1
|
Raucci U. Capturing Excited State Proton Transfer Dynamics with Reactive Machine Learning Potentials. J Phys Chem Lett 2025:4900-4906. [PMID: 40344586 DOI: 10.1021/acs.jpclett.5c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Excited state proton transfer is a fundamental process in photochemistry, playing a crucial role in fluorescence sensing, bioimaging, and optoelectronic applications. However, fully resolving its dynamics remains challenging due to the prohibitive computational cost of ab initio simulations and the need for ultrafast experimental techniques with high temporal resolution. Here, we tackle this challenge by using machine learning-driven excited state molecular dynamics simulations. We propose an active learning framework powered by enhanced sampling techniques for constructing a high-quality training set for excited state machine learning potentials, which we then use to map the reaction free energy landscape and capture the photorelaxation dynamics. Using 10-hydroxybenzo[h]quinoline as a test case, our simulations reveal a barrierless excited state proton transfer occurring within ∼50 fs, accompanied by a significant red shift in the emission energy (∼1 eV), in agreement with experimental findings. Furthermore, our results highlight a strong coupling between proton transfer and charge redistribution, which facilitates the rapid tautomerization process. These findings showcase the power of machine learning-driven molecular dynamics in accurately capturing photochemical dynamics while enabling large-scale statistical sampling.
Collapse
Affiliation(s)
- Umberto Raucci
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, Genoa GE 16153, Italy
| |
Collapse
|
2
|
Heo W, Lee C, Sohn SH, Joo T. Tracking nuclear wave packets in excited-state reactions via quantum mechanics/molecular dynamics simulations. J Chem Phys 2025; 162:154108. [PMID: 40237184 DOI: 10.1063/5.0256737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Nuclear wave packets (NWPs) in electronically excited states generated by ultrashort laser pulses can persist through photochemical processes and be detected in the product state. The NWPs that are coupled with the reaction dynamics undergo changes during the process and provide crucial insights into potential energy surfaces and molecular reaction dynamics. We present a computational method to calculate NWPs in the products of ultrafast photochemical processes by projecting nuclear displacements, obtained via Born-Oppenheimer molecular dynamics simulations, onto the normal modes of the reaction product state. Applying this approach to the excited-state intramolecular proton transfer reaction of 10-hydroxybenzo[h]quinoline, we successfully reproduced the experimentally observed NWPs in the reaction product, which were measured by time-resolved fluorescence of the product state with high fidelity. This significant achievement enables the analysis of individual normal mode motions following photoexcitation in chemical and physical processes. By integrating highly time-resolved spectroscopy with computational modeling, this method provides an effective approach to investigate the excited-state potential energy surfaces and the associated nuclear dynamics.
Collapse
Affiliation(s)
- Wooseok Heo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Changmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Department of Chemistry, Incheon National University, Incheon 22012, South Korea
| | - So Hyeong Sohn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
3
|
Watanabe H, Iwamura M, Nozaki K, Takanashi T, Kuramochi H, Tahara T. Torsional Structural Relaxation Caused by Pt-Pt Bond Formation in the Photoexcited Dimer of Pt(II) N ̂ C ̂ N Complex in Solution. J Phys Chem Lett 2025; 16:406-414. [PMID: 39737549 DOI: 10.1021/acs.jpclett.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
[Pt(NCN)MeCN]+ (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN]+ dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm-1 oscillations arising from the Pt-Pt stretching motion in the S1 dimer. The excited-state absorption in the 500-700 nm region increases with time constants of 0.3, 1.4, and 9.4 ps, which are assigned to contraction of the Pt-Pt distance, structural change in the S1 dimer, and S1 → T1 intersystem crossing, respectively. The 1.4 ps structural change is attributed to torsional structural relaxation proceeding in the S1 dimer based on the computation, which indicates that a torsional angle around the Pt-Pt bond in the S0 dimer is widely distributed around two potential minima, whereas that of the S1 dimer has much narrower distributions around noticeably different torsional angles.
Collapse
Affiliation(s)
- Honoka Watanabe
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Munetaka Iwamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Tsukasa Takanashi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa Wako, Saitama 351-0198, Japan
| |
Collapse
|
4
|
Nimmrich A, Govind N, Khalil M. Capturing Coupled Structural and Electronic Motions During Excited-State Intramolecular Proton Transfer via Computational Multiedge Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2024; 15:12652-12662. [PMID: 39688340 DOI: 10.1021/acs.jpclett.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS). Excited-state ab initio molecular dynamics simulations combined with time-dependent density functional theory calculations were performed for a model ESIPT system, 10-hydroxybenzo[h]quinoline, to obtain transient RIXS signatures. The RIXS spectra at both the nitrogen and oxygen K-edges were computed to resolve the electronic and atomic structural dynamics from both the proton donor and acceptor perspective. The results demonstrate that RIXS provides unprecedented details of the local electronic structure, the coupling between different core and valence excited electronic states, and the reorganization of the electronic structure coupled to the proton transfer process. We also develop a spectroscopic ruler correlating spectral shifts of a RIXS peak to the proton transfer distance during ESIPT. This work highlights the exciting potential of time-resolved RIXS experiments at newly commissioned soft X-ray free electron laser facilities for measuring coupled electronic and structural changes during ultrafast chemical processes.
Collapse
Affiliation(s)
- Amke Nimmrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Loe CM, Chatterjee S, Weakly RB, Khalil M. Observing vibronic coupling in a strongly hydrogen bonded system with coherent multidimensional vibrational-electronic spectroscopy. J Chem Phys 2024; 161:174203. [PMID: 39494798 DOI: 10.1063/5.0226236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
The coupled structural and electronic parameters of intramolecular hydrogen bonding play an important role in ultrafast chemical reactions, such as proton transfer processes. We perform one- and two-dimensional vibrational-electronic (1D and 2D VE) spectroscopy experiments to understand the couplings between vibrational and electronic coordinates in 10-Hydroxybenzo[h]quinoline, an ultrafast proton transfer system. The experiments reveal that the OH stretch (νOH) is strongly coupled to the electronic excitation, and Fourier analysis of the 1D data shows coherent oscillations from the low frequency backbone vibrational modes coupled to the νOH mode, resulting in an electronically detected vibronic signal. In-plane low-frequency vibrations at 242 and 386 cm-1 change the hydrogen bond distance and modulate the observed electronic signal in the polarization-selective 1D VE experiment through orientation-dependent coupling with the νOH mode. Resolution of the excitation frequency axis with 2D VE experiments reveals that excitation frequency, detection frequency, and experimental delay affect the frequency and strength of the vibronic transitions observed. Our results demonstrate evidence of direct coupling of the high frequency νOH mode with the S1 ← S0 electronic transition in 10-Hydroxybenzo[h]quinoline (HBQ), and orientation-dependent couplings of the low-frequency 242 and 386 cm-1 modes to the νOH mode and the electronic transition. This demonstration of multidimensional VE spectroscopy on HBQ reveals the potential of using 1D and 2D VE spectroscopy to develop a quantitative understanding of the role of vibronic coupling in hydrogen bonding and ultrafast proton transfer for complex systems.
