1
|
Duan C, Wang R. A Unified Description of Salt Effects on the Liquid-Liquid Phase Separation of Proteins. ACS CENTRAL SCIENCE 2024; 10:460-468. [PMID: 38435530 PMCID: PMC10906038 DOI: 10.1021/acscentsci.3c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Protein aggregation via liquid-liquid phase separation (LLPS) is ubiquitous in nature and is intimately connected to many human diseases. Although it is widely known that the addition of salt has crucial impacts on the LLPS of proteins, full understanding of the salt effects remains an outstanding challenge. Here, we develop a molecular theory that systematically incorporates the self-consistent field theory for charged macromolecules into the solution thermodynamics. The electrostatic interaction, hydrophobicity, ion solvation, and translational entropy are included in a unified framework. Our theory fully captures the long-standing puzzles of the nonmonotonic salt concentration dependence and the specific ion effect. We find that proteins show salting-out at low salt concentrations due to ionic screening. The solubility follows the inverse Hofmeister series. In the high salt concentration regime, protein continues salting-out for small ions but turns to salting-in for larger ions, accompanied by the reversal of the Hofmeister series. We reveal that the solubility at high salt concentrations is determined by the competition between the solvation energy and translational entropy of the ion. Furthermore, we derive an analytical criterion for determining the boundary between the salting-in and salting-out regimes, which is in good agreement with experimental results for various proteins and salt ions.
Collapse
Affiliation(s)
- Chao Duan
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Lab, Berkeley, California 94720, United States
| |
Collapse
|
2
|
López Barreiro D, Minten IJ, Thies JC, Sagt CMJ. Structure-Property Relationships of Elastin-like Polypeptides: A Review of Experimental and Computational Studies. ACS Biomater Sci Eng 2021. [PMID: 34251181 DOI: 10.1021/acsbiomaterials.1c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behavior, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Collapse
Affiliation(s)
- Diego López Barreiro
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Inge J Minten
- DSM Materials Science Center - Applied Science Center, DSM, Urmonderbaan 22, 6160 BB, Geleen, The Netherlands
| | - Jens C Thies
- DSM Biomedical, DSM, Koestraat 1, 6167 RA, Geleen, The Netherlands
| | - Cees M J Sagt
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
3
|
Kämpf K, Demuth D, Zamponi M, Wuttke J, Vogel M. Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin. J Chem Phys 2020; 152:245101. [PMID: 32610976 DOI: 10.1063/5.0011107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Performing quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein-water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.
Collapse
Affiliation(s)
- Kerstin Kämpf
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Dominik Demuth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Joachim Wuttke
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Wohlfromm T, Vogel M. On the coupling of protein and water dynamics in confinement: Spatially resolved molecular dynamics simulation studies. J Chem Phys 2019; 150:245101. [DOI: 10.1063/1.5097777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Timothy Wohlfromm
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Cao M, Shen Y, Wang Y, Wang X, Li D. Self-Assembly of Short Elastin-like Amphiphilic Peptides: Effects of Temperature, Molecular Hydrophobicity and Charge Distribution. Molecules 2019; 24:E202. [PMID: 30625991 PMCID: PMC6337584 DOI: 10.3390/molecules24010202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 11/21/2022] Open
Abstract
A novel type of self-assembling peptides has been developed by introducing the basic elastomeric β-turn units of elastin protein into the amphiphilic peptide molecules. The self-assembly behaviors of such peptides are affected by the overall molecular hydrophobicity, charge distribution and temperature. The molecules with higher hydrophobicity exhibit better self-assembling capability to form long fibrillar nanostructures. For some peptides, the temperature increase can not only promote the self-assembly process but also change the self-assembly routes. The self-assembly of the peptides with two charges centralized on one terminal show higher dependence on temperature than the peptides with two charges distributed separately on the two terminals. The study probes into the self-assembly behaviors of short elastin-like peptides and is of great help for developing novel self-assembling peptides with thermo sensitivity.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266580, China.
| | - Yang Shen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266580, China.
| | - Yu Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266580, China.
| | - Xiaoling Wang
- Personnel Department and School of Blue Economy Engineering, Qingdao Vocational and Technical College, Qingdao Economic and Technological Development Zone, Qingdao 266555, China.
