from DFT calculations. On the basis of the applied force field, the ReaxFF simulations have described the diffusion constants for water and electrolyte ions in alkali metal hydroxide and chloride salt solutions as a function of composition and electrolyte concentration. The obtained results open opportunities to advance ReaxFF methodology to a wide range of applications involving electrolyte ions and solutions.
Collapse
Affiliation(s)
- Mark V Fedkin
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Yun Kyung Shin
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Nabankur Dasgupta
- Department of Engineering Science and Mechanics , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jejoon Yeon
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Center for Composite Materials , University of Delaware , Newark , Delaware 19716 , United States
| | - Weiwei Zhang
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Diana van Duin
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Adri C T van Duin
- Department of Mechanical and Nuclear Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | | | - Atsushi Fujiwara
- Materials Science Department , MOLSIS Inc. , 3-19-9, Hatchobori , Chuo-ku, Tokyo 104-0032 , Japan
| | | | | | - Masahiko Okumura
- Center for Computational Science & e-Systems , Japan Atomic Energy Agency , 178-4-4 Wakashiba , Kashiwa , Chiba 277-0871 , Japan
| |
Collapse
|
11
|
Kreis K, Kremer K, Potestio R, Tuckerman ME. From classical to quantum and back: Hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics. J Chem Phys 2018; 147:244104. [PMID: 29289131 DOI: 10.1063/1.5000701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Collapse
Affiliation(s)
- Karsten Kreis
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Mark E Tuckerman
- Department of Chemistry, New York University (NYU), New York, New York 10003, USA
| |
Collapse
|
12
|
Izvekov S, Weingarten NS, Byrd EFC. Effect of a core-softened O–O interatomic interaction on the shock compression of fused silica. J Chem Phys 2018. [DOI: 10.1063/1.5017586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - N. Scott Weingarten
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| | - Edward F. C. Byrd
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, USA
| |
Collapse
|
13
|
Lindsey RK, Fried LE, Goldman N. ChIMES: A Force Matched Potential with Explicit Three-Body Interactions for Molten Carbon. J Chem Theory Comput 2017; 13:6222-6229. [DOI: 10.1021/acs.jctc.7b00867] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca K. Lindsey
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Laurence E. Fried
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Physical and Life Sciences
Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
14
|
Parameterization of Coarse-Grained Molecular Interactions through Potential of Mean Force Calculations and Cluster Expansion Techniques. ENTROPY 2017. [DOI: 10.3390/e19080395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Sun L, Deng WQ. Recent developments of first-principles force fields. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| | - Wei-Qiao Deng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian China
| |
Collapse
|
16
|
Kreis K, Potestio R. The relative entropy is fundamental to adaptive resolution simulations. J Chem Phys 2016; 145:044104. [DOI: 10.1063/1.4959169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Karsten Kreis
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
17
|
Izvekov S, Rice BM. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies. J Chem Phys 2015; 143:244506. [DOI: 10.1063/1.4937394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| | - Betsy M. Rice
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
18
|
Izvekov S, Violi A. A Coarse-Grained Molecular Dynamics Study of Carbon Nanoparticle Aggregation. J Chem Theory Comput 2015; 2:504-12. [PMID: 26626661 DOI: 10.1021/ct060030d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A multiscale coarse-graining procedure is used to study carbonaceous nanoparticle assembly. The computational methodology is applied to an ensemble of 10 000 nanoparticles (or effectively 2 million total carbon atoms) to simulate the agglomeration of carbonaceous nanoparticles using coarse-grained atomistic-scale information. In particular, with the coarse-graining approach, we are able to assess the influence of nanoparticle morphology and temperature on the agglomeration process. The coarse-graining of the interparticle force field is accomplished applying a force-matching procedure to data obtained from trajectories and forces from all-atom molecular dynamics simulation. The coarse-grained molecular dynamics results show rich and varied clustering behaviors for different particle morphologies. They are shown to reproduce accurately the structural properties of the nanoparticles systems studied, while allowing for molecular dynamics simulations of much larger self-assembled nanoparticles systems.
