1
|
Alfayez F, Agrachev M, Matter F, Lehner S, Sekar A, Caseri W, Hufenus R, Gaan S, Heuberger MP. Silver Oxide Reduction Chemistry in an Alkane Environment. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40299314 DOI: 10.1021/acsami.5c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The in situ reduction of silver oxide to metallic silver is of technological relevance for various applications, from conductive welding in electronics to silver (Ag) nanoparticle generation in reactive melt extrusion. This study revisits the redox reaction mechanisms involved in forming metallic silver particles through the reduction of silver(I) oxide (Ag2O) in an alkane and polymer melt environment and sheds light on the obtained particulate morphology. Liquid pentadecane was selected as a model alkane, and the observed redox chemistry and particle morphology were compared to the reactive melt extrusion in polyethylene. Unlike the well-studied reduction of metal salts in the presence of oxygen-containing organic materials, the reduction occurring in a pure alkane environment, namely the different particle morphology, is poorly understood. Our findings revealed that the primary byproducts of the reaction between Ag2O and pentadecane were CO2 and H2O, with minor products including alkenes and oxidized alkanes. The reduction process was not linear, with Ag2O acting both as a radical initiator and a source of oxygen. Gas chromatography detected CO2 formation at a rather low temperature, as low as 70 °C during the reaction between Ag2O and pentadecane, indicating a highly oxidative process resembling catalyzed combustion. Analytical techniques, including electron paramagnetic resonance (EPR) spectroscopy, confirmed that radicals were involved in the redox process via ROO• and HOO• radical species typically found in hydrocarbon oxidation under oxygen conditions. We hypothesize that the reaction is predominantly a complete oxidation, with only a small fraction of incomplete oxidation. Our observations also indicated that the metallic Ag formed directly on the surface of Ag2O in what appeared to be a solid-solid surface reaction, leading to a final Ag morphology resembling fused particles. While the resulting morphology may seem suboptimal regarding particle dispersion and homogeneity, it still offers a large contact area percolated structure that is advantageous for applications such as electronics welding. We thus conclude that in a pure alkane environment, the redox reactions are confined to the surface of the original particles.
Collapse
Affiliation(s)
- Fayez Alfayez
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
- Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| | - Mikhail Agrachev
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich CH-8093, Switzerland
| | - Fabian Matter
- Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sandro Lehner
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Arvindh Sekar
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Walter Caseri
- Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| | - Rudolf Hufenus
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Sabyasachi Gaan
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
| | - Manfred P Heuberger
- Department of Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, St Gallen CH-9014, Switzerland
- Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
2
|
Murakami T, Saito N, Matsukami H, Takaoka M, Fujimori T. Destruction of perfluorooctanoic acid (PFOA) and perfluorooctadecanoic acid (PFOcDA) by incineration: Analysis of the by-products and their characteristics. CHEMOSPHERE 2025; 373:144165. [PMID: 39884143 DOI: 10.1016/j.chemosphere.2025.144165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), which are considered an international problem due to their persistence in the environment, need to be properly treated in the end. In the destruction method by incineration, basic data are required to quantify the destruction characteristics of the target substance and the temperature-dependent behavior of its by-products. In this study, we conducted incineration tests targeting perfluorooctanoic acid (PFOA) and perfluorooctadecanoic acid (PFOcDA). The tests were conducted at temperatures ranging from 450 °C to 1000 °C in a pure air atmosphere, with a residence time of 2 s. The incineration tests at 850 °C achieved a destruction efficiency (DE) of 99.999% for both PFOA and PFOcDA. The DE significantly decreased at temperatures below 700 °C. Various by-products were identified during these tests, including short- and long-chain carbon compounds with ether bonds. Byproducts such as PFOA and polyfluoroalkyl ether carboxylic acids (PFECAs) were produced during the low-temperature incineration of PFOcDA. The amount of by-products produced increased as the temperature decreased, but short-chain by-products increased at incineration temperatures from 450 to 700 °C. The capture media for the by-products varied depending on the carbon chain length of the PFCAs. The proportion captured by glass filters, adsorbents, and sodium hydroxide increased sequentially from long-to short-chain compounds. An examination of the distribution patterns of PFCAs across the different media revealed their predominant presence in the exhaust gas. Sufficient incineration at temperatures above 850 °C is considered necessary for effective destruction of PFOA and PFOcDA, including their by-products.
Collapse
Affiliation(s)
- Taichi Murakami
- Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Otsu, Japan.
| | - Naoya Saito
- Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Otsu, Japan.