Collapse
Affiliation(s)
- Caroline M Loe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Srijan Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
6
|
Odella E, Fetherolf JH, Secor M, Dipaola L, Dominguez RE, Gonzalez EJ, Khmelnitskiy AY, Kodis G, Groy TL, Moore TA, Hammes-Schiffer S, Moore AL. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System. J Phys Chem Lett 2024; 15:10835-10841. [PMID: 39436359 PMCID: PMC11587801 DOI: 10.1021/acs.jpclett.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bioinspired benzimidazole-phenol constructs with an intramolecular hydrogen bond connecting the phenol and the benzimidazole have been synthesized to study both proton-coupled electron transfer (PCET) and excited-state intramolecular proton transfer (ESIPT) processes. Strategic incorporation of a methyl group disrupts the coplanarity between the aromatic units, causing a pronounced twist, weakening the intramolecular hydrogen bond, decreasing the phenol redox potential, reducing the chemical reversibility, and quenching the fluorescence emission. Infrared spectroelectrochemistry and transient absorption spectroscopy confirm the formation of the oxidized product upon PCET and probe excited-state relaxation mechanisms, respectively. Density functional theory calculations of redox potentials corroborate the experimental findings. Additionally, time-dependent density functional theory calculations uncover the fluorescence quenching mechanism, showing that the nonradiative twisted intramolecular charge transfer state responsible for fluorescence quenching is more energetically favorable in the methyl-substituted system. Incorporating groups causing steric hindrance expands the design of biomimetic systems capable of performing both PCET and ESIPT.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Present Address: Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Jonathan H. Fetherolf
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Maxim Secor
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Lydia Dipaola
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Rodrigo E. Dominguez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Edwin J. Gonzalez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anton Y. Khmelnitskiy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
7
|
Le Dé B, Huppert S, Spezia R, Chin AW. Extending Non-Perturbative Simulation Techniques for Open-Quantum Systems to Excited-State Proton Transfer and Ultrafast Non-Adiabatic Dynamics. J Chem Theory Comput 2024; 20:8749-8766. [PMID: 39388593 DOI: 10.1021/acs.jctc.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Excited state proton transfer is an ubiquitous phenomenon in biology and chemistry, spanning from the ultrafast reactions of photobases and acids to light-driven, enzymatic catalysis and photosynthesis. However, the simulation of such dynamics involves multiple challenges, since high-dimensional, out-of-equilibrium vibronic states play a crucial role, while a fully quantum description of the proton's dissipative, real-space dynamics is also required. In this work, we extend the powerful matrix product state approach to open quantum systems (TEDOPA) to study these demanding dynamics, and also more general nonadiabatic processes that can appear in complex photochemistry subject to strong laser driving. As an illustration, we initially consider an open model of a four-level electronic system interacting with hundreds of intramolecular vibrations that drive ultrafast excited state proton transfer, as well as an explicit photonic environment that allows us to directly monitor the resulting dual fluorescence in this system. We then demonstrate how to include a continuous "reaction coordinate" of the proton transfer that allows numerically exact simulations that can be understood, visualized and interpreted in the familiar language of diabatic and adiabatic dynamics on potential surfaces, while also retaining an exact quantum treatment of dissipation and driving effects that could be used to study diverse problems in ultrafast photochemistry.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Simon Huppert
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4 place Jussieu, 75005 Paris, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Gu Y, Yong H, Gu B, Mukamel S. Chemical bond reorganization in intramolecular proton transfer revealed by ultrafast X-ray photoelectron spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2321343121. [PMID: 38635639 PMCID: PMC11046627 DOI: 10.1073/pnas.2321343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity.
Collapse
Affiliation(s)
- Yonghao Gu
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou, Zhejiang310030, China
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| |
Collapse
|
9
|
Wang JK, Wang CH, Wu CC, Chang KH, Wang CH, Liu YH, Chen CT, Chou PT. Hydrogen-Bonded Thiol Undergoes Unconventional Excited-State Intramolecular Proton-Transfer Reactions. J Am Chem Soc 2024; 146:3125-3135. [PMID: 38288596 PMCID: PMC10859960 DOI: 10.1021/jacs.3c10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone (3NTF) undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm-1. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant nπ* character of the tautomeric lowest excited state. Herein, based on the 3-mercaptoflavone scaffold and π-elongation concept, a new series of 4'-substituted-7-diethylamino-3-mercaptoflavones, NTFs, was designed and synthesized with varied H-bond strength and 690-720 nm tautomeric emission upon ultraviolet (UV) excitation in cyclohexane. The order of their H-bonding strength was experimentally determined to be N-NTF < O-NTF < H-NTF < F-NTF, while the rate of -SH ESIPT measured by fluorescence upconversion was F-NTF (398 fs)-1 < H-NTF (232 fs)-1 < O-NTF (123 fs)-1 < N-NTF (101 fs)-1 in toluene. Unexpectedly, the strongest H-bonded F-NTF gives the slowest ESIPT, which does not conform to the traditional ESIPT model. The results are rationalized by the trend of carbonyl oxygen basicity rather than -SH acidity. Namely, the thiol acidity relevant to the H-bond strength plays a minor role in the driving force of ESIPT. Instead, the proton-accepting strength governs ESIPT. That is to say, the noncanonical thiol H-bonding system undergoes an unconventional type of ESIPT.
Collapse
Affiliation(s)
- Jian-Kai Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Chih-Hsing Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Chi-Chi Wu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Kai-Hsin Chang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Chun-Hsiang Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Yi-Hung Liu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
| | - Chao-Tsen Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Pi-Tai Chou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of
China
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
10
|
Frutos-Puerto S, Jesús Colín M, Corchado JC, Luz Sánchez M, Elena Martín M, Aguilar MA. Photophysical and photochemical properties of 3-hydroxyflavone in ethanol solution: implicit vs explicit solvent models. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Lee J, Shin P, Chou PT, Joo T. Excited State Intramolecular Proton Transfer Dynamics of Derivatives of the Green Fluorescent Protein Chromophore. Int J Mol Sci 2023; 24:ijms24043448. [PMID: 36834871 PMCID: PMC9962057 DOI: 10.3390/ijms24043448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Excited state intramolecular proton transfer (ESIPT) dynamics of the o-hydroxy analogs of the green fluorescent protein (GFP) chromophore have been investigated by time-resolved spectroscopies and theoretical calculations. These molecules comprise an excellent system to investigate the effect of electronic properties on the energetics and dynamics of ESIPT and to realize applications in photonics. Time-resolved fluorescence with high enough resolution was employed to record the dynamics and the nuclear wave packets in the excited product state exclusively in conjunction with quantum chemical methods. The ESIPT are ultrafast occurring in 30 fs for the compounds employed in this work. Although the ESIPT rates are not affected by the electronic properties of the substituents suggesting barrierless reaction, the energetics, their structures, subsequent dynamics following ESIPT, and possibly the product species are distinct. The results attest that fine tuning of the electronic properties of the compounds may modify the molecular dynamics of ESIPT and subsequent structural relaxation to achieve brighter emitters with broad tuning capabilities.
Collapse
Affiliation(s)
- Junghwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Pyoungsik Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, China
- Correspondence: (P.-T.C.); (T.J.)
