1
|
Nimmo AJ, Goodfellow AS, Guntley JT, McKay AP, Cordes DB, Bühl M, Smith AD. Isothiourea catalysed enantioselective generation of point and axially chiral iminothia- and iminoselenazinanones. Chem Sci 2025:d5sc02435h. [PMID: 40365056 PMCID: PMC12068085 DOI: 10.1039/d5sc02435h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Symmetrical and unsymmetrical thioureas, as well as unsymmetrical selenoureas, are used in an isothiourea-catalysed Michael addition-lactamisation protocol using α,β-unsaturated pentafluorophenyl esters to generate iminothia- and iminoselenazinanone heterocycles with high enantioselectivity (up to 99 : 1 er). The scope and limitations of this process have been widely investigated (40 examples in total) with unsymmetrical thio- and selenoureas containing ortho-substituted N-aryl substituents giving atropisomeric products, leading to an effective process for iminothia- and iminoselenazinanones heterocyclic products containing both point and axially chiral stereogenic elements with excellent stereocontrol (up to >95 : 5 dr and 98 : 2 er). Mechanistic investigation showed that (i) the catalytically liberated aryloxide could deprotonate an electron-deficient thiourea; (ii) in the absence of an isothiourea catalyst, this leads to formation of racemic product; (iii) a crossover experiment indicates the reversibility of the thia-Michael addition. Computational analysis has identified the factors leading to enantioselectivity within this process, with stereocontrol arising from the lactamisation step within the catalytic cycle.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | | | - Jacob T Guntley
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews Fife KY16 9ST UK
| |
Collapse
|
2
|
Sadhukhan J, Mukherjee M, Chatterjee P, Datta A. Nonadiabatic Coupling Dictates the Site-Specific Excited-State Decay Pathways of Fluorophenols. ACS OMEGA 2025; 10:7389-7399. [PMID: 40028139 PMCID: PMC11866181 DOI: 10.1021/acsomega.4c11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
In this paper, a combined photophysical and electronic structure theory study demonstrating a remarkable site-specific fluorine substitution effect on the excited-state dynamics of monofluorophenols has been presented. The S1 ← S0 electronic origin band of phenol is shifted to a longer wavelength for para substitution, but to shorter wavelengths for ortho and meta substitutions. The observed sequence of excitation wavelengths of 2-fluorophenol (2FP) < 3-fluorophenol (3FP) < phenol < 4-fluorophenol (4FP) is consistent with the transition energies predicted by TDDFT/CAMB3LYP/6-311++G(d,p) and CASSCF(8,8)/Dunning cc-pVDZ theoretical methods. The most notable contrast of excited-state dynamics is revealed in the different features of the fluorescence spectra; the fluorescence yield of 4FP is almost 6 times larger compared to that of 3FP and the spectral bandwidth of 2FP is nearly 1.5 times larger than that of 4FP. Electronic structure calculation predicts a low-energy S1/S0 conical intersection (CI) near the 1ππ* minimum with respect to the prefulvenic vibronic mode of the aromatic ring, and the energetic location of this CI is altered with the substitution site of the fluorine atom. The predicted energy barrier to this prefulvenic CI is smallest for 3FP but largest for 4FP, leading to a facilitated nonradiative electronic relaxation of the former (3FP), and emission occurs with a much diminished fluorescence intensity.
Collapse
Affiliation(s)
- Jayshree Sadhukhan
- Department
of Chemistry, Government General Degree
College, Singur, Hooghly 712409, West Bengal, India
| | - Moitrayee Mukherjee
- Department
of Physics, Rishi Bankim Chandra College, Naihati 743165, West Bengal, India
| | - Piyali Chatterjee
- School
of Applied Science and Humanities, Haldia
Institute of Technology, Haldia 721657, West Bengal, India
| | - Anwesha Datta
- School
of Chemical Sciences, Indian Association
for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Thanasi IA, Bouloc N, McMahon C, Wang N, Szijj PA, Butcher T, Rochet LNC, Love EA, Merritt A, Baker JR, Chudasama V. Formation of mono- and dual-labelled antibody fragment conjugates via reversible site-selective disulfide modification and proximity induced lysine reactivity. Chem Sci 2025; 16:2763-2776. [PMID: 39811008 PMCID: PMC11726237 DOI: 10.1039/d4sc06500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Many protein bioconjugation strategies focus on the modification of lysine residues owing to the nucleophilicity of their amine side-chain, the generally high abundance of lysine residues on a protein's surface and the ability to form robustly stable amide-based bioconjugates. However, the plethora of solvent accessible lysine residues, which often have similar reactivity, is a key inherent issue when searching for regioselectivity and/or controlled loading of an entity. A relevant example is the modification of antibodies and/or antibody fragments, whose conjugates offer potential for a wide variety of applications. Thus, research in this area for the controlled loading of an entity via reaction with lysine residues is of high importance. In this article, we present an approach to achieve this by exploiting the quantitative and reversible site-selective modification of disulfides using pyridazinediones, which facilitates near-quantitative proximity-induced reactions with lysines to enable controlled loading of an entity. The strategy was appraised on several clinically relevant antibody fragments and enabled the formation of mono-labelled lysine-modified antibody fragment conjugates via the formation of stable amide bonds and the use of click chemistry for modular modification. Furthermore, through the use of multiple cycles of this novel strategy, an orthogonally bis-labelled lysine-modified antibody fragment conjugate was also furnished.