Collapse
Affiliation(s)
- Sergei Izvekov
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Angela Violi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Izvekov S, Voth GA. Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. J Chem Theory Comput 2015; 2:637-48. [PMID: 26626671 DOI: 10.1021/ct050300c] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coarse-grained (CG) models for mixed dimyristoylphosphatidylcholine (DMPC)/cholesterol lipid bilayers are constructed using the recently developed multiscale coarse-graining (MS-CG) method. The MS-CG method permits a systematic fit of the bonded and nonbonded interactions and system pressure to trajectory and force data derived from an underlying reference all-atom molecular dynamics (MD) simulation. The CG sites for lipid and cholesterol molecules are associated with the centers-of-mass of atomic groups because of the simplicity in the evaluation of the forces acting on them from the atomistic MD data. Corresponding models with four-site and seven-site representations of the cholesterol molecule were also developed. The latter CG models differed by the bonding scheme of CG sites to represent intramolecular interactions. A one-site MS-CG model based on the TIP3P potential was used for water, with the interaction site placed at the molecular geometrical center, and the analytical fit of the model is presented. The MS-CG models were then used to conduct simulations in the constant NPT ensemble which reproduce accurately the structural properties as seen in the full all-atom MD simulation.
Collapse
Affiliation(s)
- Sergei Izvekov
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112-0850
| | - Gregory A Voth
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112-0850
| |
Collapse
|
20
|
Chen H, Liu P, Voth GA. Efficient Multistate Reactive Molecular Dynamics Approach Based on Short-Range Effective Potentials. J Chem Theory Comput 2015; 6:3039-47. [PMID: 26616768 DOI: 10.1021/ct100318f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nonbonded interactions between molecules usually include the van der Waals force and computationally expensive long-range electrostatic interactions. This article develops a more efficient approach: the effective-interaction multistate empirical-valence-bond (EI-MS-EVB) model. The EI-MS-EVB method relies on a mapping of all interactions onto a short-range and thus, computationally efficient effective potential. The effective potential is tabulated by matching its force to known trajectories obtained from the full-potential empirical multistate empirical-valence-bond (MS-EVB) model. The effective pairwise interaction depends on and is uniquely determined by the atomic configuration of the system, varying only with respect to the hydrogen-bonding topology. By comparing the EI-MS-EVB and full MS-EVB calculations of several equilibrium and dynamic properties important to hydrated excess proton solvation and transport, we show that the EI-MS-EVB model produces very accurate results for the specific system in which the tabulated potentials were generated. The EI-MS-EVB potential also transfers reasonably well to similar systems with different temperatures and box sizes. The EI-MS-EVB method also reduces the computational cost of the nonbonded interactions by about 1 order of magnitude in comparison with the full algorithm.
Collapse
Affiliation(s)
- Hanning Chen
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| | - Pu Liu
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| |
Collapse
|
21
|
Kalligiannaki E, Harmandaris V, Katsoulakis MA, Plecháč P. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems. J Chem Phys 2015; 143:084105. [DOI: 10.1063/1.4928857] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Evangelia Kalligiannaki
- Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion, Greece
| | - Markos A. Katsoulakis
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Petr Plecháč
- Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
22
|
Mazack MJM, Gao J. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization. J Chem Phys 2015; 140:204501. [PMID: 24880295 DOI: 10.1063/1.4875922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.
Collapse
Affiliation(s)
- Michael J M Mazack
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431, USA
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
23
|
Do H, Troisi A. Developing accurate molecular mechanics force fields for conjugated molecular systems. Phys Chem Chem Phys 2015; 17:25123-32. [DOI: 10.1039/c5cp04328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A rapid method to parameterize the intramolecular component of classical force fields is proposed and applied to a molecular semiconductor, oligomers of conjugated polymers and a biological chromophore.
Collapse
Affiliation(s)
- Hainam Do
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Alessandro Troisi
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry CV4 7AL
- UK
| |
Collapse
|
24
|
Markutsya S, Lamm MH. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions. J Chem Phys 2014; 141:174107. [DOI: 10.1063/1.4898625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Monica H. Lamm
- Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
25
|
|
26
|
Doemer M, Maurer P, Campomanes P, Tavernelli I, Rothlisberger U. Generalized QM/MM Force Matching Approach Applied to the 11-cis Protonated Schiff Base Chromophore of Rhodopsin. J Chem Theory Comput 2013; 10:412-22. [PMID: 26579920 DOI: 10.1021/ct400697n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We extended a previously developed force matching approach to systems with covalent QM/MM boundaries and describe its user-friendly implementation in the publicly available software package CPMD. We applied this approach to the challenging case of the retinal protonated Schiff base in dark state bovine rhodopsin. We were able to develop a highly accurate force field that is able to capture subtle structural changes within the chromophore that have a pronounced influence on the optical properties. The optical absorption spectrum calculated from configurations extracted from a MD trajectory using the new force field is in excellent agreement with QM/MM and experimental references.