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, 305-8506, Tsukuba, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan.
| | - Takashi Fujimori
- Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Otsu, Japan.
| |
Collapse
|
3
|
Lakshmi AGS, Saravanakumar MP. Ageing behavior of starch-based food packaging bioplastics in riparian sediments and sediment-derived dissolved organic matter in the soil environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135778. [PMID: 39316919 DOI: 10.1016/j.jhazmat.2024.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Riparian sediment (RS) is a translational zone separating aquatic and terrestrial ecosystems. To this date, the bioplastic's UV ageing and biodegradation features in these contaminated sediments remain unknown. It is a considerable concern to investigate whether a food packaging film can interact with RS and riparian sediment-derived Dissolved Organic Matter (RS-DOM) during biodegradation and UV ageing respectively, after disposal in a natural environmental setting. To address this research gap, for the first time, this study investigates the biodegradation and UV ageing of starch/PPst/GTR films intended for food packaging applications in RS and RS-DOM respectively. The findings revealed that RS comprises major fulvic acid DOM components. Remarkably, research demonstrates the leaching of humic acid-like DOM from the film promotes aromaticity and humification as UV ageing progresses from the third to the tenth day. Comparable DOM samples were darkly analysed, revealing aromatic proteins I and II. Furthermore, an elevated carbonyl carboxyl index confirmed significant degradation of films during UV ageing. Lesser humification, aromaticity, and higher biological activity were confirmed by a HI < 10 and BIX > 0.6 respectively. In comprehension, these findings reveal that the starch/PPst/GTR food packaging film will have a lesser adverse environmental impact after disposal, offering a hopeful outlook for the future of bioplastics.
Collapse
Affiliation(s)
- A G Sethu Lakshmi
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, Tamilnadu, India.
| | - M P Saravanakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, Tamilnadu, India.
| |
Collapse
|
4
|
Lahm ME, Bartlett MA, Liang T, Pu L, Allen WD, Schaefer HF. The multichannel i-propyl + O2 reaction system: A model of secondary alkyl radical oxidation. J Chem Phys 2023; 159:024305. [PMID: 37428067 DOI: 10.1063/5.0156705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
The i-propyl + O2 reaction mechanism has been investigated by definitive quantum chemical methods to establish this system as a benchmark for the combustion of secondary alkyl radicals. Focal point analyses extrapolating to the ab initio limit were performed based on explicit computations with electron correlation treatments through coupled cluster single, double, triple, and quadruple excitations and basis sets up to cc-pV5Z. The rigorous coupled cluster single, double, and triple excitations/cc-pVTZ level of theory was used to fully optimize all reaction species and transition states, thus, removing some substantial flaws in reference geometries existing in the literature. The vital i-propylperoxy radical (MIN1) and its concerted elimination transition state (TS1) were found 34.8 and 4.4 kcal mol-1 below the reactants, respectively. Two β-hydrogen transfer transition states (TS2, TS2') lie above the reactants by (1.4, 2.5) kcal mol-1 and display large Born-Oppenheimer diagonal corrections indicative of nearby surface crossings. An α-hydrogen transfer transition state (TS5) is discovered 5.7 kcal mol-1 above the reactants that bifurcates into equivalent α-peroxy radical hanging wells (MIN3) prior to a highly exothermic dissociation into acetone + OH. The reverse TS5 → MIN1 intrinsic reaction path also displays fascinating features, including another bifurcation and a conical intersection of potential energy surfaces. An exhaustive conformational search of two hydroperoxypropyl (QOOH) intermediates (MIN2 and MIN3) of the i-propyl + O2 system located nine rotamers within 0.9 kcal mol-1 of the corresponding lowest-energy minima.
Collapse
Affiliation(s)
- Mitchell E Lahm
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Marcus A Bartlett
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Tao Liang
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Liang Pu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wesley D Allen
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Allen Heritage Foundation, Dickson, Tennessee 37055, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
5
|
Lockhart JPA, Bodipati B, Rizvi S. Investigating the Association Reactions of HOCH 2CO and HOCHCHO with O 2: A Quantum Computational and Master Equation Study. J Phys Chem A 2023; 127:4302-4316. [PMID: 37146175 DOI: 10.1021/acs.jpca.2c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycolaldehyde, HOCH2CHO, is an important multifunctional atmospheric trace gas formed in the oxidation of ethylene and isoprene and emitted directly from burning biomass. The initial step in the atmospheric photooxidation of HOCH2CHO yields HOCH2CO and HOCHCHO radicals; both of these radicals react rapidly with O2 in the troposphere. This study presents a comprehensive theoretical investigation of the HOCH2CO + O2 and HOCHCHO + O2 reactions using high-level quantum chemical calculations and energy-grained master equation simulations. The HOCH2CO + O2 reaction results in the formation of a HOCH2C(O)O2 radical, while the HOCHCHO + O2 reaction yields (HCO)2 + HO2. Density functional theory calculations have identified two open unimolecular pathways associated with the HOCH2C(O)O2 radical that yield HCOCOOH + OH or HCHO + CO2 + OH products; the former novel bimolecular product pathway has not been previously reported in the literature. Master equation simulations based on the potential energy surface calculated here for the HOCH2CO + O2 recombination reaction support experimental product yield data from the literature and indicate that, even at total pressures of 1 atm, the HOCH2CO + O2 reaction yields ∼11% OH at 298 K.