Collapse
Affiliation(s)
- Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Nathalie Bouloc
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ning Wang
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Peter A Szijj
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - Andy Merritt
- LifeArc, Accelerator Building Open Innovation Campus Stevenage SG1 2FX UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Murillo-Gelvez J, Dmitrenko O, Torralba-Sanchez TL, Tratnyek PG, Di Toro DM. p Ka prediction of per- and polyfluoroalkyl acids in water using in silico gas phase stretching vibrational frequencies and infrared intensities. Phys Chem Chem Phys 2023; 25:24745-24760. [PMID: 37671434 DOI: 10.1039/d3cp01390a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
To successfully understand and model the environmental fate of per- and polyfluoroalkyl substances (PFAS), it is necessary to know key physicochemical properties (PChPs) such as pKa; however, measured PChPs of PFAS are scarce and of uncertain reliability. In this study, quantitative structure-activity relationships (QSARs) were developed by correlating calculated (M062-X/aug-cc-pVDZ) vibrational frequencies (VF) and corresponding infrared intensities (IRInt) to the pKa of carboxylic acids, sulfonic acids, phosphonic acids, sulfonamides, betaines, and alcohols. Antisymmetric stretching VF of the anionic species were used for all subclasses except for alcohols where the OH stretching VF performed better. The individual QSARs predicted the pKa for each subclass mostly within 0.5 pKa units from the experimental values. The inclusion of IRInt as a pKa predictor for carboxylic acids improved the results by decreasing the root-mean-square error from 0.35 to 0.25 (n > 100). Application of the developed QSARs to estimate the pKa of PFAS within each subclass revealed that the length of the perfluoroalkyl chain has minimal effect on the pKa, consistent with other models but in stark contrast with the limited experimental data available.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Nimmo AJ, Bitai J, Young CM, McLaughlin C, Slawin AMZ, Cordes DB, Smith AD. Enantioselective isothiourea-catalysed reversible Michael addition of aryl esters to 2-benzylidene malononitriles. Chem Sci 2023; 14:7537-7544. [PMID: 37449062 PMCID: PMC10337745 DOI: 10.1039/d3sc02101g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Catalytic enantioselective transformations usually rely upon optimal enantioselectivity being observed in kinetically controlled reaction processes, with energy differences between diastereoisomeric transition state energies translating to stereoisomeric product ratios. Herein, stereoselectivity resulting from an unusual reversible Michael addition of an aryl ester to 2-benzylidene malononitrile electrophiles using an isothiourea as a Lewis base catalyst is demonstrated. Notably, the basicity of the aryloxide component and reactivity of the isothiourea Lewis base both affect the observed product selectivity, with control studies and crossover experiments indicating the feasibility of a constructive reversible Michael addition from the desired product. When this reversible addition is coupled with a crystallisation-induced diastereomer transformation (CIDT) it allows isolation of products in high yield and stereocontrol (14 examples, up to 95 : 5 dr and 99 : 1 er). Application of this process to gram scale, plus derivatisations to provide further useful products, is demonstrated.
Collapse
Affiliation(s)
- Alastair J Nimmo
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Jacqueline Bitai
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Claire M Young
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
6
|
Pan X, Wei J, Wang M, Zhang J, Xu Z, Wei H, Lai N, Nian K, Zhang R, Zhang X. Comparative studies of transformation behaviors and mechanisms of halophenols in multiple chemical oxidative systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161756. [PMID: 36690111 DOI: 10.1016/j.scitotenv.2023.161756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Due to wide applications, halophenols (HPs), especially bromophenols, chlorophenols, and fluorophenols, are commonly detected but resistant to biological removal in wastewater treatment plants (WWTPs). This study investigated the overall transformation behaviors of three representative HPs (2,4-dichlorophenol: 24-DCP, 2,4-dibromophenol: 24-DBP, 2,4-difluorophenol: 24-DFP) in six chemical oxidative systems (KMnO4, K2FeO4, NaClO, O3, UV, and persulfate (PS)). The results revealed fast removal of selected HPs by O3, PS and K2FeO4, while a large discrepancy in their removal efficiencies occurred under UV irradiation, KMnO4 oxidation and particularly chlorination. Based on the analysis of the identified intermediates and products, coupling among the five routes was the general route, and dimers were the main intermediates for HP oxidation. The effect of the halogen atom on the transformation pathways of HPs was highly reaction type dependent. Among the six chemical treatments, PS could induce HPs to yield relatively low-molecular-weight polymers and obtain the highest coupling degree. Transition state (TS) calculations showed that the H atom linked to the phenoxy group of HPs was the most easily abstracted by hydroxyl radicals to form the coupling precursor, i.e., phenoxy radicals. This high coupling behavior further resulted in the increased toxicity to green algae. Characterization revealed that HP reaction solutions treated with PS had a severely negative effect on algae growth, photosynthetic pigment synthesis, and the antioxidant enzyme system. These findings can shed light on the reaction mechanisms of advanced oxidation technologies and some risk management and control of PS technique may be considered when treating phenolic pollutants.
Collapse
Affiliation(s)
- Xiaoxue Pan
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China.
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, China
| | - Min Wang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Jie Zhang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Zhiming Xu
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Haojie Wei
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Nami Lai
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Kainan Nian
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xuesheng Zhang
- Laboratory of Wetland Protection and Ecological Restoration, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China.