Collapse
Affiliation(s)
- Manuel Doemer
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Patrick Maurer
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Pablo Campomanes
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Ivano Tavernelli
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| | - Ursula Rothlisberger
- Laboratoire de Chimie et Biochimie Computationelle, Ecole Polytechnique Fédérale de Lausanne , Lausanne, CH-1025, Switzerland
| |
Collapse
|
27
|
Abstract
Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.
Collapse
Affiliation(s)
- Chris Knight
- Computing, Environment, and Life Sciences, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|
28
|
Cao Z, Dama JF, Lu L, Voth GA. Solvent Free Ionic Solution Models from Multiscale Coarse-Graining. J Chem Theory Comput 2012; 9:172-8. [DOI: 10.1021/ct3007277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhen Cao
- Department of Chemistry, James Franck
Institute, Institute
for Biophysical Dynamics, and Computation Institute, University of
Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - James F. Dama
- Department of Chemistry, James Franck
Institute, Institute
for Biophysical Dynamics, and Computation Institute, University of
Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Lanyuan Lu
- Department of Chemistry, James Franck
Institute, Institute
for Biophysical Dynamics, and Computation Institute, University of
Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, James Franck
Institute, Institute
for Biophysical Dynamics, and Computation Institute, University of
Chicago, 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Abstract
Coarse-grained (CG) models have proven to be very effective tools in the study of phenomena or systems that involve large time- and length-scales. By decreasing the degrees of freedom in the system and using softer interactions than seen in atomistic models, larger timesteps can be used and much longer simulation times can be studied. CG simulations are widely used to study systems of biological importance that are beyond the reach of atomistic simulation, necessitating a computationally efficient and accurate CG model for water. In this review, we discuss the methods used for developing CG water models and the relative advantages and disadvantages of the resulting models. In general, CG water models differ with regards to how many waters each CG group or bead represents, whether analytical or tabular potentials have been used to describe the interactions, and how the model incorporates electrostatic interactions. Finally, how the models are parameterized depends on their application, so, while some are fitted to experimental properties such as surface tension and density, others are fitted to radial distribution functions extracted from atomistic simulations.
Collapse
Affiliation(s)
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville TN 37235-1604
- Department of Chemistry, Vanderbilt University, Nashville TN 37235-1604
| |
Collapse
|
30
|
Knight C, Voth GA. Coarse-graining away electronic structure: a rigorous route to accurate condensed phase interaction potentials. Mol Phys 2012. [DOI: 10.1080/00268976.2012.668621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Izvekov S, Rice BM. Mechanism of densification in silica glass under pressure as revealed by a bottom-up pairwise effective interaction model. J Chem Phys 2012; 136:134508. [DOI: 10.1063/1.3696865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
32
|
Sala J, Guàrdia E, Martí J, Spångberg D, Masia M. Fitting properties from density functional theory based molecular dynamics simulations to parameterize a rigid water force field. J Chem Phys 2012; 136:054103. [DOI: 10.1063/1.3679402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Abstract
Understanding the hydrated proton is a critically important problem that continues to engage the research efforts of chemists, physicists, and biologists because of its involvement in a wide array of phenomena. Only recently have several unique properties of the hydrated proton been unraveled through computer simulations. One such process is the detailed molecular mechanism by which protons hop between neighboring water molecules, thus giving rise to the anomalously high diffusion of protons relative to other simple cations. Termed Grotthuss shuttling, this process occurs over multiple time and length scales, presenting unique challenges for computer modeling and simulation. Because the hydrated proton is in reality a dynamical electronic charge defect that spans multiple water molecules, the simulation methodology must be able to dynamically readjust the chemical bonding topology. This reactive nature of the chemical process is automatically captured with ab initio molecular dynamics (AIMD) simulation methods, where the electronic degrees of freedom are treated explicitly. Unfortunately, these calculations can be prohibitively expensive for more complex proton solvation and transport phenomena in the condensed phase. These AIMD simulations remain extremely valuable, however, in validating empirical models, verifying results, and providing insight into molecular mechanisms. In this Account, we discuss recent progress in understanding the solvation and transport properties of the hydrated excess proton. The advances are based on results obtained from reactive molecular dynamics simulations using the multistate empirical