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Correspondence: (P.-T.C.); (T.J.)
| |
Collapse
|
12
|
Zhang L, Fassioli F, Fu B, She ZS, Scholes GD. Modeling Excited-State Proton Transfer Using the Lindblad Equation: Quantification of Time-Resolved Spectroscopy with Mechanistic Insights. ACS PHYSICAL CHEMISTRY AU 2022; 3:107-118. [PMID: 36718263 PMCID: PMC9881171 DOI: 10.1021/acsphyschemau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The quantum dynamics of excited-state intramolecular proton transfer (ESIPT) is studied using a multilevel vibronic Hamiltonian and the Lindblad master equation. We simulate time-resolved fluorescence spectroscopy of 2-(2'-hydroxyphenyl) benzothiazole (HBT) and 10-hydroxybenzo[h]quinoline (HBQ), which suggests that the underlying mechanism behind the initial ultrafast rise and decay in the spectra is electronic state population that evolves simultaneously with proton wave packet dynamics. The results predict that the initial rise and decay signals at different wavelengths vary significantly with system properties in terms of their shape, the time, and the intensity of the maximum. These findings provide clues for data interpretation, mechanism validation, and control of the dynamics, and the model serves as an attempt toward clarifying ESIPT by direct comparison to time-resolved spectroscopy.
Collapse
Affiliation(s)
- Luhao Zhang
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Francesca Fassioli
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,SISSA
− Scuola Internazionale Superiore di Studi Avanzati, 34136Trieste, TS, Italy,
| | - Bo Fu
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Zhen-Su She
- Department
of Mechanical and Engineering Science, Peking
University, Beijing100871, China,. Phone: +86-010-62766559
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,. Phone: +1-609-258-0729
| |
Collapse
|
13
|
Machine learning the Hohenberg-Kohn map for molecular excited states. Nat Commun 2022; 13:7044. [DOI: 10.1038/s41467-022-34436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractThe Hohenberg-Kohn theorem of density-functional theory establishes the existence of a bijection between the ground-state electron density and the external potential of a many-body system. This guarantees a one-to-one map from the electron density to all observables of interest including electronic excited-state energies. Time-Dependent Density-Functional Theory (TDDFT) provides one framework to resolve this map; however, the approximations inherent in practical TDDFT calculations, together with their computational expense, motivate finding a cheaper, more direct map for electronic excitations. Here, we show that determining density and energy functionals via machine learning allows the equations of TDDFT to be bypassed. The framework we introduce is used to perform the first excited-state molecular dynamics simulations with a machine-learned functional on malonaldehyde and correctly capture the kinetics of its excited-state intramolecular proton transfer, allowing insight into how mechanical constraints can be used to control the proton transfer reaction in this molecule. This development opens the door to using machine-learned functionals for highly efficient excited-state dynamics simulations.
Collapse
|
14
|
UZUN S, DEMİRCİOĞLU Z, KOÇ E, CEYLAN M. Synthesis, Crystal structure, Theoretical Chemical Activitiy, Electrophilicity-Based Charge Transfer (ECT) with DNA bases and Molecular Docking Studies of 2-amino-4-(2,4-dimethoxyphenyl)-5,6-dihydrobenzo[H]quinoline-3-carbonitrile. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pandey D, Vennapusa SR. ESIPT pathways and optical properties of 7-Hydroxy-1-Indanones. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Ito A, Iwamura M, Sakuda E. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Hurley JJM, Zhu L. Excitation Energy-Dependent, Excited-State Intramolecular Proton Transfer-Based Dual Emission in Poor Hydrogen-Bonding Solvents. J Phys Chem A 2022; 126:5711-5720. [PMID: 35980823 DOI: 10.1021/acs.jpca.2c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-(2'-Hydroxyphenyl)benzoxazole (HBO) substituted at the 5'-position with bipyridylvinylene phenylenevinylene (compound 2) produces both normal and, via an excited-state intramolecular proton transfer (ESIPT) reaction, tautomer emissions in solvents that preserve intramolecular hydrogen bonds. The abundance of the tautomer emission from compound 2 in a poor hydrogen-bonding solvent increases in response to the application of a higher excitation energy. Based on quantum chemical calculations, the excitation-dependent dual emission is consistent with a model in which the ESIPT reaction is more favored in the S2 than in the S1 electronically excited state.
Collapse
Affiliation(s)
- Joseph J M Hurley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
18
|
Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat Chem 2022; 14:1126-1132. [PMID: 35953643 PMCID: PMC7613649 DOI: 10.1038/s41557-022-01012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.
Collapse
|
19
|
Lee SN, Ahn J, Joo T. Coherent Vibrational Spectrum via Time-Resolved Fluorescence for Molecular Dynamics and Identification of Emitting Species-Application to Excited-State Intramolecular Proton Transfer. J Phys Chem A 2022; 126:4962-4968. [PMID: 35856811 DOI: 10.1021/acs.jpca.2c03263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved fluorescence (TF) with high-enough resolution enables recording of a coherent vibrational spectrum (CVS). Because a CVS attained via TF (CVSF) is descended from the frequency modulation of the fluorescence spectrum, it gives the vibrational spectrum of the emitting state. Therefore, CVSF can be a powerful tool for the identification of an emitting state along with the investigation of molecular dynamics in excited states. Herein, we report CVSF of a Schiff base salicylaldehyde azine (SAA) that has two possible excited-state intramolecular proton transfer (ESIPT) sites. The ESIPT time of SAA in dichloromethane is determined to be 22 fs. Quantitative agreement between the experimental CVSF and calculated CVSF of the mono-keto isomer demonstrates that ESIPT indeed occurs in SAA only on one side. More importantly, we show that a CVSF can be utilized to identify an emitting species and its state with the help of quantum chemical calculations. Implications of the CVSF obtained by assuming impulsive excitation of vibrations are discussed in terms of the molecular mechanism of ESIPT and the generation of nuclear wave packets in the product state.