| |
Collapse
|
7
|
Kenouche S, Sandoval-Yañez C, Martínez-Araya JI. The antioxidant capacity of myricetin. A molecular electrostatic potential analysis based on DFT calculations. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Uzuegbunam BC, Li J, Paslawski W, Weber W, Svenningsson P, Ågren H, Yousefi BH. Toward Novel [18F]Fluorine-Labeled Radiotracers for the Imaging of α-Synuclein Fibrils. Front Aging Neurosci 2022; 14:830704. [PMID: 35572127 PMCID: PMC9099256 DOI: 10.3389/fnagi.2022.830704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/27/2022] [Indexed: 12/05/2022] Open
Abstract
The accumulation of α-synuclein aggregates (α-syn) in the human brain is an occurrence common to all α-synucleinopathies. Non-invasive detection of these aggregates in a living brain with a target-specific radiotracer is not yet possible. We have recently discovered that the inclusion of a methylenedioxy group in the structure of diarylbisthiazole (DABTA)-based tracers improves binding affinity and selectivity to α-syn. Subsequently, complementary in silico modeling and machine learning (ML) of tracer–protein interactions were employed to predict surface sites and structure–property relations for the binding of the ligands. Based on this observation, we developed a small focused library of DABTAs from which 4-(benzo[d][1,3]dioxol-5-yl)-4′-(3-[18F]fluoro-4-methoxyphenyl)-2,2′-bithiazole [18F]d2, 6-(4′-(3-[18F]fluoro-4-methoxyphenyl)-[2,2′-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [18F]d4, 4-(benzo [d][1,3]dioxol-5-yl)-4′-(6-[18F]fluoropyridin-3-yl)-2,2′-bithiazole [18F]d6, and 6-(4′-(6-[18F]fluoropyridin-3-yl)-[2,2′-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [18F]d8 were selected based on their high binding affinity to α-syn and were further evaluated. Binding assay experiments carried out with the non-radioactive versions of the above tracers d2, d4, d6, and d8 showed high binding affinity of the ligands to α-syn: 1.22, 0.66, 1.21, and 0.10 nM, respectively, as well as excellent selectivity over β-amyloid plaques (Aβ) and microtubular tau aggregates (>200-fold selectivity). To obtain the tracers, their precursors were radiolabeled either via an innovative ruthenium-mediated (SNAr) reaction ([18F]d2 and [18F]d4) or typical SNAr reaction ([18F]d6 and [18F]d8) with moderate-to-high radiochemical yields (13% – 40%), and high molar activity > 60 GBq/μmol. Biodistribution experiments carried out with the tracers in healthy mice revealed that [18F]d2 and [18F]d4 showed suboptimal brain pharmacokinetics: 1.58 and 4.63 %ID/g at 5 min post-injection (p.i.), and 1.93 and 3.86 %ID/g at 60 min p.i., respectively. However, [18F]d6 and [18F]d8 showed improved brain pharmacokinetics: 5.79 and 5.13 %ID/g at 5 min p.i.; 1.75 and 1.07 %ID/g at 60 min p.i.; and 1.04 and 0.58 %ID/g at 120 min p.i., respectively. The brain uptake kinetics of [18F]d6 and [18F]d8 were confirmed in a dynamic PET study. Both tracers also showed no brain radiometabolites at 20 min p.i. in initial in vivo stability experiments carried out in healthy mice. [18F]d8 seems very promising based on its binding properties and in vivo stability, thus encouraging further validation of its usefulness as a radiotracer for the in vivo visualization of α-syn in preclinical and clinical settings. Additionally, in silico and ML-predicted values correlated with the experimental binding affinity of the ligands.
Collapse
Affiliation(s)
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Behrooz Hooshyar Yousefi
- Department of Nuclear Medicine, Philipps University of Marburg, Marburg, Germany
- *Correspondence: Behrooz Hooshyar Yousefi,
| |
Collapse
|
9
|
Morency M, Néron S, Iftimie R, Wuest JD. Predicting p Ka Values of Quinols and Related Aromatic Compounds with Multiple OH Groups. J Org Chem 2021; 86:14444-14460. [PMID: 34613729 DOI: 10.1021/acs.joc.1c01279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinonoid compounds play central roles as redox-active agents in photosynthesis and respiration and are also promising replacements for inorganic materials currently used in batteries. To design new quinonoid compounds and predict their state of protonation and redox behavior under various conditions, their pKa values must be known. Methods that can predict the pKa values of simple phenols cannot reliably handle complex analogues in which multiple OH groups are present and may form intramolecular hydrogen bonds. We have therefore developed a straightforward method based on a linear relationship between experimental pKa values and calculated differences in energy between quinols and their deprotonated forms. Simple adjustments allow reliable predictions of pKa values when intramolecular hydrogen bonds are present. Our approach has been validated by showing that predicted and experimental values for over 100 quinols and related compounds differ by an average of only 0.3 units. This accuracy makes it possible to select proper pKa values when experimental data vary, predict the acidity of quinols and related compounds before they are made, and determine the sites and orders of deprotonation in complex structures with multiple OH groups.
Collapse
Affiliation(s)
- Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
10
|
Kim B, Song Y, Lee SY. Stereodivergent silver-catalyzed synthesis of pyroglutamic acid esters. Chem Commun (Camb) 2021; 57:11052-11055. [PMID: 34608900 DOI: 10.1039/d1cc04875a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a silver-catalyzed method for the enantio- and diastereodivergent synthesis of chiral pyroglutamic acid esters with multiple stereocenters. This process proceeds through asymmetric conjugate addition of glycine imine esters to a broad range of β-substituted α,β-unsaturated perfluorophenyl esters followed by lactamization. By leveraging catalyst control and stereospecificity of the 1,4-addition process, all four product stereoisomers containing two adjacent stereocenters are accessible with high stereoselectivity.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Yuna Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
11
|
Milic M, Targos K, Tellez Chavez M, Thompson MAM, Jennings JJ, Franz AK. NMR Quantification of Hydrogen-Bond-Accepting Ability for Organic Molecules. J Org Chem 2021; 86:6031-6043. [PMID: 33880918 DOI: 10.1021/acs.joc.0c02876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrogen-bond-accepting abilities for more than 100 organic molecules are quantified using 19F and 31P NMR spectroscopy with pentafluorobenzoic acid (PFBA) and phenylphosphinic acid (PPA) as commercially available, inexpensive probes. Analysis of pyridines and anilines with a variety of electronic modifications demonstrates that changes in NMR shifts can predict the secondary effects that contribute to H-bond-accepting ability, establishing the ability of PFBA and PPA binding to predict electronic trends. The H-bond-accepting abilities of various metal-chelating ligands and organocatalysts are also quantified. The measured Δδ(31P) and Δδp(19F) values correlate strongly with Hammett parameters, pKa of the protonated HBA, and proton-transfer basicity (pKBH+).
