1
|
Wang J, Xie C, Hu X, Guo H, Xie D. Impact of Geometric Phase on Dynamics of Complex-Forming Reactions: H + O 2 → OH + O. J Phys Chem Lett 2024; 15:4237-4243. [PMID: 38602563 DOI: 10.1021/acs.jpclett.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Reaction dynamics on the ground electronic state might be significantly influenced by conical intersections (CIs) via the geometric phase (GP), as demonstrated for activated reactions (i.e., the H + H2 exchange reaction). However, there have been few investigations of GP effects in complex-forming reactions. Here, we report a full quantum dynamical study of an important reaction in combustion (H + O2 → OH + O), which serves as a proving ground for studying GP effects therein. The results reveal significant differences in reaction probabilities and differential cross sections (DCSs) obtained with and without GP, underscoring its strong impact. However, the GP effects are less pronounced for the reaction integral cross sections, apparently due to the integral of the DCS over the scattering angle. Further analysis indicated that the cross section has roughly the same contributions from the two topologically distinct paths around the CI, namely, the direct and looping paths.
Collapse
Affiliation(s)
- Junyan Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Changjian Xie
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, Jiangsu 210023, China
- Hefei National Laboratory, Hefei, Anhui 230088, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Hefei National Laboratory, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Wang J, An F, Chen J, Hu X, Guo H, Xie D. Accurate Full-Dimensional Global Diabatic Potential Energy Matrix for the Two Lowest-Lying Electronic States of the H + O 2 ↔ HO + O Reaction. J Chem Theory Comput 2023; 19:2929-2938. [PMID: 37161259 DOI: 10.1021/acs.jctc.3c00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new and more accurate diabatic potential energy matrix (DPEM) is developed for the two lowest-lying electronic states of HO2, covering both the strong interaction region and reaction asymptotes. The ab initio calculations were performed at the Davidson corrected multireference configuration interaction level with the augmented correlation-consistent polarized valence quintuple-zeta basis set (MRCI+Q/AV5Z). The accuracy of the electronic structure calculations is validated by excellent agreement with the experimental HO2 equilibrium geometry, fundamental vibrational frequencies, and H + O2 ↔ OH + O reaction energy. Through the combination of an electronic angular momentum-method and a configuration interaction vector-based method, the mixing angle between the first two 2A″ states of HO2 was successfully determined. Elements of the 2×2 DPEM were fit to neural networks with a proper account of the complete nuclear permutation inversion symmetry of HO2. The DPEM correctly predicted the properties of conical intersection seams at linear and T-shape geometries, thus providing a reliable platform for studying both the spectroscopy of HO2 and the nonadiabatic dynamics for the H + O2 ↔ OH + O reaction.
Collapse
Affiliation(s)
- Junyan Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng An
- Research Center for Graph Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Junjie Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xixi Hu
- Kuang Yaming Honors School, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
3
|
Sathyamurthy N, Mahapatra S. Time-dependent quantum mechanical wave packet dynamics. Phys Chem Chem Phys 2020; 23:7586-7614. [PMID: 33306771 DOI: 10.1039/d0cp03929b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from a model study of the collinear (H, H2) exchange reaction in 1959, the time-dependent quantum mechanical wave packet (TDQMWP) method has come a long way in dealing with systems as large as Cl + CH4. The fast Fourier transform method for evaluating the second order spatial derivative of the wave function and split-operator method or Chebyshev polynomial expansion for determining the time evolution of the wave function for the system have made the approach highly accurate from a practical point of view. The TDQMWP methodology has been able to predict state-to-state differential and integral reaction cross sections accurately, in agreement with available experimental results for three dimensional (H, H2) collisions, and identify reactive scattering resonances too. It has become a practical computational tool in predicting the observables for many A + BC exchange reactions in three dimensions and a number of larger systems. It is equally amenable to determining the bound and quasi-bound states for a variety of molecular systems. Just as it is able to deal with dissociative processes (without involving basis set expansion), it is able to deal with multi-mode nonadiabatic dynamics in multiple electronic states with equal ease. We present an overview of the method and its strength and limitations, citing examples largely from our own research groups.