| | - Dongxiang Li
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ. Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. Macromol Biosci 2018; 19:e1800250. [DOI: 10.1002/mabi.201800250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| | - Giselle C. Yeo
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
| | - Clair Baldock
- Wellcome Trust Centre for Cell‐Matrix Research Division of Cell Matrix Biology and Regenerative Medicine School of Biological Sciences Manchester Academic Health Science Centre The University of Manchester M13 9PL Manchester UK
| | - Anthony S. Weiss
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
- Bosch Institute The University of Sydney 2006 Sydney NSW Australia
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| |
Collapse
|
7
|
Dahanayake JN, Mitchell-Koch KR. How Does Solvation Layer Mobility Affect Protein Structural Dynamics? Front Mol Biosci 2018; 5:65. [PMID: 30057902 PMCID: PMC6053501 DOI: 10.3389/fmolb.2018.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Solvation is critical for protein structural dynamics. Spectroscopic studies have indicated relationships between protein and solvent dynamics, and rates of gas binding to heme proteins in aqueous solution were previously observed to depend inversely on solution viscosity. In this work, the solvent-compatible enzyme Candida antarctica lipase B, which functions in aqueous and organic solvents, was modeled using molecular dynamics simulations. Data was obtained for the enzyme in acetonitrile, cyclohexane, n-butanol, and tert-butanol, in addition to water. Protein dynamics and solvation shell dynamics are characterized regionally: for each α-helix, β-sheet, and loop or connector region. Correlations are seen between solvent mobility and protein flexibility. So, does local viscosity explain the relationship between protein structural dynamics and solvation layer dynamics? Halle and Davidovic presented a cogent analysis of data describing the global hydrodynamics of a protein (tumbling in solution) that fits a model in which the protein's interfacial viscosity is higher than that of bulk water's, due to retarded water dynamics in the hydration layer (measured in NMR τ2 reorientation times). Numerous experiments have shown coupling between protein and solvation layer dynamics in site-specific measurements. Our data provides spatially-resolved characterization of solvent shell dynamics, showing correlations between regional solvation layer dynamics and protein dynamics in both aqueous and organic solvents. Correlations between protein flexibility and inverse solvent viscosity (1/η) are considered across several protein regions and for a rather disparate collection of solvents. It is seen that the correlation is consistently higher when local solvent shell dynamics are considered, rather than bulk viscosity. Protein flexibility is seen to correlate best with either the local interfacial viscosity or the ratio of the mobility of an organic solvent in a regional solvation layer relative to hydration dynamics around the same region. Results provide insight into the function of aqueous proteins, while also suggesting a framework for interpreting and predicting enzyme structural dynamics in non-aqueous solvents, based on the mobility of solvents within the solvation layer. We suggest that Kramers' theory may be used in future work to model protein conformational transitions in different solvents by incorporating local viscosity effects.
Collapse
|
8
|
Geske J, Harrach M, Heckmann L, Horstmann R, Klameth F, Müller N, Pafong E, Wohlfromm T, Drossel B, Vogel M. Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Aqueous systems are omnipresent in nature and technology. They show complex behaviors, which often originate in the existence of hydrogen-bond networks. Prominent examples are the anomalies of water and the non-ideal behaviors of aqueous solutions. The phenomenology becomes even richer when aqueous liquids are subject to confinement. To this day, many properties of water and its mixtures, in particular, under confinement, are not understood. In recent years, molecular dynamics simulations developed into a powerful tool to improve our knowledge in this field. Here, our simulation results for water and aqueous mixtures in the bulk and in various confinements are reviewed and some new simulation data are added to improve our knowledge about the role of interfaces. Moreover, findings for water are compared with results for silica, exploiting that both systems form tetrahedral networks.
Collapse
Affiliation(s)
- Julian Geske
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Michael Harrach
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Lotta Heckmann
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Robin Horstmann
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Felix Klameth
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Niels Müller
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Elvira Pafong
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Timothy Wohlfromm
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Barbara Drossel
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| | - Michael Vogel
- Institut für Festkörperphysik , Technische Universität Darmstadt, Hochschulstr. 6 , 64289 Darmstadt , Germany
| |
Collapse
|
9
|
Tarakanova A, Huang W, Weiss AS, Kaplan DL, Buehler MJ. Computational smart polymer design based on elastin protein mutability. Biomaterials 2017; 127:49-60. [DOI: 10.1016/j.biomaterials.2017.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
|
10
|
Khandaker MSK, Dudek DM, Beers EP, Dillard DA, Bevan DR. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein. J Mech Behav Biomed Mater 2016; 61:110-121. [PMID: 26851528 DOI: 10.1016/j.jmbbm.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.