Collapse
Affiliation(s)
- Mira Milic
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Karina Targos
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Magda Tellez Chavez
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Madison A M Thompson
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Julia J Jennings
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annaliese K Franz
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Lin KY, Hin Lam C, Lin XH, Hsu JI, Fan SY, Gupta NK, Lin YC, Khoon Tee B, Li JP, Chen JK, Tan KT. Improved Stabilities of Labeling Probes for the Selective Modification of Endogenous Proteins in Living Cells and In Vivo. Chem Asian J 2021; 16:937-948. [PMID: 33629493 DOI: 10.1002/asia.202100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Indexed: 01/24/2023]
Abstract
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chak Hin Lam
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Xin-Hui Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Jung-I Hsu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Syuan-Yun Fan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Nitesh K Gupta
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Chun Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Boon Khoon Tee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
13
|
McLaughlin C, Smith AD. Generation and Reactivity of C(1)-Ammonium Enolates by Using Isothiourea Catalysis. Chemistry 2021; 27:1533-1555. [PMID: 32557875 PMCID: PMC7894297 DOI: 10.1002/chem.202002059] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/17/2022]
Abstract
C(1)-Ammonium enolates are powerful, catalytically generated synthetic intermediates applied in the enantioselective α-functionalisation of carboxylic acid derivatives. This minireview describes the recent developments in the generation and application of C(1)-ammonium enolates from various precursors (carboxylic acids, anhydrides, acyl imidazoles, aryl esters, α-diazoketones, alkyl halides) using isothiourea Lewis base organocatalysts. Their synthetic utility in intra- and intermolecular enantioselective C-C and C-X bond forming processes on reaction with various electrophiles will be showcased utilising two distinct catalyst turnover approaches.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughFifeKY16 9STScotland
| |
Collapse
|
14
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021; 60:290-296. [PMID: 32770641 PMCID: PMC7821193 DOI: 10.1002/anie.202008178] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Indexed: 11/11/2022]
Abstract
The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.
Collapse
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Simuck F. Yuk
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Katherine Koh
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Mal‐Soon Lee
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Kelsey Stoerzinger
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Difan Zhang
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Laura C. Meyer
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Abhi Karkamkar
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Jamie D. Holladay
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Donald M. Camaioni
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | | | - Roger Rousseau
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
| | - Johannes A. Lercher
- Institute for Integrated CatalysisPacific Northwest National LaboratoryP.O. Box 999RichlandWA99352USA
- Department of Chemistry and Catalysis Research Center InstitutionTU MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
15
|
Sanyal U, Yuk SF, Koh K, Lee M, Stoerzinger K, Zhang D, Meyer LC, Lopez‐Ruiz JA, Karkamkar A, Holladay JD, Camaioni DM, Nguyen M, Glezakou V, Rousseau R, Gutiérrez OY, Lercher JA. Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Udishnu Sanyal
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Simuck F. Yuk
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Katherine Koh
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Mal‐Soon Lee
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Kelsey Stoerzinger
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- School of Chemical, Biological and Environmental Engineering Oregon State University Corvallis OR 97331 USA
| | - Difan Zhang
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Laura C. Meyer
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Juan A. Lopez‐Ruiz
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Abhi Karkamkar
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Jamie D. Holladay
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Donald M. Camaioni
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Manh‐Thuong Nguyen
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | | | - Roger Rousseau
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Johannes A. Lercher
- Institute for Integrated Catalysis Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
- Department of Chemistry and Catalysis Research Center Institution TU München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
16
|
Huang HY, Fan SY, Chang EH, Lam CH, Lin YC, Lin XH, Gupta NK, Tan KT. Self-Immolative Difluorophenyl Ester Linker for Affinity-Based Fluorescence Turn-on Protein Detection. Anal Chem 2020; 92:15463-15471. [PMID: 33179902 DOI: 10.1021/acs.analchem.0c03178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Currently most fluorogenic probes are developed for the analysis of enzymes, where a bond breaking or rearrangement reaction is required to transform a nonfluorescent enzymatic substrate into a fluorescent product. However, this approach cannot be used for proteins that do not possess enzymatic activities. In this article, we show that fluorogenic probes with a self-immolative difluorophenyl ester linker can mimic the bond disassembly processes of fluorogenic enzyme substrates for the rapid analysis of nonenzymatic proteins. Although numerous self-immolative reagents have shown promising applications in sensors, drug delivery systems, and material chemistry, all of them are triggered by either enzymes or small reactive molecules. In our strategy, the probe binds to the protein via a specific protein-ligand interaction, inducing a chemical reaction between the self-immolative linker and an amino acid of the protein, thereby triggering a cascade reaction that leads to the activation and release of the fluorogenic reporter. In contrast, a phenyl ester linker without the difluoro substituent cannot be triggered to release the fluorogenic reporter. With this probe design, live-cell imaging of extracellular and intracellular endogenous tumor marker proteins can be achieved with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Hsiang-Yun Huang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Syuan-Yun Fan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - En-Hao Chang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Chak Hin Lam
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Yu-Chun Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Xin-Hui Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Nitesh K Gupta
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| |
Collapse
|
17
|
Elkady M, Salama E, Amer WA, Ebeid EZM, Ayad MM, Shokry H. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43077-43092. [PMID: 32729039 DOI: 10.1007/s11356-020-10247-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In the current study, poly(vinyl alcohol)/alginate/chitosan (PVA/Alg/CS) composite nanofiber was immobilized with six different ratios of nanomagnetic zinc oxide (M-ZnO) (0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, and 1 wt%) via the electrospinning technique. The various fabricated composite (M-6) nanofibers were characterized using Fourier transform infrared (FTIR), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), atomic force microscope (AFM), thermogravimetric analysis (TGA), mechanical testing machine, and optical contact angle measurement. The fabricated composite nanofibers were applied for the adsorption of phenol from aqueous solutions. The 1.0 wt% M-ZnO/PVA/Alg/CS composite nanofibers were selected as the best phenol adsorbent with removal percentage of 84.22%. The influence of different processing parameter such as contact time, composite nanofiber dosage, pH, initial pollutant concentration, and temperature were examined. Increasing nanofiber dosage and the solution temperature was found to enhance the phenol adsorption onto the prepared nanocomposites. The maximum percentage of phenol removal was achieved at 84.22% after 90 min. Meanwhile, the maximum monolayer adsorption capacity (at pH = 5.0) was estimated to be 10.03 mg g-1 at 25 °C. Kinetic, isotherm, and thermodynamic studies were designated to proof the endothermic, spontaneous, and thermodynamically nature of the phenol adsorption process. These outcomes indicate the effectiveness of the fabricated M-ZnO/PVA/Alg/CS nanofibers as adsorbent materials for phenol from aqueous solutions.