Collapse
Affiliation(s)
- J P A Lockhart
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - B Bodipati
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| | - S Rizvi
- Department of Chemistry, Adelphi University, One South Avenue, Garden City, New York 11530, United States
| |
Collapse
|
6
|
Li R, Dong Y, Khan SN, Zaman MK, Zhou J, Miao P, Hu L, Sun Z. Decarboxylative oxidation-enabled consecutive C-C bond cleavage. Nat Commun 2022; 13:7061. [DOI: 10.1038/s41467-022-34829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractThe selective cleavage of C-C bonds is of fundamental interest because it provides an alternative approach to traditional chemical synthesis, which is focused primarily on building up molecular complexity. However, current C-C cleavage methods provide only limited opportunities. For example, selective C(sp3)-C(sp3) bond cleavage generally relies on the use of transition-metal to open strained ring systems or iminyl and alkoxy radicals to induce β-fragmentation. Here we show that by merging photoredox catalysis with copper catalysis, we are able to employ α-trisubstituted carboxylic acids as substrates and achieve consecutive C-C bond cleavage, resulting in the scission of the inert β-CH2 group. The key transformation relies on the decarboxylative oxidation process, which could selectively generate in-situ formed alkoxy radicals and trigger consecutive C-C bond cleavage. This complicated yet interesting reaction might help the development of other methods for inert C(sp3)-C(sp3) bond cleavage.
Collapse
|
7
|
Nolte TM, Hendriks AJ, Novák LA, Peijnenburg WJGM. A universal free energy relationship for both hard and soft radical addition in water. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tom M. Nolte
- Department of Environmental Science, Institute for Water and Wetland Research Radboud University Nijmegen Nijmegen The Netherlands
| | - A. Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research Radboud University Nijmegen Nijmegen The Netherlands
| | - Laurie A. Novák
- Department of Environmental Science, Institute for Water and Wetland Research Radboud University Nijmegen Nijmegen The Netherlands
| | - Willie J. G. M. Peijnenburg
- Department of Environmental Science, Institute for Water and Wetland Research National Institute of Public Health and the Environment Bilthoven The Netherlands
- Institute of Environmental Sciences (CML) Leiden University Leiden The Netherlands
| |
Collapse
|
8
|
Meehan-Atrash J, Luo W, McWhirter KJ, Dennis DG, Sarlah D, Jensen RP, Afreh I, Jiang J, Barsanti KC, Ortiz A, Strongin RM. The influence of terpenes on the release of volatile organic compounds and active ingredients to cannabis vaping aerosols. RSC Adv 2021; 11:11714-11723. [PMID: 35423635 PMCID: PMC8695911 DOI: 10.1039/d1ra00934f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid and VOC emissions from vaping cannabis concentrates vary depending on terpene content, power level and consumption method.
Collapse
Affiliation(s)
| | - Wentai Luo
- Department of Chemistry
- Portland State University
- Portland
- USA
- Department of Civil and Environmental Engineering
| | - Kevin J. McWhirter
- Department of Civil and Environmental Engineering
- Portland State University
- Portland
- USA
| | - David G. Dennis
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois
- Urbana
- USA
| | - David Sarlah
- Roger Adams Laboratory
- Department of Chemistry
- University of Illinois
- Urbana
- USA
| | | | - Isaac Afreh
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Jia Jiang
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Kelley C. Barsanti
- Chemical and Environmental Engineering
- Center for Environmental Research and Technology
- University of California-Riverside
- Riverside
- USA
| | - Alisha Ortiz
- Department of Chemistry
- Portland State University
- Portland
- USA
| | | |
Collapse
|
9
|
Giustini A, Meloni G. Synchrotron Photoionization Study of the Diisopropyl Ether Oxidation. Chemphyschem 2020; 21:927-937. [PMID: 32078232 DOI: 10.1002/cphc.201901134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Indexed: 11/08/2022]
Abstract
Scientific evidence has shown oxygenates help to reduce dangerous pollutants arising from burning fossil fuel in the automotive sector. For this reason, their use as additives has spread widely. The aim of this work consists in providing a comprehensive identification of the main primary oxidation products of diisopropyl ether (DIPE), one of the most promising among etheric oxygenates. The Cl-initiated oxidation of DIPE is examinated by using a vacuum ultraviolet (VUV) synchrotron radiation at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL). Products are identified on the basis of their mass-to-charge ratio, shape of photoionization spectra, adiabatic ionization energies, and chemical kinetic profiles, at three different temperatures (298, 550, and 650 K). Acetone, propanal, propene, and isopropyl acetate have been identified as major reaction products. Acetone is the main primary product. Theoretical calculations using the composite CBS-QB3 method provided useful tools to validate the postulated reaction mechanisms leading to experimentally observed species. The formation of other species is also discussed.
