1
|
Talaikis M, Strazdaitė S, Žiaunys M, Niaura G. Far-Off Resonance: Multiwavelength Raman Spectroscopy Probing Amide Bands of Amyloid-β-(37-42) Peptide. Molecules 2020; 25:E3556. [PMID: 32759766 PMCID: PMC7435454 DOI: 10.3390/molecules25153556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023] Open
Abstract
Several neurodegenerative diseases, like Alzheimer's and Parkinson's are linked with protein aggregation into amyloid fibrils. Conformational changes of native protein into the β-sheet structure are associated with a significant change in the vibrational spectrum. This is especially true for amide bands which are inherently sensitive to the secondary structure of a protein. Raman amide bands are greatly intensified under resonance conditions, in the UV spectral range, allowing for the selective probing of the peptide backbone. In this work, we examine parallel β-sheet forming GGVVIA, the C-terminus segment of amyloid-β peptide, using UV-Vis, FTIR, and multiwavelength Raman spectroscopy. We find that amide bands are enhanced far from the expected UV range, i.e., at 442 nm. A reasonable two-fold relative intensity increase is observed for amide II mode (normalized according to the δCH2/δCH3 vibration) while comparing 442 and 633 nm excitations; an increase in relative intensity of other amide bands was also visible. The observed relative intensification of amide II, amide S, and amide III modes in the Raman spectrum recorded at 442 nm comparing with longer wavelength (633/785/830 nm) excited spectra allows unambiguous identification of amide bands in the complex Raman spectra of peptides and proteins containing the β-sheet structure.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257 Vilnius, Lithuania;
| | - Simona Strazdaitė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT-10257 Vilnius, Lithuania;
| | - Mantas Žiaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, LT-10257 Vilnius, Lithuania;
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
2
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Jannone JM, Grigg JI, Aguirre LM, Jones EM. Electrostatic Interactions at N- and C-Termini Determine Fibril Polymorphism in Serum Amyloid A Fragments. J Phys Chem B 2016; 120:10258-10268. [PMID: 27632709 DOI: 10.1021/acs.jpcb.6b07672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid polymorphism presents a challenge to physical theories of amyloid formation and stability. The amyloidogenic protein serum amyloid A (SAA) exhibits complex and unexplained structural polymorphism in its N-terminal fragments: the N-terminal 11-residue peptide (SAA1-11) forms left-handed helical fibrils, while extension by one residue (SAA1-12) produces a rare right-handed amyloid. In this study, we use a combination of vibrational spectroscopy and ultramicroscopy to examine fibrils of these peptides and their terminally acetylated and amidated variants, in an effort to uncover the physical basis for this effect. Raman spectroscopy and atomic force microscopy provide evidence that SAA1-12 forms a β-helical fibril architecture, while SAA1-11 forms more typical stacked β-sheets. Importantly, N-terminal acetylation blocks fibril formation by SAA1-12 with no effect on SAA1-11, while C-terminal amidation has nearly the opposite effect. Together, these data suggest distinct electrostatic interactions at the N- and C-termini stabilize the two fibril structures; we propose model fibril structures in which C-terminal extension changes the favored intermolecular interaction between peptide monomers from an Arg1-C-terminus charge pair to an N-terminus-C-terminus charge pair. This model suggests a general mechanism for charge-mediated amyloid polymorphism and may inform strategies for design of peptide-based nanomaterials stabilized by engineered intermolecular contacts.
Collapse
Affiliation(s)
- Justine M Jannone
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - James I Grigg
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Lauren M Aguirre
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Eric M Jones
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| |
Collapse
|
4
|
Vajda T, Perczel A. The clear and dark sides of water: influence on the coiled coil folding domain. Biomol Concepts 2016; 7:189-95. [PMID: 27180359 DOI: 10.1515/bmc-2016-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022] Open
Abstract
The essential role of water in extra- and intracellular coiled coil structures of proteins is critically evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the stability of this conformer type; ii) the water's paradox iii) design of coiled coil motifs and iv) expert opinion and outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman 'Janus-face' which means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal processes of oligomerization and amyloidosis of the very same polypeptide chain.