Collapse
Affiliation(s)
- Marwa Elkady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Eslam Salama
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamad M Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Hassan Shokry
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
18
|
Cooper GA, Cobbin MR, Ashfold MNR. Effects of Ring Fluorination on the Ultraviolet Photodissociation Dynamics of Phenol. J Phys Chem A 2020; 124:9698-9709. [PMID: 33179506 DOI: 10.1021/acs.jpca.0c08927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of photoinduced O-H bond fission in five fluorinated phenols (2-fluorophenol, 3-fluorophenol, 2,6-difluorophenol, 3,4,5-trifluorophenol, and pentafluorophenol) have been investigated by H Rydberg atom photofragment translational spectroscopy following excitation at many wavelengths in the range 220 ≤ λ ≤ 275 nm. The presence of multiple fluorine substituents reduces the efficiency of O-H bond fission (by tunneling) from the first excited (11ππ*) electronic state, whereas all bar the perfluorinated species undergo O-H bond fission when excited at shorter wavelengths (to the 21ππ* state). As in bare phenol, O-H bond fission is deduced to occur by non-adiabatic coupling at conical intersections between the photoprepared "bright" ππ* states and the 11πσ* potential energy surface. In all cases, the fluorophenoxyl photoproducts are found to be formed in a range of vibrational levels, all of which include an odd number of quanta (typically one) in an out-of-plane (a″) vibrational mode; this product vibration is viewed as a legacy of the parent out-of-plane motions that promote non-adiabatic coupling to the dissociative 11πσ* potential. The radical products also show activity in in-plane vibrations involving coupled (both in- and out-of-phase) C-O and C-F wagging motions, which can be traced to the impulse between the recoiling O and H atoms and, in detail, are sensitive to the presence (or not) of an intramolecular F···H-O hydrogen bond. Upper limit values for the O-H bond dissociation energies are reported for all molecules studied apart from pentafluorophenol.
Collapse
Affiliation(s)
- Graham A Cooper
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | | |
Collapse
|
19
|
Is It Possible to Measure Monobromamine Using Colorimetric Methods Based on the Berthelot Reaction, Like for Monochloramine? ANALYTICA 2020. [DOI: 10.3390/analytica1010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Analytical methods based on the Berthelot reaction were recently adapted for determining monochloramine (MCA: NH2Cl) in freshwater. The specificity of the Berthelot reaction with regard to MCA is related to the need for two exchangeable hydrogen atoms to form indophenol blue. MCA can thus be distinguished from organic N-chloramines, which have only one exchangeable hydrogen atom. Monobromamine (MBA: NH2Br) may be formed during chlorination of seawater containing ammonium ions. Quantifying MBA is quite challenging and no method has been reported for its specific determination in seawater. As MBA also has two exchangeable hydrogen atoms, its reactivity might be analogous to that of MCA, but this hypothesis has never been investigated. The aim of this study was to examine the applicability of the so-called “indophenol method” for the determination of the MBA in freshwater and seawater samples. The reaction between MBA and Berthelot reagents was studied in both ultrapure water and artificial seawater. The reaction products were characterized by using gas chromatography coupled to mass spectrometry (GC–MS), Fourier transform-ion cyclotron resonance mass spectrometry (FT–ICR MS), and UV–vis spectroscopy. Results showed that colorimetric methods based on the Berthelot reaction were not suitable for measuring MBA in freshwater or seawater, since NH2Br reacts with alkaline phenol derivative via electrophilic substitution to form ortho- and para-brominated phenols instead of forming indophenol.
Collapse
|
20
|
Rapp PB, Murai K, Ichiishi N, Leahy DK, Miller SJ. Catalytic Sulfamoylation of Alcohols with Activated Aryl Sulfamates. Org Lett 2020; 22:168-174. [PMID: 31833780 DOI: 10.1021/acs.orglett.9b04119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a new catalytic method for alcohol sulfamoylation that deploys electron-deficient aryl sulfamates as activated group transfer reagents. The reaction utilizes the simple organic base N-methylimidazole, proceeds under mild conditions, and provides intrinsic selectivity for 1° over 2° alcohols (up to >40:1 for certain nucleosides). The requisite aryl sulfamate donors are stable crystalline solids that can be readily prepared on a large scale. Mechanistic considerations support the intermediacy of HNSO2 "aza-sulfene" in the transfer reaction.