valence bond (MS-EVB) methodology. This approach relies on a dynamic linear combination of chemical bond topologies to model charge delocalization and dynamic bonding environments. When parametrized via a variational force-matching algorithm from AIMD trajectories, the MS-EVB method can be viewed as a multiscale bridging of ab initio simulation results to a simpler and more efficient representation. The process allows sampling of longer time and length scales, which would normally be too computationally expensive with AIMD alone. With the MS-EVB methodology, the statistically important components of the excess proton solvation and hopping mechanisms in liquid water have been identified. The most likely solvation structure for the hydrated proton is a distorted Eigen-type complex (H(9)O(4)(+)). In this state, the excess proton charge defect rapidly resonates between three possible distorted Eigen-type structures until a successful proton hop occurs. This process, termed the "special-pair dance", serves as a kind of preparatory phase for the proton hopping while the neighboring water hydrogen-bonding network fluctuates and ultimately rearranges to facilitate a proton hop. The modifications of the solvation structure and transport properties of the excess proton in concentrated acid solutions were further investigated. The Eigen-type solvation structure also possesses both "hydrophilic" and "hydrophobic" sides, which accounts for the affinity of the hydrated proton for the air-water interface. This unusual "amphiphilic" character of the hydrated proton further leads to the metastable formation of contact ion pairs between two hydrated protons. It also engenders a surprisingly constant degree of solubility of hydrophobic species as a function of acid concentration, which contrasts with a markedly variable solubility as a function of salt (such as NaCl or KCl) concentration.
Collapse
Affiliation(s)
- Chris Knight
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Izvekov S, Swanson JMJ. Using force-matching to reveal essential differences between density functionals in ab initio molecular dynamics simulations. J Chem Phys 2011; 134:194109. [DOI: 10.1063/1.3591374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Wang LP, Van Voorhis T. Communication: Hybrid ensembles for improved force matching. J Chem Phys 2011; 133:231101. [PMID: 21186847 DOI: 10.1063/1.3519043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Force matching is a method for parameterizing empirical potentials in which the empirical parameters are fitted to a reference potential energy surface (PES). Typically, training data are sampled from a canonical ensemble generated with either the empirical potential or the reference PES. In this Communication, we show that sampling from either ensemble risks excluding critical regions of configuration space, leading to fitted potentials that deviate significantly from the reference PES. We present a hybrid ensemble which combines the Boltzmann probabilities of both potential surfaces into the fitting procedure, and we demonstrate that this technique improves the quality and stability of empirical potentials.
Collapse
Affiliation(s)
- Lee-Ping Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | |
Collapse
|
36
|
McGrath MJ, Kuo IFW, Siepmann JI. Liquid structures of water, methanol, and hydrogen fluoride at ambient conditions from first principles molecular dynamics simulations with a dispersion corrected density functional. Phys Chem Chem Phys 2011; 13:19943-50. [DOI: 10.1039/c1cp21890e] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Wang Y, Voth GA. Molecular dynamics simulations of polyglutamine aggregation using solvent-free multiscale coarse-grained models. J Phys Chem B 2010; 114:8735-43. [PMID: 20550147 DOI: 10.1021/jp1007768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multiscale coarse-graining (MS-CG) method is used to construct solvent-free CG models for polyglutamine peptides having various repeat lengths. Because the resulting CG models have fewer degrees of freedom than a corresponding all-atom simulations, they make it possible to study the self-assembly of polyglutamines at high concentrations for the first time by allowing for better equilibration and statistical sampling that is well beyond the range achievable by all-atom models. Molecular dynamics (MD) simulations performed with these models show that polyglutamine monomers with repeat lengths < or = 28 fluctuate between their folded and unfolded states. Monomers with 32 or more residues are stable and form alpha-helix solid structures. The degree of monomer compactness increases with chain length in both cases. CG MD simulations of equilibrium polyglutamine aggregates show that even at high concentrations, the system statistically fluctuates between heterogeneous and homogeneous configurations, rather than simply aggregates. The degree of aggregation and fluctuation increases with concentration and chain length. All of these phenomena are consistent with the experimental observations and may be explained by a mechanism that the collective nonbonded interactions between polyglutamine molecules in water solution are only weakly attractive. Finally, this work demonstrates that computer simulation of polypeptides self-assembly and aggregation, which is presently beyond the reach of all-atom MD simulations, is attainable using solvent-free MS-CG models.