Collapse
Affiliation(s)
- Andrea Giustini
- A. Giustini and Prof. G. Meloni, Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Meloni
- A. Giustini and Prof. G. Meloni, Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.,Prof. G. Meloni, Department of Chemistry, University of San Francisco, San Francisco, California, 94117, United States
| |
Collapse
|
10
|
Affiliation(s)
- Tomer M. Faraggi
- Merck Center for Catalysis at Princeton University Washington Road Princeton, NJ 08544 USA
| | - Wei Li
- Merck Center for Catalysis at Princeton University Washington Road Princeton, NJ 08544 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University Washington Road Princeton, NJ 08544 USA
| |
Collapse
|
11
|
Jayee B, Malpathak S, Ma X, Hase WL. Is CH3NC isomerization an intrinsic non-RRKM unimolecular reaction? J Chem Phys 2019; 151:184110. [DOI: 10.1063/1.5126805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Shreyas Malpathak
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Xinyou Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Chemistry, University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
12
|
Bianchi F, Kurtén T, Riva M, Mohr C, Rissanen MP, Roldin P, Berndt T, Crounse JD, Wennberg PO, Mentel TF, Wildt J, Junninen H, Jokinen T, Kulmala M, Worsnop DR, Thornton JA, Donahue N, Kjaergaard HG, Ehn M. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem Rev 2019; 119:3472-3509. [PMID: 30799608 PMCID: PMC6439441 DOI: 10.1021/acs.chemrev.8b00395] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Highly
oxygenated organic molecules (HOM) are formed in the atmosphere
via autoxidation involving peroxy radicals arising from volatile organic
compounds (VOC). HOM condense on pre-existing particles and can be
involved in new particle formation. HOM thus contribute to the formation
of secondary organic aerosol (SOA), a significant and ubiquitous component
of atmospheric aerosol known to affect the Earth’s radiation
balance. HOM were discovered only very recently, but the interest
in these compounds has grown rapidly. In this Review, we define HOM
and describe the currently available techniques for their identification/quantification,
followed by a summary of the current knowledge on their formation
mechanisms and physicochemical properties. A main aim is to provide
a common frame for the currently quite fragmented literature on HOM
studies. Finally, we highlight the existing gaps in our understanding
and suggest directions for future HOM research.
Collapse
Affiliation(s)
- Federico Bianchi
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland.,Aerosol and Haze Laboratory , University of Chemical Technology , Beijing 100029 , P.R. China
| | - Theo Kurtén
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland
| | - Matthieu Riva
- IRCELYON, CNRS University of Lyon , Villeurbanne 69626 , France
| | - Claudia Mohr
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Stockholm 11418 , Sweden
| | - Matti P Rissanen
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland
| | - Pontus Roldin
- Division of Nuclear Physics, Department of Physics , Lund University , Lund 22100 , Sweden
| | - Torsten Berndt
- Leibniz Institute for Tropospheric Research , Leipzig 04318 , Germany
| | - John D Crounse
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Thomas F Mentel
- Institut für Energie und Klimaforschung, IEK-8 , Forschungszentrum Jülich GmbH , Jülich 52425 , Germany
| | - Jürgen Wildt
- Institut für Energie und Klimaforschung, IEK-8 , Forschungszentrum Jülich GmbH , Jülich 52425 , Germany
| | - Heikki Junninen
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland.,Institute of Physics , University of Tartu , Tartu 50090 , Estonia
| | - Tuija Jokinen
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland.,Aerosol and Haze Laboratory , University of Chemical Technology , Beijing 100029 , P.R. China
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland.,Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Joel A Thornton
- Department of Atmospheric Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - Neil Donahue
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Henrik G Kjaergaard
- Department of Chemistry , University of Cøpenhagen , Cøpenhagen 2100 , Denmark
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research, Faculty of Science , University of Helsinki , Helsinki 00014 , Finland
| |
Collapse
|
13
|
Hrodmarsson HR, Loison JC, Jacovella U, Holland DMP, Boyé-Péronne S, Gans B, Garcia GA, Nahon L, Pratt ST. Valence-Shell Photoionization of C4H5: The 2-Butyn-1-yl Radical. J Phys Chem A 2019; 123:1521-1528. [DOI: 10.1021/acs.jpca.8b11809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H. R. Hrodmarsson
- Synchrotron Soleil, L’Orme des Merisiers, F-91192 Gif-sur-Yvette, France
| | - J.-C. Loison
- Institut des Sciences Moléculaires, Université Bordeaux, 33400 Talence, France
| | - U. Jacovella
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - D. M. P. Holland
- STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - S. Boyé-Péronne
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS & Univ. Paris-Sud & Université Paris-Saclay, F-91405 Orsay, France
| | - B. Gans
- Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS & Univ. Paris-Sud & Université Paris-Saclay, F-91405 Orsay, France
| | - G. A. Garcia
- Synchrotron Soleil, L’Orme des Merisiers, F-91192 Gif-sur-Yvette, France
| | - L. Nahon
- Synchrotron Soleil, L’Orme des Merisiers, F-91192 Gif-sur-Yvette, France
| | - S. T. Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| |
Collapse