Collapse
Affiliation(s)
- Peter B Rapp
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Koichi Murai
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Naoko Ichiishi
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - David K Leahy
- Process Chemistry Development , Takeda Pharmaceuticals International Co. , Cambridge , Massachusetts 02139 , United States
| | - Scott J Miller
- Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
21
|
Biswas S, Bhattacharya I, Chakraborty T. Identification of an Emitting Metastable State of p-Fluorophenol-Ammonia 1:2 Complex by Laser-Induced Fluorescence Spectroscopy. J Phys Chem A 2019; 123:10563-10570. [PMID: 31714082 DOI: 10.1021/acs.jpca.9b07958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have demonstrated here, for the first time to our knowledge, the formation of an emitting metastable species upon lowest electronic excitation (S1) of a hydrogen-bonded 1:2 complex of para-fluorophenol (pFP) with ammonia (NH3), which is known to be one of the smallest reactive complexes to undergo excited state H-atom transfer (HAT) reaction to produce •NH4(NH3) radical fragment. The emission spectrum of the species is characterized to be red-shifted, broad, and structureless. From the viewpoint of energy balance, an excited state proton transfer (ESPT) is unfavorable, but according to predicted electronic structure parameters, the metastable state species could be stabilized by charge transfer (CT) interaction at the hydrogen-bonded geometry of the complex. We propose that this species could act as an intermediate to the HAT process in the excited state. The observation of such a state could be valuable to understand the complex dynamics of similar events in biologically relevant systems.
Collapse
Affiliation(s)
- Souvick Biswas
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| | - Indrani Bhattacharya
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| | - Tapas Chakraborty
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A Raja S C Mullick Road, Jadavpur , Kolkata 700032 , India
| |
Collapse
|
22
|
Elser I, Groos J, Hauser PM, Koy M, van der Ende M, Wang D, Frey W, Wurst K, Meisner J, Ziegler F, Kästner J, Buchmeiser MR. Molybdenum and Tungsten Alkylidyne Complexes Containing Mono-, Bi-, and Tridentate N-Heterocyclic Carbenes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00481] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
23
|
McLaughlin C, Slawin AMZ, Smith AD. Base‐free Enantioselective C(1)‐Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Calum McLaughlin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| | - Andrew D. Smith
- EaStCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland KY16 9ST UK
| |
Collapse
|
24
|
McLaughlin C, Slawin AMZ, Smith AD. Base-free Enantioselective C(1)-Ammonium Enolate Catalysis Exploiting Aryloxides: A Synthetic and Mechanistic Study. Angew Chem Int Ed Engl 2019; 58:15111-15119. [PMID: 31436380 DOI: 10.1002/anie.201908627] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/21/2022]
Abstract
An isothiourea-catalyzed enantioselective Michael addition of aryl ester pronucleophiles to vinyl bis-sulfones via C(1)-ammonium enolate intermediates has been developed. This operationally simple method allows the base-free functionalization of aryl esters to form α-functionalized products containing two contiguous tertiary stereogenic centres in excellent yield and stereoselectivity (all ≥99:1 er). Key to the success of this methodology is the multifunctional role of the aryloxide, which operates as a leaving group, Brønsted base, Brønsted acid and Lewis base within the catalytic cycle. Comprehensive mechanistic studies, including variable time normalization analysis (VTNA) and isotopologue competition experiments, have been carried out. These studies have identified (i) orders of all reactants; (ii) a turnover-limiting Michael addition step, (iii) product inhibition, (iv) the catalyst resting state and (v) catalyst deactivation through protonation.
Collapse
Affiliation(s)
- Calum McLaughlin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Alexandra M Z Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, UK
| |
Collapse
|
25
|
Chen YH, Chien WC, Lee DC, Tan KT. Signal Amplification and Detection of Small Molecules via the Activation of Streptavidin and Biotin Recognition. Anal Chem 2019; 91:12461-12467. [DOI: 10.1021/acs.analchem.9b03144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Kui-Thong Tan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (ROC)
| |
Collapse
|
26
|
Pimviriyakul P, Surawatanawong P, Chaiyen P. Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation. Chem Sci 2018; 9:7468-7482. [PMID: 30319747 PMCID: PMC6180312 DOI: 10.1039/c8sc01482e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Enzymes that are capable of detoxifying halogenated phenols (HPs) and nitrophenols (NPs) are valuable for bioremediation and waste biorefining. HadA monooxygenase was found to perform dual functions of oxidative dehalogenation (hydroxylation plus halide elimination) and denitration (hydroxylation plus nitro elimination). Rate constants associated with individual steps of HadA reactions with phenol, halogenated phenols and nitrophenols were measured using combined transient kinetic approaches of stopped-flow absorbance/fluorescence and rapid-quench flow techniques. Density functional theory was used to calculate the thermodynamic and electronic parameters associated with hydroxylation and group elimination steps. These parameters were correlated with the rate constants of hydroxylation, group elimination, and overall product formation to identify factors controlling individual steps. The results indicated that the hydroxylation rate constant is higher when the pK a of the phenolic group is lower, i.e. it is more easily deprotonated, but not higher when the energy gap between the E LUMO of the C4a-hydroperoxy-FAD intermediate and the E HOMO of the phenolate substrate is lower. These data suggest that the substrate deprotonation has a higher energy barrier than the -OH transfer, and thus controls the hydroxylation step. For the group elimination, the process is controlled by the ability of the C-X bond to break. For the overall product formation (hydroxylation and group elimination combined), this analysis showed that the rate constant of product formation is dependent on the pK a value of the substrate, indicating that the overall reaction is controlled by substrate deprotonation. This step also likely has the highest energy barrier and thus controls the overall process of oxidative dehalogenation and denitration by HadA. This report is the first to identify a key mechanistic factor controlling the enzymatic processes of oxidative dehalogenation and denitration.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