Collapse
|
5
|
Gáspári Z, Nyitray L. Coiled coils as possible models of protein structure evolution. Biomol Concepts 2015; 2:199-210. [PMID: 25962029 DOI: 10.1515/bmc.2011.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/01/2011] [Indexed: 01/05/2023] Open
Abstract
Coiled coils are formed by two or more α-helices wrapped around one another. This structural motif often guides di-, tri- or multimerization of proteins involved in diverse biological processes such as membrane fusion, signal transduction and the organization of the cytoskeleton. Although coiled coil motifs seem conceptually simple and their existence was proposed in the early 1950s, the high variability of the motif makes coiled coil prediction from sequence a difficult task. They might be confused with intrinsically disordered sequences and even more with a recently described structural motif, the charged single α-helix. By contrast, the versatility of coiled coil structures renders them an ideal candidate for protein (re)design and many novel variants have been successfully created to date. In this paper, we review coiled coils in the light of protein evolution by putting our present understanding of the motif and its variants in the context of structural interconversions. We argue that coiled coils are ideal subjects for studies of subtle and large-scale structural changes because of their well-characterized and versatile nature.
Collapse
|
6
|
Jones EM, Balakrishnan G, Squier TC, Spiro TG. Distinguishing unfolding and functional conformational transitions of calmodulin using ultraviolet resonance Raman spectroscopy. Protein Sci 2014; 23:1094-101. [PMID: 24895328 DOI: 10.1002/pro.2495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well-known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this article, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca(2+) binding. This spectral difference is entirely due to differences in tertiary contacts at the interdomain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700
| | | | | | | |
Collapse
|
7
|
Patois E, Larmour I, Bell S, Palais C, Capelle M, Gurny R, Arvinte T. Ultraviolet Resonance Raman spectroscopy used to study formulations of salmon calcitonin, a starch–peptide conjugate and TGF-β3. Eur J Pharm Biopharm 2012; 81:392-8. [DOI: 10.1016/j.ejpb.2012.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 01/27/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
8
|
Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 2012; 112:2604-28. [PMID: 22335827 PMCID: PMC3349015 DOI: 10.1021/cr200198a] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Joseph Handen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| |
Collapse
|
9
|
Oladepo SA, Xiong K, Hong Z, Asher SA. Elucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy. J Phys Chem Lett 2011; 2:334-344. [PMID: 21379371 PMCID: PMC3046861 DOI: 10.1021/jz101619f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the Amide III(3) band and the C(α)-H band frequencies and intensities can be used to determine Ramachandran Ψ angle distributions for peptide bonds. These incisive, quantitative glimpses into conformation can be combined with kinetic T-jump methodologies to monitor the dynamics of biomolecular conformational transitions. The resulting UVRR structural insight is impressive in that it allows differentiation of, for example, different α-helix-like states that enable differentiating π- and 3(10)- states from pure α-helices. These approaches can be used to determine the Gibbs free energy landscape of individual peptide bonds along the most important protein (un)folding coordinate. Future work will find spectral monitors that probe peptide bond activation barriers that control protein (un)folding mechanisms. In addition, UVRR studies of sidechain vibrations will probe the role of side chains in determining protein secondary, tertiary and quaternary structures.
Collapse
Affiliation(s)
| | - Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| |
Collapse
|
10
|
Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 2011; 110:5692-713. [PMID: 20593900 DOI: 10.1021/cr900152h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, Colorado 80026, USA
| | | |
Collapse
|
11
|
Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1001-20. [PMID: 20883829 DOI: 10.1016/j.bbapap.2010.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA; Universität Würzbug, Würzburg, Germany
| | | | | | | |
Collapse
|
12
|
Shashilov VA, Sikirzhytski V, Popova LA, Lednev IK. Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy. Methods 2010; 52:23-37. [PMID: 20580825 DOI: 10.1016/j.ymeth.2010.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022] Open
Abstract
Here we report on novel quantitative approaches for protein structural characterization using deep UV resonance Raman (DUVRR) spectroscopy. Specifically, we propose a new method combining hydrogen-deuterium (HD) exchange and Bayesian source separation for extracting the DUVRR signatures of various structural elements of aggregated proteins including the cross-beta core and unordered parts of amyloid fibrils. The proposed method is demonstrated using the set of DUVRR spectra of hen egg white lysozyme acquired at various stages of HD exchange. Prior information about the concentration matrix and the spectral features of the individual components was incorporated into the Bayesian equation to eliminate the ill-conditioning of the problem caused by 100% correlation of the concentration profiles of protonated and deuterated species. Secondary structure fractions obtained by partial least squares (PLS) and least squares support vector machines (LS-SVMs) were used as the initial guess for the Bayessian source separation. Advantages of the PLS and LS-SVMs methods over the classical least squares calibration (CLSC) are discussed and illustrated using the DUVRR data of the prion protein in its native and aggregated forms.