|
14
|
Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO. Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals. J Phys Chem A 2018; 123:590-600. [DOI: 10.1021/acs.jpca.8b09745] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eric Praske
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - J. Caleb Hethcox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Paul O. Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Lockhart JP, Gross EC, Sears TJ, Hall GE. Investigating the photodissociation of H2O2 using frequency modulation laser absorption spectroscopy to monitor radical products. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Otkjær RV, Jakobsen HH, Tram CM, Kjaergaard HG. Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals. J Phys Chem A 2018; 122:8665-8673. [DOI: 10.1021/acs.jpca.8b06223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rasmus V. Otkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Helene H. Jakobsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Mia Tram
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Cherrier MV, Amara P, Talbi B, Salmain M, Fontecilla-Camps JC. Crystallographic evidence for unexpected selective tyrosine hydroxylations in an aerated achiral Ru-papain conjugate. Metallomics 2018; 10:1452-1459. [PMID: 30175357 DOI: 10.1039/c8mt00160j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The X-ray structure of an aerated achiral Ru-papain conjugate has revealed the hydroxylation of two tyrosine residues found near the ruthenium ion. The most likely mechanism involves a ruthenium-bound superoxide as the reactive species responsible for the first hydroxylation and the resulting high valent Ru(iv)[double bond, length as m-dash]O species for the second one.
Collapse
Affiliation(s)
- Mickaël V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France.
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France.
| | - Barisa Talbi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, 75005, Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, 75005, Paris, France
| | | |
Collapse
|
18
|
Malpathak S, Ma X, Hase WL. Direct dynamics simulations of the unimolecular dissociation of dioxetane: Probing the non-RRKM dynamics. J Chem Phys 2018; 148:164309. [DOI: 10.1063/1.5024908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Shreyas Malpathak
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Xinyou Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
19
|
Bartlett MA, Liang T, Pu L, Schaefer HF, Allen WD. The multichannel n-propyl + O2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism. J Chem Phys 2018. [DOI: 10.1063/1.5017305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marcus A. Bartlett
- Center for Computational Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Tao Liang
- Center for Computational Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Liang Pu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Henry F. Schaefer
- Center for Computational Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Wesley D. Allen
- Center for Computational Chemistry and Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
20
|
Pandit S, Hornung B, Dunning GT, Preston TJ, Brazener K, Orr-Ewing AJ. Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane. Phys Chem Chem Phys 2018; 19:1614-1626. [PMID: 27995254 DOI: 10.1039/c6cp07164c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Velocity map imaging (VMI) measurements and quasi-classical trajectory (QCT) calculations on a newly developed, global potential energy surface (PES) combine to reveal the detailed mechanisms of reaction of Cl atoms with n-pentane. Images of the HCl (v = 0, J = 1, 2 and 3) products of reaction at a mean collision energy of 33.5 kJ mol-1 determine the centre-of-mass frame angular scattering and kinetic energy release distributions. The HCl products form with relative populations of J = 0-5 levels that fit to a rotational temperature of 138 ± 13 K. Product kinetic energy release distributions agree well with those derived from a previous VMI study of the pentyl radical co-product [Estillore et al., J. Chem. Phys. 2010, 132, 164313], but the angular distributions show more pronounced forward scattering. The QCT calculations reproduce many of the experimental observations, and allow comparison of the site-specific dynamics of abstraction of primary and secondary H-atoms. They also quantify the relative reactivity towards Cl atoms of the three different H-atom environments in n-pentane.
Collapse
Affiliation(s)
- Shubhrangshu Pandit
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Balázs Hornung
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Greg T Dunning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Thomas J Preston
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Kristian Brazener
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
21
|
Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO. Atmospheric autoxidation is increasingly important in urban and suburban North America. Proc Natl Acad Sci U S A 2018; 115:64-69. [PMID: 29255042 PMCID: PMC5776813 DOI: 10.1073/pnas.1715540115] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gas-phase autoxidation-regenerative peroxy radical formation following intramolecular hydrogen shifts-is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO2 radical undergoing hydrogen transfer (H-shift). RO2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s-1 at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NO x emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated.