Collapse
|
4
|
Wang CH, Masunov AE, Allison TC, Chang S, Lim C, Jin Y, Vasu SS. Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. 6. Computational Kinetics of Reactions between Hydrogen Atom and Oxygen Molecule H + O 2 ⇌ HO + O and H + O 2 ⇌ HO 2. J Phys Chem A 2019; 123:10772-10781. [PMID: 31820644 DOI: 10.1021/acs.jpca.9b08789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of the hydrogen atom and the oxygen molecule are among the most important ones in the hydrogen and hydrocarbon oxidation mechanisms, including combustion in a supercritical CO2 (sCO2) environment, known as oxy-combustion or the Allam cycle. Development of these energy technologies requires understanding of chemical kinetics of H + O2 ⇌ HO + O and H + O2 ⇌ HO2 in high pressures and concentrations of CO2. Here, we combine quantum treatment of the reaction system by the transition state theory with classical molecular dynamics simulation and the multistate empirical valence bonding method to treat environmental effects. Potential of mean force in the sCO2 solvent at various temperatures 1000-2000 K and pressures 100-400 atm was obtained. The reaction rate for H + O2 ⇌ HO + O was found to be pressure-independent and described by the extended Arrhenius equation 4.23 × 10-7 T-0.73 exp(-21 855.2 cal/mol/RT) cm3/molecule/s, while the reaction rate H + O2 ⇌ HO2 is pressure-dependent and can be expressed as 5.22 × 10-2 T-2.86 exp(-7247.4 cal/mol/RT) cm3/molecule/s at 300 atm.
Collapse
Affiliation(s)
- Chun-Hung Wang
- NanoScience Technology Center , University of Central Florida , 12424 Research Parkway , Orlando , Florida 32826 , United States
| | - Artëm E Masunov
- NanoScience Technology Center , University of Central Florida , 12424 Research Parkway , Orlando , Florida 32826 , United States.,School of Modeling, Simulation, and Training , University of Central Florida , 3100 Technology Parkway , Orlando , Florida 32816 , United States.,Department of Chemistry , University of Central Florida , 4111 Libra Drive , Orlando , Florida 32816 , United States.,South Ural State University , Lenin pr. 76 , Chelyabinsk 454080 , Russia.,National Research Nuclear University MEPhI , Kashirskoye shosse 31 , Moscow 115409 , Russia
| | - Timothy C Allison
- Southwest Research Institute , San Antonio , Texas 78238 , United States
| | - Sungho Chang
- KEPCO Research Institute , Daejeon 34050 , Korea
| | - Chansun Lim
- Hanwha Power Systems , Seongnam , Gyeonggi 13488 , Korea
| | - Yuin Jin
- Hanwha Power Systems , Seongnam , Gyeonggi 13488 , Korea
| | - Subith S Vasu
- Center for Advanced Turbomachinery and Energy Research (CATER), Mechanical and Aerospace Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| |
Collapse
|
5
|
Ghosh S, Sharma R, Adhikari S, Varandas AJC. Fully coupled (J > 0) time-dependent wave-packet calculations using hyperspherical coordinates for the H + O2 reaction on the CHIPR potential energy surface. Phys Chem Chem Phys 2019; 21:20166-20176. [DOI: 10.1039/c9cp03171e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ICS calculation by time dependent wavepacket approach for H + O2 reaction using non-zero J values.