Collapse
Affiliation(s)
- Md Shahriar K Khandaker
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
| | - Daniel M Dudek
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States
| | - Eric P Beers
- Horticulture Department, Virginia Polytechnic Institute and State University, United States.
| | - David A Dillard
- Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, United States.
| | - David R Bevan
- Biochemistry Department, Virginia Polytechnic Institute and State University, United States.
| |
Collapse
|
11
|
Chaudhari MI, Rempe SB, Asthagiri D, Tan L, Pratt LR. Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions. J Phys Chem B 2016; 120:1864-70. [DOI: 10.1021/acs.jpcb.5b09552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mangesh I. Chaudhari
- Center
for Biological and Material Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B. Rempe
- Center
for Biological and Material Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - D. Asthagiri
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - L. Tan
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - L. R. Pratt
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
12
|
Structural and hydrodynamic analysis of a novel drug delivery vector: ELP[V5G3A2-150]. Biophys J 2013; 104:2009-21. [PMID: 23663844 DOI: 10.1016/j.bpj.2013.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
The therapeutic potential of elastin-like polypeptide (ELP) conjugated to therapeutic compounds is currently being investigated as an approach to target drugs to solid tumors. ELPs are hydrophobic polymers that are soluble at low temperatures and cooperatively aggregate above a transition temperature (TT), allowing for thermal targeting of covalently attached drugs. They have been shown to cooperatively transition from a disordered structure to a repeating type II β-turn structure, forming a β-spiral above the TT. Here we present biophysical measurements of the structural, thermodynamic, and hydrodynamic properties of a specific ELP being investigated for drug delivery, ELP[V5G3A2-150]. We examine the biophysical properties below and above the TT to understand and predict the therapeutic potential of ELP-drug conjugates. We observed that below the TT, ELP[V5G3A2-150] is soluble, with an extended conformation consisting of both random coil and heterogeneous β structures. Sedimentation velocity experiments indicate that ELP[V5G3A2-150] undergoes weak self-association with increasing temperature, and above the TT the hydrophobic effect drives aggregation entropically. These experiments also reveal a previously unreported temperature-dependent critical concentration (Cc) that resembles a solubility constant. Labeling ELP[V5G3A2-150] with fluorescein lowers the TT by 3.5°C at 20 μM, whereas ELP[V5G3A2-150] dissolution in physiological media (fetal bovine serum) increases the TT by ∼2.2°C.
Collapse
|
13
|
Kämpf K, Klameth F, Vogel M. Power-law and logarithmic relaxations of hydrated proteins: A molecular dynamics simulations study. J Chem Phys 2012. [DOI: 10.1063/1.4768046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Rauscher S, Pomès R. Structural disorder and protein elasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:159-83. [PMID: 22399324 DOI: 10.1007/978-1-4614-0659-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
An emerging class of disordered proteins underlies the elasticity of many biological tissues. Elastomeric proteins are essential to the function of biological machinery as diverse as the human arterial wall, the capture spiral of spider webs and the jumping mechanism of fleas. In this chapter, we review what is known about the molecular basis and the functional role of structural disorder in protein elasticity. In general, the elastic recoil of proteins is due to a combination of internal energy and entropy. In rubber-like elastomeric proteins, the dominant driving force is the increased entropy of the relaxed state relative to the stretched state. Aggregates of these proteins are intrinsically disordered or fuzzy, with high polypeptide chain entropy. We focus our discussion on the sequence, structure and function of five rubber-like elastomeric proteins, elastin, resilin, spider silk, abductin and ColP. Although we group these disordered elastomers together into one class of proteins, they exhibit a broad range of sequence motifs, mechanical properties and biological functions. Understanding how sequence modulates both disorder and elasticity will help advance the rational design of elastic biomaterials such as artificial skin and vascular grafts.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
15
|
Lessing J, Roy S, Reppert M, Baer M, Marx D, Jansen TLC, Knoester J, Tokmakoff A. Identifying Residual Structure in Intrinsically Disordered Systems: A 2D IR Spectroscopic Study of the GVGXPGVG Peptide. J Am Chem Soc 2012; 134:5032-5. [DOI: 10.1021/ja2114135] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua Lessing
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Santanu Roy
- Center for Theoretical Physics
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Marcel Baer
- Lehrstuhl für Theoretische
Chemie, Ruhr-Universität Bochum,
44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische
Chemie, Ruhr-Universität Bochum,
44780 Bochum, Germany
| | - Thomas La Cour Jansen
- Center for Theoretical Physics
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Center for Theoretical Physics
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andrei Tokmakoff
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Kushner AM, Guan Z. Modulares Design in natürlichen und biomimetischen elastischen Materialien. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Kushner AM, Guan Z. Modular design in natural and biomimetic soft materials. Angew Chem Int Ed Engl 2011; 50:9026-57. [PMID: 21898722 DOI: 10.1002/anie.201006496] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Indexed: 11/09/2022]
Abstract
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.