Collapse
Affiliation(s)
- Eric Praske
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Rasmus V Otkjær
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - J Caleb Hethcox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
22
|
V.-T. Mai T, Duong MV, Le XT, Huynh LK. Ab initio dynamics of unimolecular decomposition of β-propiolactone and β-propiolactam. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Osborn DL. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry. Annu Rev Phys Chem 2017; 68:233-260. [DOI: 10.1146/annurev-physchem-040215-112151] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550
| |
Collapse
|
24
|
Linguerri R, Puzzarini C, Al Mogren MM, Francisco JS, Hochlaf M. Benchmark study of the structural and spectroscopic parameters of the hydroxymethyl peroxy (HOCH2OO) radical and its decomposition reaction to HO2 and H2CO. J Chem Phys 2017; 146:144303. [DOI: 10.1063/1.4979573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roberto Linguerri
- Laboratorie Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| | - Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician,” Universitá di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Joseph S. Francisco
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | - Majdi Hochlaf
- Laboratorie Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
25
|
Franke PR, Tabor DP, Moradi CP, Douberly GE, Agarwal J, Schaefer HF, Sibert EL. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region. J Chem Phys 2016; 145:224304. [DOI: 10.1063/1.4971239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter R. Franke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel P. Tabor
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Jay Agarwal
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Edwin L. Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Hoobler PR, Turney JM, Schaefer HF. Investigating the ground-state rotamers of n-propylperoxy radical. J Chem Phys 2016; 145:174301. [DOI: 10.1063/1.4966264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Preston R. Hoobler
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA, Electronic mail:
| | - Justin M. Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA, Electronic mail:
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA, Electronic mail:
| |
Collapse
|
27
|
Finney BA, Laufer AH, Anglada JM, Francisco JS. Spectroscopic characterization of the ethyl radical-water complex. J Chem Phys 2016; 145:144301. [DOI: 10.1063/1.4963869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brian A. Finney
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | - Allan H. Laufer
- Chemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-1070, USA
| | - Josep M. Anglada
- College of Arts and Sciences, University of Nebraska-Lincoln, 1223 Oldfather Hall, Lincoln, Nebraska 68588-0312, USA
- Departament de Química Biològica i Modelització Molecular, (IQAC—CSIC), Calle Jordi Girona 18, E-08034 Barcelona, Spain
| | - Joseph S. Francisco
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 47907-1393, USA
- College of Arts and Sciences, University of Nebraska-Lincoln, 1223 Oldfather Hall, Lincoln, Nebraska 68588-0312, USA
| |
Collapse
|
28
|
Cole-Filipiak NC, Shapero M, Haibach-Morris C, Neumark DM. Production and Photodissociation of the Methyl Perthiyl Radical. J Phys Chem A 2016; 120:4818-26. [PMID: 26859337 DOI: 10.1021/acs.jpca.5b12284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photodissociation dynamics of the methyl perthiyl (CH3SS) radical are investigated via molecular beam photofragment translational spectroscopy, using "soft" electron ionization to detect the radicals and their photofragments. With this new capability, we have shown that CH3SS can be generated from flash pyrolysis of dimethyl trisulfide. Utilizing this source of radicals and the advantages afforded by soft electron ionization, we have reinvestigated the photodissociation dynamics of CH3SS at 248 nm, finding CH3S + S to be the dominant dissociation channel with CH3 + SS as a minor process. These results differ from previous work reported in our laboratory in which we found CH3 + SS and CH2S + SH as the main dissociation channels. The difference in results is discussed in light of our new capabilities for characterization of radical production.
Collapse
Affiliation(s)
- Neil C Cole-Filipiak
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Mark Shapero
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Courtney Haibach-Morris
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
29
|
Wright EM, Warner BJ, Foreman HE, McCunn LR, Urness KN. Pyrolysis Reactions of 3-Oxetanone. J Phys Chem A 2015; 119:7966-72. [PMID: 26103787 DOI: 10.1021/acs.jpca.5b04565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyrolysis products of gas-phase 3-oxetanone were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry. Pyrolysis was conducted in a hyperthermal nozzle at temperatures from 100 to 1200 °C with the dissociation onset observed at ∼600 °C. The ring strain in the cyclic structure of 3-oxetanone causes the molecule to decompose at relatively low temperatures. Previously, only one dissociation channel, producing formaldehyde and ketene, was considered as significant in photolysis. This study presents the first experimental measurements of the thermal decomposition of 3-oxetanone demonstrating an additional dissociation channel that forms ethylene oxide and carbon monoxide. Major products include formaldehyde, ketene, carbon monoxide, ethylene oxide, ethylene, and methyl radical. The first four products stem from initial decomposition of 3-oxetanone, while the additional products, ethylene and methyl radical, are believed to be due to further reactions involving ethylene oxide.