Collapse
Affiliation(s)
- Sandip Ghosh
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Rahul Sharma
- Department of Chemistry
- St. Xaviers' College
- Kolkata-700016
- India
| | - Satrajit Adhikari
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - António J. C. Varandas
- School of Physics and Physical Engineering
- Qufu Normal University
- 273165 Qufu
- China
- Departamento de Química, and Centro de Química
| |
Collapse
|
6
|
Zuo JX, Hu XX, Xie DQ. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jun-xiang Zuo
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xi-xi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dai-qian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Ghosh S, Sharma R, Adhikari S, Varandas AJC. 3D time-dependent wave-packet approach in hyperspherical coordinates for the H + O2 reaction on the CHIPR and DMBE IV potential energy surfaces. Phys Chem Chem Phys 2018; 20:478-488. [DOI: 10.1039/c7cp06254k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D wavepacket quantum dynamics methodology ICS calculation of H + O2 reaction on the CHIPR and DMBE IV PESs by J-shifting scheme.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Rahul Sharma
- Department of Chemistry
- St. Xaviers’ College
- Kolkata-700016
- India
| | - Satrajit Adhikari
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - António J. C. Varandas
- Departamento de Química
- and Centro de Química
- Universidade de Coimbra
- 3004-535 Coimbra
- Portugal
| |
Collapse
|
8
|
Szabó P, Lendvay G. Dynamics of Complex-Forming Bimolecular Reactions: A Comparative Theoretical Study of the Reactions of H Atoms with O2((3)Σg(-)) and O2((1)Δg). J Phys Chem A 2015; 119:12485-97. [PMID: 26517427 DOI: 10.1021/acs.jpca.5b07938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The atomic-level mechanism of the reaction of H atoms with triplet and singlet molecular oxygen, H((2)S) + O2((3)Σg(-)) → O((3)P) + OH((2)Πg) ( R1 ) and H((2)S) + O2((1)Δg) → O((3)P) + OH((2)Πg) ( R2 ) is analyzed in terms of the topology of the potential energy surfaces (PES) of the two reactions. Both PES exhibit a deep potential well corresponding to the ground and first excited electronic state of HO2. The ground-state reaction is endothermic with no barrier on either side of the well; the excited-state reaction is exothermic with a barrier in the entrance valley of the PES. The differences of the PES are manifested in properties such as the excitation functions, which show reaction R1 to be much slower and the effect of rotational excitation on reactivity, which speeds up reaction R1 and has little effect on R2 . Numerous common dynamics features arise from the presence of the deep potential well on the PES. Such are the significant role of isomerization (for example, 90% of reactive collisions in R2 involve at least one H atom transfer from one of the O atoms to the other in reaction R2 ), which is shown to give rise to a significant rotational excitation of the product OH radicals. Common is the significant sideways scattering of the products that originates from collisions in propeller-type arrangements induced by the presence of two bands of acceptance around the O2 molecule. The HO2 complex in both reactions proves to behave nonstatistically, with signatures of the dynamics in lifetime distributions, angular distributions, opacity functions, and product quantum-state distributions.
Collapse
Affiliation(s)
- Péter Szabó
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia , P.O.B. 158, Veszprém H-8201, Hungary
| | - György Lendvay
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia , P.O.B. 158, Veszprém H-8201, Hungary.,Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok krt. 2., Budapest H-1117, Hungary
| |
Collapse
|
9
|
Teixidor MM, Varandas AJC. Quantum dynamics study on the CHIPR potential energy surface for the hydroperoxyl radical: the reactions O + OH⇋O2 + H. J Chem Phys 2015; 142:014309. [PMID: 25573563 DOI: 10.1063/1.4905292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum scattering calculations of the O((3)P)+OH((2)Π)⇌O2((3)Σg (-))+H((2)S) reactions are presented using the combined-hyperbolic-inverse-power-representation potential energy surface [A. J. C. Varandas, J. Chem. Phys. 138, 134117 (2013)], which employs a realistic, ab initio-based, description of both the valence and long-range interactions. The calculations have been performed with the ABC time-independent quantum reactive scattering computer program based on hyperspherical coordinates. The reactivity of both arrangements has been investigated, with particular attention paid to the effects of vibrational excitation. By using the J-shifting approximation, rate constants are also reported for both the title reactions.