Collapse
Affiliation(s)
- Aaron M Kushner
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
18
|
Rauscher S, Neale C, Pomès R. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling. J Chem Theory Comput 2009; 5:2640-62. [DOI: 10.1021/ct900302n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Chris Neale
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Régis Pomès
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
19
|
Vogel M. Temperature-Dependent Mechanisms for the Dynamics of Protein-Hydration Waters: A Molecular Dynamics Simulation Study. J Phys Chem B 2009; 113:9386-92. [DOI: 10.1021/jp901531a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Vogel
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstrasse 6, 64289 Darmstadt, Germany
| |
Collapse
|
20
|
Sasisanker P, Weingärtner H. Hydration Dynamics of Water near an Amphiphilic Model Peptide at Low Hydration Levels: A Dielectric Relaxation Study. Chemphyschem 2008; 9:2802-8. [DOI: 10.1002/cphc.200800508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Glaves R, Baer M, Schreiner E, Stoll R, Marx D. Conformational Dynamics of Minimal Elastin-Like Polypeptides: The Role of Proline Revealed by Molecular Dynamics and Nuclear Magnetic Resonance. Chemphyschem 2008; 9:2759-65. [DOI: 10.1002/cphc.200800474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Nuhn H, Klok HA. Secondary Structure Formation and LCST Behavior of Short Elastin-Like Peptides. Biomacromolecules 2008; 9:2755-63. [DOI: 10.1021/bm800784y] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Nuhn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Abstract
We describe temperature-responsive protein pores containing single elastin-like polypeptide (ELP) loops. The ELP loops were placed within the cavity of the lumen of the alpha-hemolysin (alphaHL) pore, a heptamer of known crystal structure. The cavity is roughly spherical with a molecular surface volume of about 39,500 A3. In an applied potential, the wild-type alphaHL pore remained open for long periods. In contrast, the ELP loop-containing alphaHL pores exhibited transient current blockades, the nature of which depended on the length and sequence of the inserted loop. Together with similar results obtained with poly(ethylene glycols) covalently attached within the cavity, the data suggest that the transient current blockades are caused by excursions of ELP into the transmembrane beta-barrel domain of the pore. Below its transition temperature, the ELP loop is fully expanded and blocks the pore completely, but reversibly. Above its transition temperature, the ELP is dehydrated and the structure collapses, enabling a substantial flow of ions. Potential applications of temperature-responsive protein pores in medical biotechnology are discussed.
Collapse
Affiliation(s)
- Yuni Jung
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
24
|
Rauscher S, Baud S, Miao M, Keeley FW, Pomès R. Proline and Glycine Control Protein Self-Organization into Elastomeric or Amyloid Fibrils. Structure 2006; 14:1667-76. [PMID: 17098192 DOI: 10.1016/j.str.2006.09.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/28/2022]
Abstract
Elastin provides extensible tissues, including arteries and skin, with the propensity for elastic recoil, whereas amyloid fibrils are associated with tissue-degenerative diseases, such as Alzheimer's. Although both elastin-like and amyloid-like materials result from the self-organization of proteins into fibrils, the molecular basis of their differing physical properties is poorly understood. Using molecular simulations of monomeric and aggregated states, we demonstrate that elastin-like and amyloid-like peptides are separable on the basis of backbone hydration and peptide-peptide hydrogen bonding. The analysis of diverse sequences, including those of elastin, amyloids, spider silks, wheat gluten, and insect resilin, reveals a threshold in proline and glycine composition above which amyloid formation is impeded and elastomeric properties become apparent. The predictive capacity of this threshold is confirmed by the self-assembly of recombinant peptides into either amyloid or elastin-like fibrils. Our findings support a unified model of protein aggregation in which hydration and conformational disorder are fundamental requirements for elastomeric function.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function Programme, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|