Collapse
Affiliation(s)
- Emily M Wright
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, United States.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Brian J Warner
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, United States.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Hannah E Foreman
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, United States.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Laura R McCunn
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, United States.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kimberly N Urness
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, United States.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
30
|
Antonov IO, Kwok J, Zádor J, Sheps L. A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400–800 K Temperature Range. J Phys Chem A 2015; 119:7742-52. [DOI: 10.1021/acs.jpca.5b01012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan O. Antonov
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Justin Kwok
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Judit Zádor
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| | - Leonid Sheps
- Combustion
Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
| |
Collapse
|
31
|
Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kausiala O, Garmash O, Kjaergaard HG, Petäjä T, Worsnop DR, Ehn M, Kulmala M. Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene. J Phys Chem A 2015; 119:4633-50. [DOI: 10.1021/jp510966g] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matti P. Rissanen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Mikko Sipilä
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Joel A. Thornton
- Department of Atmospheric
Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Oskari Kausiala
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Olga Garmash
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, 2100 Copenhagen
Ø, Denmark
| | - Tuukka Petäjä
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Douglas R. Worsnop
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
- Aerodyne Research Inc., 45 Manning Road, Billerica, Massachusetts 01821, United States
| | - Mikael Ehn
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Markku Kulmala
- Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Rotavera B, Zádor J, Welz O, Sheps L, Scheer AM, Savee JD, Akbar Ali M, Lee TS, Simmons BA, Osborn DL, Violi A, Taatjes CA. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane. J Phys Chem A 2014; 118:10188-200. [PMID: 25234586 DOI: 10.1021/jp507811d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Product formation from R + O2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). Interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positive dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.
Collapse
Affiliation(s)
- Brandon Rotavera
- Combustion Chemistry Department, Combustion Research Facility, Sandia National Laboratories , Livermore, California 94550-0969, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rissanen MP, Kurtén T, Sipilä M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jørgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petäjä T, Worsnop DR, Kjaergaard HG, Ehn M. The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. J Am Chem Soc 2014; 136:15596-606. [PMID: 25283472 DOI: 10.1021/ja507146s] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.
Collapse
Affiliation(s)
- Matti P Rissanen
- Department of Physics, University of Helsinki , P.O. Box 64, Helsinki, 00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li C, Agarwal J, Wu CH, Allen WD, Schaefer HF. Intricate Internal Rotation Surface and Fundamental Infrared Transitions of the n-Propyl Radical. J Phys Chem B 2014; 119:728-35. [DOI: 10.1021/jp504764t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenyang Li
- Center for Computational Quantum Chemistry and ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jay Agarwal
- Center for Computational Quantum Chemistry and ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Chia-Hua Wu
- Center for Computational Quantum Chemistry and ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wesley D. Allen
- Center for Computational Quantum Chemistry and ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry and ‡Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
35
|
|
36
|
Eskola AJ, Welz O, Savee JD, Osborn DL, Taatjes CA. Synchrotron Photoionization Mass Spectrometry Measurements of Product Formation in Low-Temperature n-Butane Oxidation: Toward a Fundamental Understanding of Autoignition Chemistry and n-C4H9 + O2/s-C4H9 + O2 Reactions. J Phys Chem A 2013; 117:12216-35. [DOI: 10.1021/jp408467g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arkke J. Eskola
- Combustion Research Facility, Sandia National Laboratories, Mail Stop
9055, Livermore, California 94551-0969, United States
| | - Oliver Welz
- Combustion Research Facility, Sandia National Laboratories, Mail Stop
9055, Livermore, California 94551-0969, United States
| | - John D. Savee
- Combustion Research Facility, Sandia National Laboratories, Mail Stop
9055, Livermore, California 94551-0969, United States
| | - David L. Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop
9055, Livermore, California 94551-0969, United States
| | - Craig A. Taatjes
- Combustion Research Facility, Sandia National Laboratories, Mail Stop
9055, Livermore, California 94551-0969, United States
| |
Collapse
|
37
|
Davis AC, Sarathy SM. Computational Study of the Combustion and Atmospheric Decomposition of 2-Methylfuran. J Phys Chem A 2013; 117:7670-85. [DOI: 10.1021/jp403085u] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander C. Davis
- Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - S. Mani Sarathy
- Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
|
39
|
Cole-Filipiak NC, Negru B, Just GMP, Park D, Neumark DM. Photodissociation dynamics of the methyl perthiyl radical at 248 nm via photofragment translational spectroscopy. J Chem Phys 2013; 138:054301. [PMID: 23406113 DOI: 10.1063/1.4789485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Neil C Cole-Filipiak
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