| |
Collapse
|
27
|
Rajak K, Ghosh A, Mahapatra S. Photophysics of phenol and pentafluorophenol: The role of nonadiabaticity in the optical transition to the lowest bright 1ππ* state. J Chem Phys 2018; 148:054301. [DOI: 10.1063/1.5015986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Karunamoy Rajak
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Arpita Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - S. Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
28
|
Walton JC. Enhanced Proton Loss from Neutral Free Radicals: Toward Carbon-Centered Superacids. J Phys Chem A 2018; 122:1422-1431. [DOI: 10.1021/acs.jpca.7b11796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- John C. Walton
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16
9ST, United Kingdom
| |
Collapse
|
29
|
Walton JC. Radical-Enhanced Acidity: Why Bicarbonate, Carboxyl, Hydroperoxyl, and Related Radicals Are So Acidic. J Phys Chem A 2017; 121:7761-7767. [DOI: 10.1021/acs.jpca.7b08081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John C. Walton
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, United Kingdom
| |
Collapse
|
30
|
Sui DP, Chai Y. Removal of Bromophenols from Aqueous Solution by Using Hazelnut Shell-derived Activated Carbon: Equilibrium Study and Influence of Operation Conditions. CHEM LETT 2017. [DOI: 10.1246/cl.161005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dian-Peng Sui
- College of Sciences, Northeastern University, Shenyang 110004, P. R. China
| | - Yuan Chai
- College of Sciences, Northeastern University, Shenyang 110004, P. R. China
| |
Collapse
|
31
|
Tshepelevitsh S, Trummal A, Haav K, Martin K, Leito I. Hydrogen-Bond Donicity in DMSO and Gas Phase and Its Dependence on Brønsted Acidity. J Phys Chem A 2016; 121:357-369. [DOI: 10.1021/acs.jpca.6b11115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sofja Tshepelevitsh
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, 23 Akadeemia tee, Tallinn 12618, Estonia
| | - Kristjan Haav
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Kerli Martin
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, 14a Ravila Street, Tartu 50411, Estonia
| |
Collapse
|
32
|
Ohashi A, Shiratori K, Kim HB. Analysis of the association of cobalt(III) chelates with fluorine-containing phenols in supercritical carbon dioxide. Talanta 2016; 146:789-94. [DOI: 10.1016/j.talanta.2015.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
|
33
|
Karmakar S, Mukhopadhyay DP, Chakraborty T. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ∗ states. J Chem Phys 2015; 142:184303. [DOI: 10.1063/1.4919950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Shreetama Karmakar
- Physical Chemistry Department, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deb Pratim Mukhopadhyay
- Physical Chemistry Department, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- Physical Chemistry Department, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
34
|
Cao J, Lopez R, Thacker JM, Moon JY, Jiang C, Morris SNS, Bauer JH, Tao P, Mason RP, Lippert AR. Chemiluminescent Probes for Imaging H 2S in Living Animals. Chem Sci 2015; 6:1979-1985. [PMID: 25709805 PMCID: PMC4335805 DOI: 10.1039/c4sc03516j] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022] Open
Abstract
Hydrogen sulphide (H2S) is an endogenous mediator of human health and disease, but precise measurement in living cells and animals remains a considerable challenge. We report the total chemical synthesis and characterization of three 1,2-dioxetane chemiluminescent reaction-based H2S probes, CHS-1, CHS-2, and CHS-3. Upon treatment with H2S at physiological pH, these probes display instantaneous light emission that is sustained for over an hour with high selectivity against other reactive sulphur, oxygen, and nitrogen species. Analysis of the phenol/phenolate equilibrium and atomic charges has provided a generally applicable predictive model to design improved chemiluminescent probes. The utility of these chemiluminescent reagents was demonstrated by applying CHS-3 to detect cellularly generated H2S using a multi-well plate reader and to image H2S in living mice using CCD camera technology.
Collapse
Affiliation(s)
- J. Cao
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
- Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - R. Lopez
- Laboratory of Prognostic Radiology , Pre-clinical Imaging Section , Department of Radiology , UT Southwestern Medical Center , Dallas , TX 75390-9058 , USA
| | - J. M. Thacker
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
| | - J. Y. Moon
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
| | - C. Jiang
- Hockaday School , Dallas , TX 75229 , USA
| | - S. N. S. Morris
- Department of Biological Sciences , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - J. H. Bauer
- Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
- Department of Biological Sciences , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - P. Tao
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
- Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - R. P. Mason
- Laboratory of Prognostic Radiology , Pre-clinical Imaging Section , Department of Radiology , UT Southwestern Medical Center , Dallas , TX 75390-9058 , USA
| | - A. R. Lippert
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
- Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| |
Collapse
|
35
|
Momiyama N, Okamoto H, Shimizu M, Terada M. Synthetic Method for 2,2'-Disubstituted Fluorinated Binaphthyl Derivatives and Application as Chiral Source in Design of Chiral Mono-Phosphoric Acid Catalyst. Chirality 2015; 27:464-75. [DOI: 10.1002/chir.22429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Norie Momiyama
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science Graduate School of Physical Sciences; Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi Japan
| | - Hiroshi Okamoto
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai Miyagi Japan
| | - Masahiro Shimizu
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai Miyagi Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai Miyagi Japan
- Research and Analytical Center for Giant Molecules, Graduate School of Science; Tohoku University; Sendai Miyagi Japan
| |
Collapse
|
36
|
Dolfing J, Novak I. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments. Biodegradation 2014; 26:15-27. [PMID: 25231938 PMCID: PMC4305373 DOI: 10.1007/s10532-014-9710-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/25/2014] [Indexed: 12/04/2022]
Abstract
The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson’s group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.