Collapse
Affiliation(s)
- Yanting Wang
- Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190 China
| | | |
Collapse
|
38
|
Knight C, Maupin CM, Izvekov S, Voth GA. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton. J Chem Theory Comput 2010; 6:3223-32. [DOI: 10.1021/ct1004438] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chris Knight
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States, and Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - C. Mark Maupin
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States, and Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sergei Izvekov
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States, and Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States, and Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
39
|
Larini L, Lu L, Voth GA. The multiscale coarse-graining method. VI. Implementation of three-body coarse-grained potentials. J Chem Phys 2010; 132:164107. [PMID: 20441258 DOI: 10.1063/1.3394863] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many methodologies have been proposed to build reliable and computationally fast coarse-grained potentials. Typically, these force fields rely on the assumption that the relevant properties of the system under examination can be reproduced using a pairwise decomposition of the effective coarse-grained forces. In this work it is shown that an extension of the multiscale coarse-graining technique can be employed to parameterize a certain class of two-body and three-body force fields from atomistic configurations. The use of explicit three-body potentials greatly improves the results over the more commonly used two-body approximation. The method proposed here is applied to develop accurate one-site coarse-grained water models.
Collapse
Affiliation(s)
- Luca Larini
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
40
|
Costa Cabral BJ, Coutinho K, Canuto S. Electronic properties of liquid hydrogen fluoride: A sequential quantum mechanical/Born–Oppenheimer molecular dynamics approach. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Devireddy RV. Statistical thermodynamics of biomembranes. Cryobiology 2010; 60:80-90. [PMID: 19460363 PMCID: PMC2854501 DOI: 10.1016/j.cryobiol.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
An overview of the major issues involved in the statistical thermodynamic treatment of phospholipid membranes at the atomistic level is summarized: thermodynamic ensembles, initial configuration (or the physical system being modeled), force field representation as well as the representation of long-range interactions. This is followed by a description of the various ways that the simulated ensembles can be analyzed: area of the lipid, mass density profiles, radial distribution functions (RDFs), water orientation profile, deuterium order parameter, free energy profiles and void (pore) formation; with particular focus on the results obtained from our recent molecular dynamic (MD) simulations of phospholipids interacting with dimethylsulfoxide (Me(2)SO), a commonly used cryoprotective agent (CPA).
Collapse
Affiliation(s)
- Ram V Devireddy
- Department of Mechanical Engineering, Louisiana State University, 2508 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
42
|
Coarse-Grained Intermolecular Potentials Derived From The Effective Fragment Potential: Application To Water, Benzene, And Carbon Tetrachloride. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-9956-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
43
|
|
44
|
Paramore S, Cheng L, Berne BJ. A Systematic Comparison of Pairwise and Many-Body Silica Potentials. J Chem Theory Comput 2008; 4:1698-708. [DOI: 10.1021/ct800244q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sterling Paramore
- Department of Chemistry, Columbia University, 3000 Broadway, Mail Code 3103, New York City, New York 10027
| | - Liwen Cheng
- Department of Chemistry, Columbia University, 3000 Broadway, Mail Code 3103, New York City, New York 10027
| | - Bruce J. Berne
- Department of Chemistry, Columbia University, 3000 Broadway, Mail Code 3103, New York City, New York 10027
| |
Collapse
|
45
|
Hasegawa T, Tanimura Y. Nonequilibrium molecular dynamics simulations with a backward-forward trajectories sampling for multidimensional infrared spectroscopy of molecular vibrational modes. J Chem Phys 2008; 128:064511. [DOI: 10.1063/1.2828189] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
46
|
Iuchi S, Izvekov S, Voth GA. Are many-body electronic polarization effects important in liquid water? J Chem Phys 2007; 126:124505. [PMID: 17411142 DOI: 10.1063/1.2710252] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many-body electronic polarization effects may be important for an accurate description of aqueous environments. As a result, numerous polarizable water models have been developed to include explicit polarization effects in intermolecular potential functions. In this paper, it is shown for liquid water at ambient conditions that such many-body polarization interactions can be decomposed into effective pairwise contributions using the force-matching (FM) method [Izvekov et al., J. Chem. Phys. 120, 10896 (2004)]. It is found that an effective pairwise water model obtained by the FM method can accurately reproduce various bulk structural and thermodynamic properties obtained from an accurate fully polarizable water model. In addition, the effective pairwise water model also provides a reasonable description of the water liquid-vapor interface, thus exhibiting a degree of transferability to heterogeneous environments. These results suggest that the role and importance of many-body electronic polarization effects in aqueous systems might be fruitfully explored relative to the best possible pairwise decomposable bulk phase model as the reference state.
