1
|
Laskar BI, Mishra AK, Shukla PK. Role of graphene in scavenging methyl cations: a DFT study. J Mol Model 2023; 29:299. [PMID: 37646844 DOI: 10.1007/s00894-023-05662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023]
Abstract
CONTEXT It is known that methylating agents methylate DNA by transferring a methyl cation (CH3+) to the nucleophilic sites in DNA bases and DNA methylation is implicated in cancer and other pathological conditions. Therefore, it is important to scavenge CH3+ ion in order to protect DNA from methylation. Graphene is considered to be a versatile material for use in a wide variety of fields including sensors, antioxidants, drug delivery and DNA sequencing. In this work, we have theoretically investigated the interaction of CH3+ ions with graphene surface with an aim to understand if pristine graphene can be used as a substrate to adsorb CH3+ cations generated from harmful methylating agents. The computed adsorption energies show that adsorption of one, two and three CH3+ ions on graphene is favourable as the adducts thus formed are found to be substantially stable in both gas phase and aqueous media. The Bader charge transfer analysis and density of states (DOS) calculation also indicate a strong interaction between graphene and CH3+ ions. Thus, our results show that pristine graphene can be used as a substrate to scavenge CH3+ ions. METHODS The spin polarised density functional theory (DFT) calculations employing PBE functional, ultrasoft pseudopotentials and plane wave basis set having kinetic energy cut-offs of 40 Ry and 400 Ry, respectively, for wave functions and charge densities were carried out to study the adsorption of CH3+ ion(s) on the pristine graphene surface. The Grimme's DFT-D2 method was used for the estimation of van der Waals interactions. The 'dipole correction' along z-direction was also applied for adsorption study. The Marzari-Vanderbilt smearing and Monkhorst-Pack k-point grid were employed for the Brillouin zone sampling. A 6 × 6 graphene supercell with a vertical cell dimension of 18 Å was considered for the adsorption study. The charge transfer between the CH3+ ion(s) and graphene was estimated using Bader charge analysis. The implicit solvation model (SCCS) was used to estimate the solvent effect of aqueous media. All the calculations were performed using QUANTUM ESPRESSO package.
Collapse
Affiliation(s)
| | - Abhishek Kumar Mishra
- Department of Physics, Applied Science Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | | |
Collapse
|
2
|
Effect of N7-methylation on base pairing patterns of guanine: a DFT study. J Mol Model 2021; 27:184. [PMID: 34036469 DOI: 10.1007/s00894-021-04792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
In this paper, we aim to determine whether the N7-methylation can influence the base pairing properties of guanine by promoting the formation of guanine enol-tautomers. The keto- to -enol-tautomerization of N7-methylguanine (N7mG) and its base pairing patterns with all the canonical DNA bases have been investigated at the M06-2X/6-311+G(d,p) level of density functional theory. The barrier free energy calculations reveal that N7-methylation does not promote the keto- to enol- tautomerization of guanine. The Watson-Crick-like enol-N7mG:T1 or enol-N7mG:T2 base pair similar to what is observed experimentally is found to be energetically more stable than the keto-N7mG:T base pairs. However, the keto-N7mG:C1 which is structurally similar to the canonical G:C base pair is the most stable base pair among all the base pairs studied here. Thus, our calculations predict that N7mG would pair preferably with cytosine during DNA replication but there is also a probability that it can cause mutation through mispairing with thymine, in agreement with experimental observations.