Collapse
Affiliation(s)
- Jan Dolfing
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, England, UK,
| | | |
Collapse
|
37
|
Foti MC, Rocco C. Unveiling the chemistry behind bromination of quercetin: the ‘violet chromogen’. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Wong JPW, Whitwood AC, Bruce DW. Hydrogen-Bonded Complexes between 4-Alkoxystilbazoles and Fluorophenols: Solid-State Structures and Liquid Crystallinity. Chemistry 2012; 18:16073-89. [DOI: 10.1002/chem.201201906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Indexed: 11/11/2022]
|
39
|
Seybold PG. Quantum Chemical‐QSPR Estimation of the Acidities and Basicities of Organic Compounds. ADVANCES IN QUANTUM CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396498-4.00015-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Zevatskii YE, Samoilov DV. Modern methods for estimation of ionization constants of organic compounds in solution. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428011100010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Harding AP, Popelier PLA. pKa prediction from an ab initio bond length: part 2--phenols. Phys Chem Chem Phys 2011; 13:11264-82. [PMID: 21573301 DOI: 10.1039/c1cp20379g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prediction of pK(a) continues to attract much attention with ongoing investigations into new ways to predict pK(a) accurately, where predicted pK(a) values deviate less than 0.50 log units from experiment. We show that a single descriptor, i.e. an ab initio bond length, can predict pK(a). The emphasis was placed on model simplicity and a demonstration that more accurate predictions emerge from single-bond-length models. A data set of 171 phenols was studied. The carbon-oxygen bond length, connecting the OH to the phenyl ring, consistently provided accurate predictions. The pK(a) of meta- and para-substituted phenols is predicted here by a single-bond-length model within 0.50 log units. However, accurate prediction of the pK(a) of ortho-substituted phenols necessitated their splitting into groups called high-correlation subsets in which the pK(a) of the compounds strongly correlated with a single bond-length. The highly compound-specific single-bond-length models produced better predictions than models constructed with more compounds and more bond lengths. Outliers were easily identified using single-bond-length models and in most cases we were able to determine the reason for the outlier discrepancy. Furthermore, the single-bond-length models showed better cross-validation statistics than the PLS models constructed using more than one bond length. For all of the single-bond-length models, RMSEE was less than 0.50. For the majority of the models, RMSEP was less than 0.50. The results support the use of multiple high-correlation subsets and a single bond-length to predict pK(a). Six one-term linear equations are listed as a starting point for the construction of a more comprehensive list covering a larger variety of compound classes.
Collapse
Affiliation(s)
- A P Harding
- Manchester Interdisciplinary Biocentre (MIB), Manchester, Great Britain
| | | |
Collapse
|
42
|
Zevatskii YE, Samoilov DV. Empirical method for consideration of solvent effect on the dissociation constants of carboxylic acids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428008010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Zhang S, Baker J, Pulay P. A Reliable and Efficient First Principles-Based Method for Predicting pKa Values. 2. Organic Acids. J Phys Chem A 2009; 114:432-42. [DOI: 10.1021/jp9067087] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuming Zhang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, and Parallel Quantum Solutions, 2013 Green Acres Road, Suite A, Fayetteville, Arkansas 72703
| | - Jon Baker
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, and Parallel Quantum Solutions, 2013 Green Acres Road, Suite A, Fayetteville, Arkansas 72703
| | - Peter Pulay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, and Parallel Quantum Solutions, 2013 Green Acres Road, Suite A, Fayetteville, Arkansas 72703
| |
Collapse
|
44
|
Zevatskii YE, Lysova SS. Empirical procedure for the calculation of ionization constants of organic compounds in water from their molecular volume. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2009. [DOI: 10.1134/s1070428009060049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Zhang JD, Zhu QZ, Li SJ, Tao FM. Prediction of aqueous pKa values of hydroxybenzoic acid using hydrogen-bonded complexes with ammonia. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Liu JF, Cai XQ, Li ZF, Jiang GB. Development of negligible depletion hollow fiber membrane-protected liquid-phase microextraction for simultaneous determination of partitioning coefficients and acid dissociation constants. J Chromatogr A 2009; 1216:2583-6. [DOI: 10.1016/j.chroma.2009.01.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 11/28/2022]
|
47
|
Liao K, Pack BW, Toltl NP. The effect of analyte acidity on signal suppression and the implications to peak purity determinations using atmospheric pressure ionization mass spectrometry. J Pharm Biomed Anal 2007; 44:118-26. [PMID: 17379466 DOI: 10.1016/j.jpba.2007.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/26/2007] [Accepted: 02/02/2007] [Indexed: 11/28/2022]
Abstract
The effect of a co-eluting halogenated phenol, spiked at 1% of the main analyte level, has been examined for a series of halogenated phenols using LC-MS techniques. Similarly, the effect of co-eluting anilines has been investigated. The purpose of the work presented here was to evaluate the degree of signal suppression for structurally similar halogenated phenols and for similar anilines utilizing atmospheric pressure chemical ionization (APCI) in the negative mode and electrospray (ESI) in positive mode, respectively. A correlation between the effects of analyte ionization efficiency resulting from co-eluting compounds (signal suppression) and pK(a) has been made for these compounds. It was found that minimal signal suppression occurs when the spiked impurity has a similar (Delta pK(a)<1.5) acidity when compared to the main peak it is co-eluting with. The degree of signal suppression sharply increases when the difference in pK(a)'s between the main peak and the spiked impurity was greater than 1.5 units. Thus, when the main peak is much less acidic (more than 1.5 pK(a) difference) than the co-eluting impurity, signal suppression of the latter would not occur in negative mode APCI. Similarly, when the main peak is much less basic than the co-eluting peak, signal suppression of the impurity will also not be found for aniline compounds in positive mode ESI. Furthermore, the degree of signal suppression decreases as a function of sample load such that injections of 3 microg or less show no discernible impact on the spiked impurity peak. Ultimately, these results indicate that the use of mass spectrometry (MS) in peak purity determinations requires numerous considerations prior to assessing main peak purity. The optimization of sample load during an impurities assay will maximize co-eluting impurity signal as purity determinations by mass spectrometry made at sample loads above the 3 microg (sample load) threshold increase the risk for false negative assessment of impurities.
Collapse
Affiliation(s)
- Kristine Liao
- Eli Lilly Canada Inc., Toronto, Ontario, Canada M1N 2E8
| | | | | |
Collapse
|