Collapse
Affiliation(s)
- Satoru Iuchi
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
47
|
Tóth G. Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2007; 19:335222. [PMID: 21694144 DOI: 10.1088/0953-8984/19/33/335222] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The projection of complex interactions onto simple distance-dependent or angle-dependent classical mechanical functions is a long-standing theoretical challenge in the field of computational sciences concerning biomolecules, colloids, aggregates and simple systems as well. The construction of an effective potential may be based on theoretical assumptions, on the application of fitting procedures on experimental data and on the simplification of complex molecular simulations. Recently, a force-matching method was elaborated to project the data of Car-Parrinello ab initio molecular dynamics simulations onto two-particle classical interactions (Izvekov et al 2004 J. Chem. Phys. 120 10896). We have developed a potential-matching algorithm as a practical analogue of this force-matching method. The algorithm requires a large number of configurations (particle positions) and a single value of the potential energy for each configuration. We show the details of the algorithm and the test calculations on simple systems. The test calculation on water showed an example in which a similar structure was obtained for qualitatively different pair interactions. The application of the algorithm on reverse Monte Carlo configurations was tried as well. We detected inconsistencies in a part of our calculations. We found that the coarse graining of potentials cannot be performed perfectly both for the structural and the thermodynamic data. For example, if one applies an inverse method with an input of the pair-correlation function, it provides energetics data for the configurations uniquely. These energetics data can be different from the desired ones obtained by all atom simulations, as occurred in the testing of our potential-matching method.
Collapse
Affiliation(s)
- Gergely Tóth
- Institute of Chemistry, Eötvös University, PO Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
48
|
Fernandez-Alonso F, McLain SE, Taylor JW, Bermejo FJ, Bustinduy I, Ruiz-Martín MD, Turner JFC. Correlated atomic motions in liquid deuterium fluoride studied by coherent quasielastic neutron scattering. J Chem Phys 2007; 126:234509. [PMID: 17600427 DOI: 10.1063/1.2743021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.
Collapse
Affiliation(s)
- F Fernandez-Alonso
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A recently developed multiscale coarse-graining (MS-CG) approach for obtaining coarse-grained force fields from fully atomistic molecular dynamics simulation is applied to the challenging case of the EMIM+NO3- ionic liquid. The force-matching in the MS-CG methodology is accomplished with an explicit separation of bonded and nonbonded forces. While the nonbonded forces are adopted from this force-matching approach, the bonded forces are obtained from fitting the statistical configurational data from the atomistic simulations. The many-body electronic polarizability is also successfully broken into effective pair interactions. With a virial constraint fixing the system pressure, the MS-CG models rebuild satisfactory structural and thermodynamic properties for different temperatures. The MS-CG model developed from a modest atomistic simulation is therefore suitable for simulating much larger systems, because the coarse-grained models show significant time integration efficiency. This approach is expected to be general for coarse-graining other ionic liquids, as well as many other liquid-state systems. The limitations of the present coarse-graining procedure are also discussed.
Collapse
Affiliation(s)
- Yanting Wang
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, 315 South 1400 East Room 2020, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
50
|
Zhou J, Thorpe IF, Izvekov S, Voth GA. Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 2007; 92:4289-303. [PMID: 17400700 PMCID: PMC1877786 DOI: 10.1529/biophysj.106.094425] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A systematic new approach to derive multiscale coarse-grained (MS-CG) models has been recently developed. The approach employs information from atomistically detailed simulations to derive CG forces and associated effective potentials. In this work, the MS-CG methodology is extended to study two peptides representing distinct structural motifs, alpha-helical polyalanine and the beta-hairpin V(5)PGV(5). These studies represent the first known application of this approach to peptide systems. Good agreement between the MS-CG and atomistic models is achieved for several structural properties including radial distribution functions, root mean-square deviation, and radius of gyration. The new MS-CG models are able to preserve the native states of these peptides within approximately 1 A backbone root mean-square deviation during CG simulations. The MS-CG approach, as with most coarse-grained models, has the potential to increase the length and timescales accessible to molecular simulations. However, it is also able to maintain a clear connection to the underlying atomistic-scale interactions.
Collapse
Affiliation(s)
- Jian Zhou
- Center for Biophysical Modeling and Simulation, Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | | | | |
Collapse
|