Collapse
Affiliation(s)
- Seung Noh Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungsoo Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
20
|
Bin Mohd Yusof MS, Song H, Debnath T, Lowe B, Yang M, Loh ZH. Ultrafast proton transfer of the aqueous phenol radical cation. Phys Chem Chem Phys 2022; 24:12236-12248. [PMID: 35579397 DOI: 10.1039/d2cp00505k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton transfer (PT) reactions are fundamental to numerous chemical and biological processes. While sub-picosecond PT involving electronically excited states has been extensively studied, little is known about ultrafast PT triggered by photoionization. Here, we employ femtosecond optical pump-probe spectroscopy and quantum dynamics calculations to investigate the ultrafast proton transfer dynamics of the aqueous phenol radical cation (PhOH˙+). Analysis of the vibrational wave packet dynamics reveals unusually short dephasing times of 0.18 ± 0.02 ps and 0.16 ± 0.02 ps for the PhOH˙+ O-H wag and bend frequencies, respectively, suggestive of ultrafast PT occurring on the ∼0.1 ps timescale. The reduced potential energy surface obtained from ab initio calculations shows that PT is barrierless when it is coupled to the intermolecular hindered translation between PhOH˙+ and the proton-acceptor water molecule. Quantum dynamics calculations yield a lifetime of 193 fs for PhOH˙+, in good agreement with the experimental results and consistent with the PT reaction being mediated by the intermolecular O⋯O stretch. These results suggest that photoionization can be harnessed to produce photoacids that undergo ultrafast PT. In addition, they also show that PT can serve as an ultrafast deactivation channel for limiting the oxidative damage potential of radical cations.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Hongwei Song
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tushar Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Bethany Lowe
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Minghui Yang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
21
|
Meisner QJ, Hurley JJM, Guo P, Blood AR, Schaller RD, Gosztola DJ, Wiederrecht GP, Zhu L. Triple Emission of 5'-( para-R-Phenylene)vinylene-2-(2'-hydroxyphenyl)benzoxazole (PVHBO). Part I: Dual Emission from the Neutral Species. J Phys Chem A 2022; 126:1033-1061. [PMID: 35143188 DOI: 10.1021/acs.jpca.1c10165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of 5'-(para-R-phenylene)vinylene (PV) substituents on the emission properties of 2-(2'-hydroxyphenyl)benzoxazole (HBO) are analyzed using steady-state and time-resolved absorption and emission spectroscopies in addition to quantum chemical calculations. All members in the series of PVHBOs are capable of excited-state intramolecular proton transfer (ESIPT) with a solvent sensitivity that is typical of a HBO derivative to produce a normal (aka enol) emission and an excited-state tautomer (aka keto) emission. These two emission bands of the neutral dyes are discussed in the current paper. The intermolecular proton transfer, i.e., the deprotonation, of a PVHBO results in the third band of the triple emission, which is described in the succeeding paper. The placement of an electron-withdrawing substituent R on the PVHBO scaffold increases the intensity of the keto emission relative to the enol emission in hydrogen-bonding solvents. The R substituents do not significantly alter the wavelengths of the enol and keto emission bands, which are located in the blue and green regions, respectively, of the visible spectrum. The ultrafast time-resolved spectroscopies and quantum chemical calculations offer explanations on how the R group and the solvent affect the enol and keto emission properties (i.e., wavelength, lifetime, fluorescence quantum yield, and relative ratio of their emissions). The key findings include the following: (1) the emission energies of both enol and keto forms are not sensitively dependent on the R substituent and (2) the solvent-engaged enol excited state is quenched more efficiently as the R substituent becomes more electron-withdrawing. A PVHBO acts as a fusion of HBO and stilbenoid that intersect at the hydroxyphenyl moiety. Depending on the solvent and other environmental conditions, PVHBOs may exhibit the ESIPT property of HBO or the substituent-dependent emission of stilbenoid. This paper and the succeeding article provide a photophysical model of PVHBOs to explain the wavelengths and relative abundances of the three emission bands (enol, keto, and anion) that these compounds are able to produce. Judicial selection of the environmental factors may drive the emission of a PVHBO into the spectral regions of blue, green, and, in a couple of cases, orange or red.
Collapse
Affiliation(s)
- Quinton J Meisner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Joseph J M Hurley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anna R Blood
- New College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34243, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
22
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
23
|
Uzun S, Demircioğlu Z, Koç E, Ceylan M. X-ray, DFT (Chemical activity, Charge transfer and Non-linear optical properties) and Spectroscopic Studies on 2-amino-4-(4-bromophenyl)-5,6[H]quinoline-3-carbonitrile (I) and 2-amino-4-(2-bromophenyl)-5,6[H]quinoline-3-carbonitrile (II). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
|
25
|
Liu YH, Yu SB, Peng YJ, Wang CW, Zhu C, Lin SH. Excited-state intramolecular proton transfer with and without the assistance of vibronic-transition-induced skeletal deformation in phenol-quinoline. RSC Adv 2021; 11:37299-37306. [PMID: 35496430 PMCID: PMC9043822 DOI: 10.1039/d1ra07042h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022] Open
Abstract
The excited-state intramolecular proton transfer (ESIPT) reaction of two phenol-quinoline molecules (namely PQ-1 and PQ-2) were investigated using time-dependent density functional theory. The five-(six-) membered-ring carbocycle between the phenol and quinolone moieties in PQ-1 (PQ-2) actually causes a relatively loose (tight) hydrogen bond, which results in a small-barrier (barrier-less) on an excited-state potential energy surface with a slow (fast) ESIPT process with (without) involving the skeletal deformation motion up to the electronic excitation. The skeletal deformation motion that is induced from the largest vibronic excitation with low frequency can assist in decreasing the donor-acceptor distance and lowering the reaction barrier in the excited-state potential energy surface, and thus effectively enhance the ESIPT reaction for PQ-1. The Franck-Condon simulation indicated that the low-frequency mode with vibronic excitation 0 → 1' is an original source of the skeletal deformation vibration. The present simulation presents physical insights for phenol-quinoline molecules in which relatively tight or loose hydrogen bonds can influence the ESIPT reaction process with and without the assistance of the skeletal deformation motion.
Collapse
Affiliation(s)
- Yu-Hui Liu
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Shi-Bo Yu
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Ya-Jing Peng
- College of Physical Science and Technology, Bohai University Jinzhou 121013 China
| | - Chen-Wen Wang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| | - Sheng-Hsien Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
26
|
Jeon K, Jen M, Lee S, Jang T, Pang Y. Intramolecular Charge Transfer of 1-Aminoanthraquinone and Ultrafast Solvation Dynamics of Dimethylsulfoxide. Int J Mol Sci 2021; 22:ijms222111926. [PMID: 34769357 PMCID: PMC8584543 DOI: 10.3390/ijms222111926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The intramolecular charge transfer (ICT) of 1-aminoanthraquinone (AAQ) in the excited state strongly depends on its solvent properties, and the twisted geometry of its amino group has been recommended for the twisted ICT (TICT) state by recent theoretical works. We report the transient Raman spectra of AAQ in a dimethylsulfoxide (DMSO) solution by femtosecond stimulated Raman spectroscopy to provide clear experimental evidence for the TICT state of AAQ. The ultrafast (~110 fs) TICT dynamics of AAQ were observed from the major vibrational modes of AAQ including the νC-N + δCH and νC=O modes. The coherent oscillations in the vibrational bands of AAQ strongly coupled to the nuclear coordinate for the TICT process have been observed, which showed its anharmonic coupling to the low frequency out of the plane deformation modes. The vibrational mode of solvent DMSO, νS=O showed a decrease in intensity, especially in the hydrogen-bonded species of DMSO, which clearly shows that the solvation dynamics of DMSO, including hydrogen bonding, are crucial to understanding the reaction dynamics of AAQ with the ultrafast structural changes accompanying the TICT.
Collapse
|
27
|
Picconi D. Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline. Photochem Photobiol Sci 2021; 20:1455-1473. [PMID: 34657277 DOI: 10.1007/s43630-021-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest [Formula: see text] excited states and a [Formula: see text] state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time-resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by [Formula: see text] photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the [Formula: see text] excitation are instead nonadiabatic, and the [Formula: see text] state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone.
Collapse
Affiliation(s)
- David Picconi
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
28
|
Loe CM, Liekhus-Schmaltz C, Govind N, Khalil M. Spectral Signatures of Ultrafast Excited-State Intramolecular Proton Transfer from Computational Multi-edge Transient X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:9840-9847. [PMID: 34606267 DOI: 10.1021/acs.jpclett.1c02483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) is a fundamental chemical process with several applications. Ultrafast ESIPT involves coupled electronic and atomic motions and has been primarily studied using femtosecond optical spectroscopy. X-ray spectroscopy is particularly useful because it is element-specific and enables direct, individual probes of the proton-donating and -accepting atoms. Herein, we report a computational study to resolve the ESIPT in 10-hydroxybenzo[h]quinoline (HBQ), an intramolecularly hydrogen bonded compound. We use linear-response time-dependent density functional theory (LR-TDDFT) combined with ab initio molecular dynamics (AIMD) and time-resolved X-ray absorption spectroscopy (XAS) computations to track the ultrafast excited-state dynamics. Our results reveal clear X-ray spectral signatures of coupled electronic and atomic motions during and following ESIPT at the oxygen and nitrogen K-edge, paving the way for future experiments at X-ray free electron lasers.