Collapse
|
3
|
Singh M, Baruah JB. Combinations of Tautomeric Forms and Neutral-Cationic Forms in the Cocrystals of Sulfamethazine with Carboxylic Acids. ACS OMEGA 2019; 4:11609-11620. [PMID: 31460268 PMCID: PMC6682086 DOI: 10.1021/acsomega.9b01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 05/15/2023]
Abstract
The cocrystals of sulfamethazine with different acids, namely, 2-mercaptophenylcarboxylic acid, 2,6-pyridinedicarboxylic acid, 4-(4-hydroxyphenylazo)phenylcarboxylic acid, 3-(4-hydroxyphenyl)propanoic acid, and 4-(phenyl)phenylcarboxylic acid, are studied here. Each has distinct notable supramolecular features. The pyrimidin-2-amine unit of the sulfamethazine provided unique examples of cocrystals in which amidine and imidine forms or neutral and protonated forms of sulfamethazine are observed in 2:2 ratios. Hence, this study provides avenues to explore cocrystals with tautomeric forms together in a cocrystal and also neutral and protonated cocrystal partners as apparent multicomponents in cocrystals. Among the cocrystals, three of them have the amidine form of the sulfamethazine in respective self-assembly. The cocrystal of 2-mercapto-phenylcarboxylic acid with sulfamethazine has the amidine form and it has the distinction of having S-H···π interactions. The cocrystal of sulfamethazine with 2,6-pyridinecarboxylic acid is a rare example of a 1:1 cocrystal of sulfmethazine with dicarboxylic acid. It has methanol molecules as a solvent of crystallization. Sulfamethazine forms a hydrated cocrystal with 4-(4-hydroxyphenylazo)-phenylcarboxylic acid that has conventional R 2 2(8) synthons of amidine hydrogen-bonding with carboxylic acid. The phenolic part of the acid component is anchored to the water molecule and provides a robust self-assembly. The hydrated cocrystal of sulfamethazine with 3-(4-hydroxyphenyl)propanoic acid (2:2 cocrystal) has two independent molecules of sulfamethazine, one in amidine form and the other in imidine form. It has two neutral carboxylic acids anchored through complementary hydrogen bonds and also has two water molecules of crystallization. The cocrystal of sulfamethazine with 4-(phenyl)phenylcarboxylic acid is also a 2:2 cocrystal. It is a di-hydrate, which has a neutral and protonated form of sulfamethazine. The neutral form is hydrogen-bonded to a neutral carboxylic acid, whereas the protonated form is charge-assisted hydrogen-bonded to the corresponding carboxylate anion.
Collapse
Affiliation(s)
- Munendra
Pal Singh
- Department of Chemistry, Indian
Institute of Technology Guwahati, Guwahati 781 039 Assam, India
| | - Jubaraj B. Baruah
- Department of Chemistry, Indian
Institute of Technology Guwahati, Guwahati 781 039 Assam, India
| |
Collapse
|
4
|
Karton A. Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods. Aust J Chem 2019. [DOI: 10.1071/ch19276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJmol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0kcalmol−1 (1kcalmol−1=4.184kJmol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJmol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z+CCSD/jul-cc-pVTZ+(T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11kJmol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJmol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64kJmol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38kJmol−1).
Collapse
|
5
|
Biswas S, Shah PK, Shukla PK. Methylation of DNA bases by methyl free radicals: mechanism of formation of C8-methylguanine. Struct Chem 2018. [DOI: 10.1007/s11224-018-1118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Bhattacharjee K, Mishra PC, Shukla PK. Mechanism of methylation of 8-oxoguanine due to its reaction with methyldiazonium ion. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1246734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - P. C. Mishra
- Department of Physics, Banaras Hindu University, Varanasi, India
| | - P. K. Shukla
- Department of Physics, Assam University, Silchar, India
| |
Collapse
|
7
|
Villani G. Effect of Methylation on the Properties of the H-Bridges in DNA. A Systematic Theoretical Study on the Couples of Base Pairs. J Phys Chem B 2015; 119:7931-43. [DOI: 10.1021/acs.jpcb.5b02901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti
OrganoMetallici, UOS Pisa Area della Ricerca del CNR, Via G. Moruzzi,
1, I-56124 Pisa, Italy
| |
Collapse
|
8
|