Collapse
Affiliation(s)
- Marc Moix Teixidor
- Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J C Varandas
- Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
10
|
Szabó P, Lendvay G. A Quasiclassical Trajectory Study of the Reaction of H Atoms with O2(1Δg). J Phys Chem A 2015; 119:7180-9. [DOI: 10.1021/jp510202r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Péter Szabó
- Department
of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, P.O.B. 158, Veszprém H-8201, Hungary
| | - György Lendvay
- Department
of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, P.O.B. 158, Veszprém H-8201, Hungary
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2., Budapest H-1117, Hungary
| |
Collapse
|
11
|
Perry JW, Dawes R, Wagner AF, Thompson DL. A classical trajectory study of the intramolecular dynamics, isomerization, and unimolecular dissociation of HO2. J Chem Phys 2013; 139:084319. [PMID: 24007009 DOI: 10.1063/1.4818879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The classical dynamics and rates of isomerization and dissociation of HO2 have been studied using two potential energy surfaces (PESs) based on interpolative fittings of ab initio data: An interpolative moving least-squares (IMLS) surface [A. Li, D. Xie, R. Dawes, A. W. Jasper, J. Ma, and H. Guo, J. Chem. Phys. 133, 144306 (2010)] and the cubic-spline-fitted PES reported by Xu, Xie, Zhang, Lin, and Guo (XXZLG) [J. Chem. Phys. 127, 024304 (2007)]. Both PESs are based on similar, though not identical, internally contracted multi-reference configuration interaction with Davidson correction (icMRCI+Q) electronic structure calculations; the IMLS PES includes complete basis set (CBS) extrapolation. The coordinate range of the IMLS PES is limited to non-reactive processes. Surfaces-of-section show similar generally regular phase space structures for the IMLS and XXZLG PESs with increasing energy. The intramolecular vibrational energy redistribution (IVR) at energies above and below the threshold of isomerization is slow, especially for O-O stretch excitations, consistent with the regularity in the surfaces-of-section. The slow IVR rates lead to mode-specific effects that are prominent for isomerization (on both the IMLS and XXZLG) and modest for unimolecular dissociation to H + O2 (accessible only on the XXZLG PES). Even with statistical distributions of initial energy, slow IVR rates result in double exponential decay for isomerization, with the slower rate correlated with slow IVR rates for O-O vibrational excitation. The IVR and isomerization rates computed for the IMLS and XXZLG PESs are quantitatively, but not qualitatively, different from one another with the largest differences ascribed to the ~2 kcal/mol difference in the isomerization barrier heights. The IMLS and XXZLG results are compared with those obtained using the global, semi-empirical double-many-body expansion DMBE-IV PES [M. R. Pastrana, L. A. M. Quintales, J. Brandão, and A. J. C. Varandas, J. Chem. Phys. 94, 8073 (1990)], for which the surfaces-of-section display more irregular phase space structure, much faster IVR rates, and significantly less mode-specific effects in isomerization and unimolecular dissociation. The calculated IVR results for all three PESs are reasonably well represented by an analytic, coupled three-mode energy transfer model.
Collapse
Affiliation(s)
- Jamin W Perry
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
12
|
Sun Z, Yang W, Zhang DH. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Phys Chem Chem Phys 2012; 14:1827-45. [DOI: 10.1039/c1cp22790d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
Ma J, Lin SY, Guo H, Sun Z, Zhang DH, Xie D. State-to-state quantum dynamics of the O(P3)+OH(Π2)→H(S2)+O2(Σ3g−) reaction. J Chem Phys 2010; 133:054302. [DOI: 10.1063/1.3455431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Quéméner G, Kendrick BK, Balakrishnan N. Quantum dynamics of the H+O2→O+OH reaction. J Chem Phys 2010; 132:014302. [DOI: 10.1063/1.3271795] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Jorfi M, Honvault P. Quantum Dynamics at the State-to-State Level of the C + OH Reaction on the First Excited Potential Energy Surface. J Phys Chem A 2009; 114:4742-7. [DOI: 10.1021/jp908963k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M. Jorfi
- Institut UTINAM UMR CNRS 6213, University of Franche-Comté, 25030 Besançon Cedex, France
| | - P. Honvault
- Institut UTINAM UMR CNRS 6213, University of Franche-Comté, 25030 Besançon Cedex, France
| |
Collapse
|
17
|
Sun Z, Lee SY, Guo H, Zhang DH. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J Chem Phys 2009; 130:174102. [DOI: 10.1063/1.3126363] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Brandão J, Rio CMA, Tennyson J. A modified potential for HO2 with spectroscopic accuracy. J Chem Phys 2009; 130:134309. [PMID: 19355734 DOI: 10.1063/1.3103491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Seven ground state potential energy surfaces for the hydroperoxyl radical are compared. The potentials were determined from either high-quality ab initio calculations, fits to spectroscopic data, or a combination of the two approaches. Vibration-rotation calculations are performed on each potential and the results compared with experiment. None of the available potentials is entirely satisfactory although the best spectroscopic results are obtained using the Morse oscillator rigid bender internal dynamics potential [Bunker et al., J. Mol. Spectrosc. 155, 44 (1992)]. We present modifications of the double many-body expansion IV potential of Pastrana et al. [J. Chem. Phys. 94, 8093 (1990)]. These new potentials reproduce the observed vibrational levels and observed vibrational levels and rotational constants, respectively, while preserving the good global properties of the original potential.