Collapse
Affiliation(s)
- Caroline M Loe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Kumar P, Fron E, Hosoi H, Kuramochi H, Takeuchi S, Mizuno H, Tahara T. Excited-State Proton Transfer Dynamics in LSSmOrange Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy. J Phys Chem Lett 2021; 12:7466-7473. [PMID: 34339202 DOI: 10.1021/acs.jpclett.1c01653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
LSSmOrange is a fluorescent protein that exhibits a large energy gap between absorption and emission, which makes it a useful tool for multicolor bioimaging. This characteristic of LSSmOrange originates from excited-state proton transfer (ESPT): The neutral chromophore is predominantly present in the ground state while the bright fluorescence is emitted from the anionic excited state after ESPT. Interestingly, it was reported that this ESPT process follows bimodal dynamics, but its origin has not clearly been understood. We investigate ESPT of LSSmOrange using time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS) that provides femtosecond time-resolved Raman spectra. The results indicate that the bimodal ESPT dynamics originates from the structural heterogeneity of the chromophore. Species-associated Raman spectra obtained by spectral analysis based on singular value decomposition (SVD) suggest that cis and trans chromophores coexist in the ground state. It is considered that these two forms are photoexcited and undergo ESPT in parallel, resulting in the bimodal dynamics of ESPT in LSSmOrange.
Collapse
Affiliation(s)
- Pardeep Kumar
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Eduard Fron
- KU Leuven Core Facility for Advanced Spectroscopy, Molecular Imaging and Photonics, Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| | - Haruko Hosoi
- Department of Biomolecular Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, bus 2403, 3001 Heverlee, Belgium
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
30
|
Wang CH, Liu ZY, Huang CH, Chen CT, Meng FY, Liao YC, Liu YH, Chang CC, Li EY, Chou PT. Chapter Open for the Excited-State Intramolecular Thiol Proton Transfer in the Room-Temperature Solution. J Am Chem Soc 2021; 143:12715-12724. [PMID: 34355563 DOI: 10.1021/jacs.1c05602] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report here, for the first time, the experimental observation on the excited-state intramolecular proton transfer (ESIPT) reaction of the thiol proton in room-temperature solution. This phenomenon is demonstrated by a derivative of 3-thiolflavone (3TF), namely, 2-(4-(diethylamino)phenyl)-3-mercapto-4H-chromen-4-one (3NTF), which possesses an -S-H···O═ intramolecular H-bond (denoted by the dashed line) and has an S1 absorption at 383 nm. Upon photoexcitation, 3NTF exhibits a distinctly red emission maximized at 710 nm in cyclohexane with an anomalously large Stokes shift of 12 230 cm-1. Upon methylation on the thiol group, 3MeNTF, lacking the thiol proton, exhibits a normal Stokes-shifted emission at 472 nm. These, in combination with the computational approaches, lead to the conclusion of thiol-type ESIPT unambiguously. Further time-resolved study renders an unresolvable (<180 fs) ESIPT rate for 3NTF, followed by a tautomer emission lifetime of 120 ps. In sharp contrast to 3NTF, both 3TF and 3-mercapto-2-(4-(trifluoromethyl)phenyl)-4H-chromen-4-one (3FTF) are non-emissive. Detailed computational approaches indicate that all studied thiols undergo thermally favorable ESIPT. However, once forming the proton-transferred tautomer, the lone-pair electrons on the sulfur atom brings non-negligible nπ* contribution to the S1' state (prime indicates the proton-transferred tautomer), for which the relaxation is dominated by the non-radiative deactivation. For 3NTF, the extension of π-electron delocalization by the diethylamino electron-donating group endows the S1' state primarily in the ππ* configuration, exhibiting the prominent tautomer emission. The results open a new chapter in the field of ESIPT, covering the non-canonical sulfur intramolecular H-bond and its associated ESIPT at ambient temperature.
Collapse
Affiliation(s)
- Chun-Hsiang Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Chun-Hao Huang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan (R.O.C.)
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Fan-Yi Meng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Yu-Chan Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Chao-Che Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Elise Y Li
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan (R.O.C.)
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| |
Collapse
|
31
|
Liu ZY, Wei YC, Chou PT. Correlation between Kinetics and Thermodynamics for Excited-State Intramolecular Proton Transfer Reactions. J Phys Chem A 2021; 125:6611-6620. [PMID: 34308634 DOI: 10.1021/acs.jpca.1c04192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Finding the relation between thermodynamics and kinetics for a reaction is of fundamental importance. Here, the thermodynamics and kinetics correlation of excited-state intramolecular proton transfer (ESIPT) was investigated by the TD-DFT calculation under the CAM-B3LYP/6-311+G** level. We choose the family 2-(2'-aminophyenyl)benzothiazole and its amino derivatives as paradigms, which all possess the NH-type intramolecular hydrogen bond (H-bond), and investigate the corresponding ESIPT reaction. The H-bond strength can be systematically tuned, so both activation energy ΔG‡ and free energy difference between proton transfer tautomer (T*, product) and normal species (N*, reactant) ΔGT*-N* can be varied. To minimize the environmental interference such as solvent external H-bond and polarity perturbation, a nonpolar solvent such as cyclohexane is chosen as a bath with a polarizable continuum solvation model for the calculation. As a result, the comprehensive computational approach reveals a linear relationship between ΔGT*-N* and ΔG‡, which can be expressed as ΔG‡ = ΔG0 + αΔGT*-N*. The fundamental insight is reminiscent of the Bell-Evans-Polanyi (BEP) principle where α represents the character of the position of the transition state along the proton motion coordinate. In other words, the more exergonic the ESIPT reaction is, the faster the proton transfer rate can be observed. To verify that such a correlation is not a sporadic event, another ESIPT family with an -OH proton, 1-hydroxy-11H-benzo[b]fluoren-11-one and its derivatives, was also investigated and proved to follow the BEP principle as well. Unlike the quantum mechanics description of proton transfer where either proton tunneling is dominant or solute/solvent is coupled in ESIPT, this work demonstrates that reaction kinetics and thermodynamics are strongly correlated within the same class of ESIPT molecules with an intrinsic barrier free from solvent perturbation, being faster with the more exergonic reaction.
Collapse
Affiliation(s)
- Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| |
Collapse
|
32
|
Kuramochi H, Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J Am Chem Soc 2021; 143:9699-9717. [PMID: 34096295 PMCID: PMC9344463 DOI: 10.1021/jacs.1c02545] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In traditional Raman spectroscopy,
narrow-band light is irradiated
on a sample, and its inelastic scattering, i.e., Raman scattering,
is detected. The energy difference between the Raman scattering and
the incident light corresponds to the vibrational energy of the molecule,
providing the Raman spectrum that contains rich information about
the molecular-level properties of the materials. On the other hand,
by using ultrashort optical pulses, it is possible to induce Raman-active
coherent nuclear motion of the molecule and to observe the molecular
vibration in real time. Moreover, this time-domain Raman measurement
can be combined with femtosecond photoexcitation, triggering chemical
changes, which enables tracking ultrafast structural dynamics in a
form of “time-resolved” time-domain Raman spectroscopy,
also known as time-resolved impulsive stimulated Raman spectroscopy.