Collapse
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, CO 80026, USA
| | | | | | | |
Collapse
|
13
|
Chen X, Gao L, Fang W, Phillips DL. Theoretical Insight into the Photodegradation of a Disulfide Bridged Cyclic Tetrapeptide in Solution and Subsequent Fast Unfolding−Refolding Events. J Phys Chem B 2010; 114:5206-14. [DOI: 10.1021/jp1003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Lianghui Gao
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Weihai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - David Lee Phillips
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| |
Collapse
|
14
|
Balakrishnan G, Weeks CL, Ibrahim M, Soldatova AV, Spiro TG. Protein dynamics from time resolved UV Raman spectroscopy. Curr Opin Struct Biol 2008; 18:623-9. [PMID: 18606227 PMCID: PMC2583231 DOI: 10.1016/j.sbi.2008.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Raman spectroscopy can provide unique information on the evolution of structure in proteins over a wide range of time scales; the picosecond to millisecond range can be accessed with pump-probe techniques. Specific parts of the molecule are interrogated by tuning the probe laser to a resonant electronic transition, including the UV transitions of aromatic residues and of the peptide bond. Advances in laser technology have enabled the characterization of transient species at an unprecedented level of structural detail. Applications to protein unfolding and allostery are reviewed.
Collapse
Affiliation(s)
| | - Colin L. Weeks
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Mohammed Ibrahim
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
15
|
Diss ML, Kennan AJ. Orthogonal recognition in dimeric coiled coils via buried polar-group modulation. J Am Chem Soc 2008; 130:1321-7. [PMID: 18171063 DOI: 10.1021/ja076265w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the design and exploration of new buried polar groups to control coiled-coil dimerization. Employing our recently described method for on-resin guanidinylation, we have prepared coiled-coil peptides with a single core guanidine, spaced from the backbone by 1-3 methylene groups. Heterodimeric mixtures of these sequences with guanidine, amide, and carboxylic acid binding partners form a large number of reasonably stable coiled coils (T(m) > or = 60 degrees C). A detailed stability trend examination reveals that asparagine/acid pairs are sharply sensitive to acid residue chain length (Asn/Asp much worse than Asn/Glu), while guanidine/acid pairs are largely insensitive. This has been exploited to create orthogonal recognition pairs which establish the capacity to form two distinct heterodimeric coiled coils by simple mixing of four different peptides. One dimer has buried core asparagines, while the other pairs aspartic acid with any of three guanidinylated side chains. Specificity of this behavior is underscored by failure of glutamic acid substituted sequences to perform accordingly. The successful alternate pairs are further characterized by various biophysical methods (circular dichroism, ultracentrifugation, thermal and chemical denaturation, affinity tags).
Collapse
Affiliation(s)
- Maria L Diss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
16
|
Pfister R, Ihalainen J, Hamm P, Kolano C. Synthesis, characterization and applicability of three isotope labeled azobenzene photoswitches. Org Biomol Chem 2008; 6:3508-17. [DOI: 10.1039/b804568b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Affiliation(s)
- Thomas G Spiro
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
18
|
Kolano C, Helbing J, Bucher G, Sander W, Hamm P. Intramolecular Disulfide Bridges as a Phototrigger To Monitor the Dynamics of Small Cyclic Peptides. J Phys Chem B 2007; 111:11297-302. [PMID: 17764169 DOI: 10.1021/jp074184g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two cyclic disulfide-bridged tetrapeptides [cyclo(Boc-Cys-Pro-Aib-Cys-OMe) (1) and cyclo(Boc-Cys-Pro-Phe-Cys-OMe) (2)] have been monitored by time-resolved mid-IR spectroscopy in the C=O vibrational range. A conformational change is induced by cleavage of the intramolecular disulfide bridge upon UV excitation (lambda(exc) = 260 nm), giving rise to a pair of cysteinyl radicals (thiyl radicals), which diffuse apart allowing the peptide to change conformation before they undergo quenching. The amide I band reports on the dynamics of the peptide backbone, which evolves on a 100 ps time scale and then stays constant up to 10 micros at low enough concentrations ( approximately 100 mM). To probe specifically the lifetime of the free cysteinyl radicals, time-resolved UV laser flash photolysis has been applied. The concentration of the cysteinyl radical decays nonexponentially, but about 50% are still present after 1 ms. The photocleavable disulfide bridge hence may serve as an intrinsic, naturally occurring phototrigger to study peptide dynamics that opens a wide time-window from a few picoseconds to many hundreds of microseconds.
Collapse
Affiliation(s)
- Christoph Kolano
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|