Collapse
Affiliation(s)
- João Brandão
- Departamento Química Bioquímica e Farmácia, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | |
Collapse
|
19
|
Jorfi M, Honvault P, Halvick P. Quasi-classical determination of integral cross-sections and rate constants for the N+OH→NO+H reaction. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Sun Z, Lin X, Lee SY, Zhang DH. A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics: Application to the H + O2 Reaction. J Phys Chem A 2009; 113:4145-54. [DOI: 10.1021/jp810512j] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhigang Sun
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China, and Department of Physics, The National University of Singapore, Singapore 119260
| | - Xin Lin
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China, and Department of Physics, The National University of Singapore, Singapore 119260
| | - Soo-Y. Lee
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China, and Department of Physics, The National University of Singapore, Singapore 119260
| | - Dong H. Zhang
- Division of Physics & Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China, and Department of Physics, The National University of Singapore, Singapore 119260
| |
Collapse
|
21
|
Jorfi M, Honvault P. State-to-State Quantum Dynamical Study of the N + OH → NO + H Reaction. J Phys Chem A 2009; 113:2316-22. [DOI: 10.1021/jp811237z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Jorfi
- Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, 25030 Besançon Cedex, France
| | - P. Honvault
- Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, 25030 Besançon Cedex, France
| |
Collapse
|
22
|
Lin SY, Guo H, Lendvay G, Xie D. Effects of reactant rotational excitation on H + O2→ OH + O reaction rate constant: quantum wave packet, quasi-classical trajectory and phase space theory calculations. Phys Chem Chem Phys 2009; 11:4715-21. [DOI: 10.1039/b822746m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
On the Differential Cross Sections in Complex-Forming Atom–Diatom Reactive Collisions. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-90-481-2985-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Jorfi M, Honvault P, Halvick P. Quasiclassical trajectory calculations of differential cross sections and product energy distributions for the N+OH→NO+H reaction. J Chem Phys 2009; 131:094302. [DOI: 10.1063/1.3218843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Jorfi M, Honvault P, Bargueño P, González-Lezana T, Larrégaray P, Bonnet L, Halvick P. On the statistical behavior of the O+OH→H+O[sub 2] reaction: A comparison between quasiclassical trajectory, quantum scattering, and statistical calculations. J Chem Phys 2009; 130:184301. [DOI: 10.1063/1.3128537] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Sun Z, Zhang DH, Xu C, Zhou S, Xie D, Lendvay G, Lee SY, Lin SY, Guo H. State-to-State Dynamics of H + O2 Reaction, Evidence for Nonstatistical Behavior. J Am Chem Soc 2008; 130:14962-3. [DOI: 10.1021/ja8068616] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhigang Sun
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Dong H. Zhang
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Chuanxiu Xu
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Shulan Zhou
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Daiqian Xie
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - György Lendvay
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Soo-Y. Lee
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Shi Ying Lin
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| | - Hua Guo
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China, Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, P. R. China, Institute of Theoretical and Computational
| |
Collapse
|
27
|
Jorfi M, Honvault P, Halvick P, Lin S, Guo H. Quasiclassical trajectory scattering calculations for the OH+O→H+O2 reaction: Cross sections and rate constants. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Bargueño P, González-Lezana T, Larrégaray P, Bonnet L, Rayez JC, Hankel M, Smith SC, Meijer AJHM. Study of the H+O2 reaction by means of quantum mechanical and statistical approaches: the dynamics on two different potential energy surfaces. J Chem Phys 2008; 128:244308. [PMID: 18601333 DOI: 10.1063/1.2944246] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.