With the advent of stable, ultrashort laser pulse sources, time-resolved
impulsive stimulated Raman spectroscopy now realizes high sensitivity
and a wide detection frequency window from THz to 3000 cm–1, and has seen success in unveiling the molecular mechanisms underlying
the efficient functions of complex molecular systems. In this Perspective,
we overview the present status of time-domain Raman spectroscopy,
particularly focusing on its application to the study of femtosecond
structural dynamics. We first explain the principle and a brief history
of time-domain Raman spectroscopy and then describe the apparatus
and recent applications to the femtosecond dynamics of complex molecular
systems, including proteins, molecular assemblies, and functional
materials. We also discuss future directions for time-domain Raman
spectroscopy, which has reached a status allowing a wide range of
applications.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
33
|
On the nature of inter- and intramolecular interactions involving benzo[h]quinoline and 10-hydroxybenzo[h]quinoline: Electronic ground state vs excited state study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Luminescent excited-state intramolecular proton-transfer dyes based on 4-functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine (BP(OH)2-Rs); DFT simulation study. J Mol Graph Model 2021; 107:107948. [PMID: 34082341 DOI: 10.1016/j.jmgm.2021.107948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023]
Abstract
The 4-functionalized 6,6'-dimethyl-3,3'-dihydroxy-2,2'-bipyridine dyes (BP(OH)2-Rs) have exhibited dienol and diketo emissions. The optimum geometrical structures for ground, singlet and triplet excited states are computed by DFT/B3LYP/6-31++G that showed the planarity of BP(OH)2-Rs structure. The emission spectra of the molecules are determined in the gas-phase at singlet and triplet excited states using CIS/6-31++G. The theoretical calculations are carried out for BP(OH)2-Rs to understand the impact of different substituents (R = -H (I), -Br (II), -TMS (III), -C2H (IV), -terpyridine (V) and -bodipy (diazaboraindacene) (VI)) on excited-state intramolecular proton transfer (ESIPT) in singlet and triplet excited states. Based on the calculations, the concerted diproton transfer proceeds in the triplet excited state, in which nπ* state has a significant participation in ESIPT. The spectral variation at ESIPT emission of BP(OH)2-Rs is influenced by the electron-acceptor ability of the substituents. The compound V revealed a higher spectral intensity compared to the others. From the comparison with the experimental data, the molecule V is almost planar agreed with the X-ray structure and trend variation of wavelengths. The molecule VI contains bodipy chromophore that excitation energy transfers completely from BP(OH)2 core to a bodipy substituent, leading to emission from the lowest-lying bodipy substituent, and consequently, ESIPT does not occur for this dye.
Collapse
|
35
|
Sensitivity of Intra- and Intermolecular Interactions of Benzo[h]quinoline from Car-Parrinello Molecular Dynamics and Electronic Structure Inspection. Int J Mol Sci 2021; 22:ijms22105220. [PMID: 34069244 PMCID: PMC8156133 DOI: 10.3390/ijms22105220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/29/2023] Open
Abstract
The O-H...N and O-H...O hydrogen bonds were investigated in 10-hydroxybenzo[h]quinoline (HBQ) and benzo[h]quinoline-2-methylresorcinol complex in vacuo, solvent and crystalline phases. The chosen systems contain analogous donor and acceptor moieties but differently coupled (intra- versus intermolecularly). Car–Parrinello molecular dynamics (CPMD) was employed to shed light onto principle components of interactions responsible for the self-assembly. It was applied to study the dynamics of the hydrogen bonds and vibrational features as well as to provide initial geometries for incorporation of quantum effects and electronic structure studies. The vibrational features were revealed using Fourier transformation of the autocorrelation function of atomic velocity and by inclusion of nuclear quantum effects on the O-H stretching solving vibrational Schrödinger equation a posteriori. The potential of mean force (Pmf) was computed for the whole trajectory to derive the probability density distribution and for the O-H stretching mode from the proton vibrational eigenfunctions and eigenvalues incorporating statistical sampling and nuclear quantum effects. The electronic structure changes of the benzo[h]quinoline-2-methylresorcinol dimer and trimers were studied based on Constrained Density Functional Theory (CDFT) whereas the Electron Localization Function (ELF) method was applied for all systems. It was found that the bridged proton is localized on the donor side in both investigated systems in vacuo. The crystalline phase simulations indicated bridged proton-sharing and transfer events in HBQ. These effects are even more pronounced when nuclear quantization is taken into account, and the quantized Pmf allows the proton to sample the acceptor area more efficiently. The CDFT indicated the charge depletion at the bridged proton for the analyzed dimer and trimers in solvent. The ELF analysis showed the presence of the isolated proton (a signature of the strongest hydrogen bonds) only in some parts of the HBQ crystal simulation. The collected data underline the importance of the intramolecular coupling between the donor and acceptor moieties.
Collapse
|
36
|
Nag P, Vennapusa SR. Role of Skeletal and O-H Vibrational Motions in the Ultrafast Excited-State Relaxation Dynamics of Alizarin. J Phys Chem A 2020; 124:10989-10996. [PMID: 33331785 DOI: 10.1021/acs.jpca.0c09454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of two skeletal (C═C and C═O stretch) and O-H vibrational motions in the internal conversion dynamics associated with the coupled S1(ππ*, A') -S2(nπ*, A″) potential energy surfaces of alizarin are investigated theoretically. Quantum wavepacket dynamics simulations reveal a nonadiabatic population transfer from the "bright" S1(ππ*, A') to "dark" S2(nπ*, A″) state on a time scale of 10 fs. A detailed analysis of computed structural parameters, energetics, and time-dependent observables suggest that these vibrations promote the nonadiabatic dynamics before initiating the proton transfer process. We also discuss how the simultaneous evolution of multidimensional dynamics involving several vibrational degrees of freedom would increase the complexity, while analyzing the spectral and kinetic data of time-resolved spectroscopy measurements.
Collapse
Affiliation(s)
- Probal Nag
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Sivaranjana Reddy Vennapusa
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
37
|
Liu ZY, Hu JW, Huang TH, Chen KY, Chou PT. Excited-state intramolecular proton transfer in the kinetic-control regime. Phys Chem Chem Phys 2020; 22:22271-22278. [PMID: 33001109 DOI: 10.1039/d0cp03408h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A new series of molecules bearing a 2,11-dihydro-1H-cyclopenta[de]indeno[1,2-b]quinoline (CPIQ) chromophore with the N-HN type of intramolecular hydrogen bond are strategically designed and synthesized, among which CPIQ-OH, CPIQ-NHAc and CPIQ-NHTs in solution exhibit a single emission band with an anomalously large Stokes shift, whereas CPIQ-NH2 and CPIQ-NHMe show apparent dual-emission property. This, in combination with time-resolved spectroscopy and the computational approach, leads us to conclude that CPIQ-OH, CPIQ-NHAc and CPIQ-NHTs undergo ultrafast, highly exergonic excited-state intramolecular proton transfer (ESIPT), while a finite rate of ESIPT is observed for CPIQ-NH2 and CPIQ-NHMe with a time constant of 117 ps and 39 ps, respectively, in acetonitrile at room-temperature. Further temperature-dependent studies deduce an appreciable ESIPT barrier for CPIQ-NH2 and CPIQ-NHMe. Different from most of the barrier associated ESIPT molecules that are commonly in the thermodynamic-control regime, i.e. found in the thermal pre-equilibrium between excited normal and proton-transfer tautomer states, CPIQ-NH2 and CPIQ-NHMe cases are in the kinetic-control regime where ESIPT is irreversible with a significant barrier. The barrier is able to be tuned by the electronic properties of the -R group in the NR-H proton donor site, resulting in ratiometric fluorescence for normal versus tautomer emission.