Valadbeigi Y, Soleiman-Beigi M, Sahraei R. Catalysis effect of micro-hydration on the intramolecular proton transfer in cytosine. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Álvarez-Malmagro J, Prieto F, Rueda M, Rodes A. In situ Fourier transform infrared reflection absortion spectroscopy study of adenine adsorption on gold electrodes in basic media. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Gardner N, Magers D, Hill G. Theoretical study of tautomeric and ionizing effects of guanine, cytosine, and their methyl derivatives. Struct Chem 2013. [DOI: 10.1007/s11224-013-0301-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Gardner N, Magers D, Hill G. Theoretical study of the pre- and post-translational effects of adenine and thymine tautomers and methyl derivatives. J Mol Model 2013; 19:3543-9. [PMID: 23722555 DOI: 10.1007/s00894-013-1833-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
The study of pre-translational effects (ionization, tautomerization) and post-translational effects (methylation) of adenine and thymine has only recently been the focus of some studies. These effects can potentially help regulate gene expression as well as potentially disrupt normal gene function. Because of this wide array of roles, greater insight into these effects in deoxyribonucleic acids (DNA) are paramount. There has been considerable research of each phenomenon (tautomerization, methylation and ionization) individually. In this work, we attempt to shed light upon the pre-translational effects and post translational effects of adenine and thymine by investigating the electron affinities (EAs) and ionization potentials (IPs) of the major and minor tautomers and their methyl derivatives. We performed all calculations using the density functional theory (DFT) B3LYP functional accompanied with 6-311G(d,p), 6-311+G(d,p) and 6-311++G(df,pd) basis sets. Our results reveal that the thymine tautomer has a higher EA and IP than the adenine tautomers. The higher EA suggests that an electron that attaches to the AT base pair would predominately attach to the thymine instead of adenine. The higher IP would suggest that an electron that is removed from the AT base pair would be predominately removed from the adenine within the base pair. Understanding how tautomerization, ionization and methylation differences change effects, discourages, or promotes one another is lacking. In this work, we begin the steps of integrating these effects with one another, to gain a greater understanding of molecular changes in DNA bases.
Collapse
Affiliation(s)
- Noel Gardner
- Jackson State University, 1400 J. R. Lynch, Jackson, MS 39217, USA
| | | | | |
Collapse
|
12
|
Shukla P, Ganapathy V, Mishra P. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Feyer V, Plekan O, Kivimäki A, Prince KC, Moskovskaya TE, Zaytseva IL, Soshnikov DY, Trofimov AB. Comprehensive Core-Level Study of the Effects of Isomerism, Halogenation, and Methylation on the Tautomeric Equilibrium of Cytosine. J Phys Chem A 2011; 115:7722-33. [DOI: 10.1021/jp2017506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vitaliy Feyer
- Sincrotrone Trieste, in Area Science Park, Basovizza (Trieste) I-34149, Italy
| | - Oksana Plekan
- Sincrotrone Trieste, in Area Science Park, Basovizza (Trieste) I-34149, Italy
| | - Antti Kivimäki
- Laboratorio TASC, CNR-IOM, Basovizza (Trieste) I-34149, Italy
| | - Kevin C. Prince
- Sincrotrone Trieste, in Area Science Park, Basovizza (Trieste) I-34149, Italy
- Laboratorio TASC, CNR-IOM, Basovizza (Trieste) I-34149, Italy
| | | | - Irina L. Zaytseva
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
| | | | - Alexander B. Trofimov
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
- Favorsky Institute of Chemistry, SB RAS, 664033 Irkutsk, Russia
| |
Collapse
|
14
|
Wincel H. Microhydration of protonated nucleic acid bases and protonated nucleosides in the gas phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1900-1905. [PMID: 19665394 DOI: 10.1016/j.jasms.2009.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/28/2009] [Accepted: 06/29/2009] [Indexed: 05/28/2023]
Abstract
Thermochemical data, DeltaH(o)(n), DeltaS(o)(n), and DeltaG(o)(n), for the hydration of protonated nucleic acid bases and protonated nucleosides have been experimentally studied by equilibrium measurements using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. For protonated nucleobases the hydration enthalpies were found to be similar for all studied systems and varied between 12.4-13.1 kcal/mol for the first and 11.2-11.5 kcal/mol for the second water molecule. While for protonated nucleosides the water binding enthalpies (11.7-13.3 kcal/mol) are very close to those for protonated nucleobases, the entropy values are "more negative." The structural and energetic aspects of hydrated ions are discussed in conjunction with the available theoretical data.
Collapse
Affiliation(s)
- Henryk Wincel
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Xing D, Chen X, Bu Y. Pairing strength and proton characters of the N7,N9-dimethylated GC and AT base pairs: a density functional theory investigation. NEW J CHEM 2007. [DOI: 10.1039/b702640d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|