40
|
Delcey MG, Lindh R, Linguerri R, Hochlaf M, Francisco JS. Communication: Theoretical prediction of the structure and spectroscopic properties of the X̃ and à states of hydroxymethyl peroxy (HOCH2OO) radical. J Chem Phys 2013; 138:021105. [DOI: 10.1063/1.4775782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Zádor J, Huang H, Welz O, Zetterberg J, Osborn DL, Taatjes CA. Directly measuring reaction kinetics of ˙QOOH – a crucial but elusive intermediate in hydrocarbon autoignition. Phys Chem Chem Phys 2013; 15:10753-60. [DOI: 10.1039/c3cp51185e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Xu H, Pratt ST. Photoionization Cross Section of the Propargyl Radical and Some General Ideas for Estimating Radical Cross Sections. J Phys Chem A 2012. [DOI: 10.1021/jp309874q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Xu
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S. T. Pratt
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
43
|
de Jong WA, Lischka H, Windus TL, Hase WL. Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O–O–CH2–CH2· biradical: Non-RRKM dynamics. J Chem Phys 2012; 137:044305. [DOI: 10.1063/1.4736843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Davis AC, Tangprasertchai N, Francisco JS. Hydrogen Migrations in Alkylcycloalkyl Radicals: Implications for Chain-Branching Reactions in Fuels. Chemistry 2012; 18:11296-305. [DOI: 10.1002/chem.201103517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/01/2012] [Indexed: 11/12/2022]
|
45
|
Dibble TS, Sha Y, Thornton WF, Zhang F. Cis–Trans Isomerization of Chemically Activated 1-Methylallyl Radical and Fate of the Resulting 2-Buten-1-peroxy Radical. J Phys Chem A 2012; 116:7603-14. [DOI: 10.1021/jp303652x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theodore S. Dibble
- Department of Chemistry, State University of New York—Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Yuan Sha
- Department of Chemistry, State University of New York—Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - William F. Thornton
- Department of Chemistry, State University of New York—Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Feng Zhang
- Department of Chemistry, State University of New York—Environmental Science and Forestry, Syracuse, New York 13210, United States
| |
Collapse
|
46
|
Morrison AM, Agarwal J, Schaefer HF, Douberly GE. Infrared Laser Spectroscopy of the CH3OO Radical Formed from the Reaction of CH3 and O2 within a Helium Nanodroplet. J Phys Chem A 2012; 116:5299-304. [DOI: 10.1021/jp3026368] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander M. Morrison
- Department
of Chemistry, University of Georgia, Athens, Georgia
30602, United States
| | - Jay Agarwal
- Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United
States
| | - Henry F. Schaefer
- Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United
States
| | - Gary E. Douberly
- Department
of Chemistry, University of Georgia, Athens, Georgia
30602, United States
| |
Collapse
|
47
|
Bell CL, van Helden JPH, Blaikie TPJ, Hancock G, van Leeuwen NJ, Peverall R, Ritchie GAD. Noise-Immune Cavity-Enhanced Optical Heterodyne Detection of HO2 in the Near-Infrared Range. J Phys Chem A 2012; 116:5090-9. [DOI: 10.1021/jp301038r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claire L Bell
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Xu H, Jacovella U, Ruscic B, Pratt ST, Lucchese RR. Near-threshold shape resonance in the photoionization of 2-butyne. J Chem Phys 2012; 136:154303. [DOI: 10.1063/1.3701762] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Welz O, Zádor J, Savee JD, Ng MY, Meloni G, Fernandes RX, Sheps L, Simmons BA, Lee TS, Osborn DL, Taatjes CA. Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550 K-750 K) oxidation chemistry of isopentanol. Phys Chem Chem Phys 2012; 14:3112-27. [PMID: 22286869 DOI: 10.1039/c2cp23248k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The branched C(5) alcohol isopentanol (3-methylbutan-1-ol) has shown promise as a potential biofuel both because of new advanced biochemical routes for its production and because of its combustion characteristics, in particular as a fuel for homogeneous-charge compression ignition (HCCI) or related strategies. In the present work, the fundamental autoignition chemistry of isopentanol is investigated by using the technique of pulsed-photolytic Cl-initiated oxidation and by analyzing the reacting mixture by time-resolved tunable synchrotron photoionization mass spectrometry in low-pressure (8 Torr) experiments in the 550-750 K temperature range. The mass-spectrometric experiments reveal a rich chemistry for the initial steps of isopentanol oxidation and give new insight into the low-temperature oxidation mechanism of medium-chain alcohols. Formation of isopentanal (3-methylbutanal) and unsaturated alcohols (including enols) associated with HO(2) production was observed. Cyclic ether channels are not observed, although such channels dominate OH formation in alkane oxidation. Rather, products are observed that correspond to formation of OH viaβ-C-C bond fission pathways of QOOH species derived from β- and γ-hydroxyisopentylperoxy (RO(2)) radicals. In these pathways, internal hydrogen abstraction in the RO(2)⇄ QOOH isomerization reaction takes place from either the -OH group or the C-H bond in α-position to the -OH group. These pathways should be broadly characteristic for longer-chain alcohol oxidation. Isomer-resolved branching ratios are deduced, showing evolution of the main products from 550 to 750 K, which can be qualitatively explained by the dominance of RO(2) chemistry at lower temperature and hydroxyisopentyl decomposition at higher temperature.
Collapse
Affiliation(s)
- Oliver Welz
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sakamoto Y, Tonokura K. Measurements of the Absorption Line Strength of Hydroperoxyl Radical in the ν3 Band using a Continuous Wave Quantum Cascade Laser. J Phys Chem A 2011; 116:215-22. [DOI: 10.1021/jp207477n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yosuke Sakamoto
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan,
| | - Kenichi Tonokura
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8563, Japan
| |
Collapse
|