Collapse
Affiliation(s)
- Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
38
|
Kim CW, Rhee YM. Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations. J Chem Phys 2020; 152:244109. [PMID: 32610983 DOI: 10.1063/5.0009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
39
|
Anand N, Nag P, Kanaparthi RK, Vennapusa SR. O-H vibrational motions promote sub-50 fs nonadiabatic dynamics in 3-hydroxypyran-4-one: interplay between internal conversion and ESIPT. Phys Chem Chem Phys 2020; 22:8745-8756. [PMID: 32282004 DOI: 10.1039/d0cp00741b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study is used to explore the involvement of O-H vibrational motions in the S0 → S2 photoinduced dynamics of 3-hydroxypyran-4-one (3-HOX). Two transitions, S0 → S1 and S0 → S2, are attributed to the experimentally observed electronic absorption spectral features in the range of 3.5-5.5 eV. We compute model potential energy surfaces of vibronically coupled S1 (nπ*) and S2 (ππ*) states with the aid of extensive electronic structure calculations. The S1-S2 conical intersection is characterized in the O-H bend and O-H stretch vibrational coordinate space. Quantum wavepacket dynamics simulations reveal an ultrafast S2 → S1 internal conversion decay, where about 90% of the S2 population disappears within the first 50 fs of the propagation time. The participation of O-H vibrational motions in the early events of nonadiabatic dynamics is analyzed based on the time evolution of nuclear densities on S2. We discuss the implications of these observations to provide fundamental insights into the nonadiabatic excited-state intramolecular proton transfer in 3-HOX and its derivatives.
Collapse
Affiliation(s)
- Neethu Anand
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| | - Probal Nag
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| | - Ravi Kumar Kanaparthi
- Department Of Chemistry, School Of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kerala - 671320, India.
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O, Vithura, Thiruvananthapuram-695551, Kerala, India.
| |
Collapse
|
40
|
Jonely M, Noriega R. Role of Polar Protic Solvents in the Dissociation and Reactivity of Photogenerated Radical Ion Pairs. J Phys Chem B 2020; 124:3083-3089. [PMID: 32239936 DOI: 10.1021/acs.jpcb.9b11299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The UV photolysis of bimolecular charge transfer complexes is employed to yield reactive radical ions in their solvent-equilibrated electronic ground state. In polar protic media, noncovalent complexes of 1,2,4,5-tetracyanobenzene and toluene undergo efficient, ultrafast dissociation to ion pairs and equilibrate with their solvent environment before the resulting radical ions engage in electron transfer and proton abstraction on subnanosecond time scales. Solvent molecules play a critical role in these reactive pathways and in the dissociation and relaxation processes that precede them. We report a clear separation of time scales for these relaxation and reactive processes, which implies that solvent-solute interactions can be used as a tool for tuning the reaction pathways of equilibrated radical ions in solution.
Collapse
Affiliation(s)
- McKenzie Jonely
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake City, Utah 84112, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, 315 S. 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
41
|
Kim J, Kim CH, Burger C, Park M, Kling MF, Kim DE, Joo T. Non-Born-Oppenheimer Molecular Dynamics Observed by Coherent Nuclear Wave Packets. J Phys Chem Lett 2020; 11:755-761. [PMID: 31927968 DOI: 10.1021/acs.jpclett.9b03488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reaction dynamics of a photochemical reaction is typically described by reaction coordinates based on the Born-Oppenheimer (BO) approximation. A strong interaction between electrons and nuclei, conventionally occurring at conical intersections, however, breaks the BO approximation and has major consequences for the efficiency of a photochemical reaction. Despite its importance, related studies into the non-BO dynamics are scarce. Here, we investigate the non-BO dynamics of excited-state intramolecular proton transfer (ESIPT) occurring in 10-hydroxybenzo[h]quinoline (HBQ). Two coherent vibrational modes at 237 and 794 cm-1 representing molecular dynamics on a diabatic surface in HBQ are identified by a wave packet analysis based on a transient absorption measurement with a time resolution of 11 fs and with a density functional theory-based model calculation. It is also revealed that the strong Coulomb field effect in HBQ leads to the completion of ESIPT within about two cycles of the OH stretching mode. The work paves the way for time-domain studies of molecular dynamics beyond the BO approximation in other photochemical reactions.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea
| | - Chul Hoon Kim
- Center for Attosecond Science and Technology , Max Planck POSTECH/Korea Research Initiative (MPK) , Pohang 37673 , Korea
| | - Christian Burger
- Max Plank Institute of Quantum Optics , D-85748 Garching , Germany
- Physics Department , Ludwig-Maximilians-Universität Munich , D-85748 Garching , Germany
| | - Myeongkee Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea
| | - Matthias F Kling
- Max Plank Institute of Quantum Optics , D-85748 Garching , Germany
- Physics Department , Ludwig-Maximilians-Universität Munich , D-85748 Garching , Germany
| | - Dong Eon Kim
- Center for Attosecond Science and Technology , Max Planck POSTECH/Korea Research Initiative (MPK) , Pohang 37673 , Korea
- Department of Physics , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea
| | - Taiha Joo
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea
| |
Collapse
|
42
|
Yoneda Y, Sotome H, Mathew R, Lakshmanna YA, Miyasaka H. Non-condon Effect on Ultrafast Excited-State Intramolecular Proton Transfer. J Phys Chem A 2019; 124:265-271. [DOI: 10.1021/acs.jpca.9b09085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hikaru Sotome
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Reshma Mathew
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Yapamanu Adithya Lakshmanna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Hiroshi Miyasaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
43
|
Sukpattanacharoen C, Salaeh R, Promarak V, Escudero D, Kungwan N. Heteroatom substitution effect on electronic structures, photophysical properties, and excited-state intramolecular proton transfer processes of 3-hydroxyflavone and its analogues: A TD-DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Jen M, Jeon K, Lee S, Hwang S, Chung WJ, Pang Y. Ultrafast intramolecular proton transfer reactions and solvation dynamics of DMSO. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064901. [PMID: 31867409 PMCID: PMC6920016 DOI: 10.1063/1.5129446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 05/27/2023]
Abstract
Ultrafast intramolecular proton transfers of 1,2-dihydroxyanthraquinone (alizarin-h2) and its deuterated product (alizarin-d2) in dimethyl sulfoxide (DMSO) have been investigated by femtosecond stimulated Raman spectroscopy. The population dynamics in the solute vibrational mode of νC=O and the coherent oscillations observed in all of the skeletal vibrational modes νC=O and νC=C clearly showed the ultrafast excited-state intramolecular proton transfer dynamics of 110 and 170 fs for alizarin-h2 and alizarin-d2, respectively. Interestingly, we have observed that the solvent vibrational modes νS=O and νCSC may also represent ultrafast structural dynamics at the frequencies for its "free" or "aggregated" species. From the kinetic analysis of the νS=O and νCSC modes of DMSO, the ultrafast changes in the solvation or intermolecular interactions between DMSO molecules initiated by the structural changes of solute molecules have been thoroughly investigated. We propose that the solvent vibrational modes νS=O and νCSC of DMSO can be used as a "sensor" for ultrafast chemical reactions accompanying the structural changes and subsequent solute-solvent interactions.
Collapse
Affiliation(s)
| | | | - Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sunjoo Hwang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| |
Collapse
|
45
|
|
46
|
He X, Yang F, Li S, He X, Yu A, Chen J, Xu J, Wang J. Ultrafast Excited-State Intermolecular Proton Transfer in Indigo Oligomer. J Phys Chem A 2019; 123:6463-6471. [DOI: 10.1021/acs.jpca.9b06427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuemei He
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Li
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Anchi Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
47
|
Yu XF, Xiao B, Cheng J, Liu ZB, Yang X, Li Q. Theoretical Design of Near-Infrared Fluorescent Sensor for F Anion Detection Based on 10-Hydroxybenzo[ h]quinoline Backbone. ACS OMEGA 2019; 4:10516-10523. [PMID: 31460149 PMCID: PMC6648395 DOI: 10.1021/acsomega.9b00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Proper design and development of near-infrared (NIR) fluorescent sensors is very important for applications in vivo. In this work, we theoretically designed a ratiometric and NIR fluorescent sensor based on the 10-hydroxybenzo[h]quinoline (HBQ) backbone via systematically investigating the substituent effects of electron-donating groups (-NH2, -CH3, -C(CH3)3) and electron-withdrawing groups (-NO2, -CN, -F, -Cl, -CF3) at the proton donor site on the proton transfer process in HBQ in both the S0 and the S1 states. According to the calculated potential energy profiles along the proton transfer as well as the photophysical properties among all the derivatives, we successfully screened out that 7NH2-HBQ is a promising fluorescent sensor exhibiting the near IR emission spectra accompanied by the large Stokes shift. The potential use of 7NH2-HBQ for F- detection among anions (F-, Cl-, and Br-) was further studied, and the results showed that 7NH2-HBQ is very sensitive and selective toward F- based on the intermolecular hydrogen bonding interaction between F- and OH bond, forming a new complex FACS0 . The ratiometric change in the fluorescence intensity could be induced by the H-F bond transfer from the O atom to the N atom in the S1 state.
Collapse
|
48
|
Heo W, Joo T. Molecular Dynamics of Excited State Intramolecular Charge Transfer in Solution by Coherent Nuclear Wave Packets. Chemphyschem 2019; 20:1448-1455. [PMID: 30974028 DOI: 10.1002/cphc.201801103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Indexed: 11/09/2022]
Abstract
Revealing a proper reaction coordinate in a chemical reaction is the key step towards elucidation of the molecular reaction dynamics. In this report, we investigated the dynamics of intramolecular charge transfer (ICT) of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) occurring in the excited state by time-resolved fluorescence (TF) and TF spectra. Accurate reaction rates and rate-dependent nuclear wave packets in the product state allow detailed investigation of the molecular reaction dynamics. The ICT rate is solvent dependent: (34 fs)-1 , (87 fs)-1 , and (∞)-1 in water, formamide, and dimethylformamide, respectively. By recording spectra of the nuclear wave packets for different reaction rates, chemical species responsible for the emission spectra can be positively identified. The origin of the wave packets can be deduced from the amplitude change of the wave packets at different reaction rates, and the vibrational modes that are associated with the reaction coordinate could be identified. Theoretical calculations of the vibrational reorganization energies reproduce the experimental spectrum of the nuclear wave packets and corroborate the conclusions.
Collapse
Affiliation(s)
- Wooseok Heo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
49
|
Ellis SR, Dietze DR, Rangel T, Brown-Altvater F, Neaton JB, Mathies RA. Resonance Raman Characterization of Tetracene Monomer and Nanocrystals: Excited State Lattice Distortions With Implications For Efficient Singlet Fission. J Phys Chem A 2019; 123:3863-3875. [PMID: 30952191 DOI: 10.1021/acs.jpca.9b02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The characterization of specific phonon modes and exciton states that lead to efficient singlet fission (SF) may be instrumental in the design of the next generation of high-efficiency photovoltaic devices. To this end, we analyze the absolute resonance Raman (RR) cross sections for tetracene (Tc) both as a monomer in solution and as a crystalline solid in an aqueous suspension of nanocrystals. For both systems, a time-dependent wavepacket model is developed that is consistent with the absolute RR cross sections, the magnitude of the absorption cross sections, and the vibronic line shapes of the fluorescence. In the monomer, the intramolecular reorganization energy is between 1500 and 1800 cm-1 and the solvent reorganization energy is 70 cm-1. In nanocrystals, the total reorganization is diminished to less than 600 cm-1. The lowest energy exciton has an estimated intramolecular reorganization energy between 300 and 500 cm-1 while intermolecular librational phonons have a reorganization energy of about 130 cm-1. The diminished reorganization energy of the nanocrystal is interpreted in the context of the delocalization of the band-edge exciton onto about ∼7 molecules. When electron and electron-hole correlations are included within many-body perturbation theory, the polarized absorption spectra of crystalline Tc are calculated and found to be in agreement with experiment. The low-lying exciton states and optically active phonons that contribute to the polarized crystal absorption are identified. The likely role of coherent exciton phonon evolution in the SF process is discussed.
Collapse
Affiliation(s)
- Scott R Ellis
- Department of Chemistry, MC 1460 , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Daniel R Dietze
- Department of Chemistry, MC 1460 , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Tonatiuh Rangel
- Department of Physics, MC 7300 , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Florian Brown-Altvater
- Department of Physics, MC 7300 , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey B Neaton
- Department of Physics, MC 7300 , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Richard A Mathies
- Department of Chemistry, MC 1460 , University of California at Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
50
|
Wang W, Marshall M, Collins E, Marquez S, Mu C, Bowen KH, Zhang X. Intramolecular electron-induced proton transfer and its correlation with excited-state intramolecular proton transfer. Nat Commun 2019; 10:1170. [PMID: 30862822 PMCID: PMC6414547 DOI: 10.1038/s41467-019-09154-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Electron-induced proton transfer depicts the proton motion coupled with the attachment of a low-energy electron to a molecule, which helps to understand copious fundamental chemical processes. Intramolecular electron-induced proton transfer is a similar process that occurs within a single molecule. To date, there is only one known intramolecular example, to the best of our knowledge. By studying the 10-hydroxybenzo[h]quinoline and 8-hydroxyquinoline molecules using anion photoelectron spectroscopy and density functional theory, and by theoretical screening of six other molecules, here we show the intramolecular electron-induced proton transfer capability of a long list of molecules that meanwhile have the excited-state intramolecular proton transfer property. Careful examination of the intrinsic electronic signatures of these molecules reveals that these two distinct processes should occur to the same category of molecules. Intramolecular electron-induced proton transfer could have potential applications such as molecular devices that are responsive to electrons or current.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Evan Collins
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sara Marquez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chaonan Mu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|