Collapse
Affiliation(s)
- Pedro Bargueño
- Instituto de Fisica Fundamental (CSIC), Serrano 123, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kłos JA, Lique F, Alexander MH, Dagdigian PJ. Theoretical determination of rate constants for vibrational relaxation and reaction of OH(XΠ2,v=1) with O(P3) atoms. J Chem Phys 2008; 129:064306. [DOI: 10.1063/1.2957901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Lendvay G, Xie D, Guo H. Mechanistic insights into the H+O2→OH+O reaction from quasi-classical trajectory studies on a new ab initio potential energy surface. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Zanchet A, Halvick P, Bussery-Honvault B, Honvault P. Differential cross sections and product energy distributions for the C(P3)+OH(XΠ2)→CO(XΣ+1)+H(S2) reaction using a quasiclassical trajectory method. J Chem Phys 2008; 128:204301. [DOI: 10.1063/1.2924124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Lin SY, Sun Z, Guo H, Zhang DH, Honvault P, Xie D, Lee SY. Fully Coriolis-Coupled Quantum Studies of the H + O2 (υi = 0−2, ji = 0,1) → OH + O Reaction on an Accurate Potential Energy Surface: Integral Cross Sections and Rate Constants. J Phys Chem A 2008; 112:602-11. [DOI: 10.1021/jp7098637] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi Ying Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Zhigang Sun
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Dong Hui Zhang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Pascal Honvault
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Daiqian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| | - Soo-Y. Lee
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France, Institute of Theoretical and Computational Chemistry, Laboratory of
| |
Collapse
|
33
|
Lin SY, Guo H, Honvault P, Xu C, Xie D. Accurate quantum mechanical calculations of differential and integral cross sections and rate constant for the O+OH reaction using an ab initio potential energy surface. J Chem Phys 2008; 128:014303. [DOI: 10.1063/1.2812559] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Xu C, Xie D, Honvault P, Lin SY, Guo H. Rate constant for OH(2 Pi)+O(3P)-->H(2S)+O2(3 Sigma g-) reaction on an improved ab initio potential energy surface and implications for the interstellar oxygen problem. J Chem Phys 2007; 127:024304. [PMID: 17640125 DOI: 10.1063/1.2753484] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors report a global potential energy surface for the ground electronic state of HO(2)(X (2)A(")), which improves upon the XXZLG potential [Xu and et al., J. Chem. Phys. 122, 244305 (2005)] with additional high-level ab initio points for the long-range interaction potential in the O+OH channel. Exact J=0 quantum mechanical reaction probabilities were calculated on the new potential and the rate constant for the title reaction was obtained using a J-shifting method. The calculated rate constant is in good agreement with available experimental values and our results predict a significantly lower rate at temperature range below 30 K, offering a possible explanation for the "interstellar oxygen problem."
Collapse
Affiliation(s)
- Chuanxiu Xu
- Key Laboratory of Mesoscopic Chemistry, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
35
|
Hankel M, Smith SC, Meijer AJHM. State-to-state reaction probabilities for the H+O2(v,j)→O+OH(v′,j′) reaction on three potential energy surfaces. J Chem Phys 2007; 127:064316. [PMID: 17705605 DOI: 10.1063/1.2762220] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report state-to-state and total reaction probabilities for J=0 and total reaction probabilities for J=2 and 4 for the title reaction, both for ground-state and initially rovibrationally excited reactants. The results for three different potential energy surfaces are compared and contrasted. The potential energy surfaces employed are the DMBE IV surface by Pastrana et al. [J. Phys. Chem. 94, 8073 (1990)], the surface by Troe and Ushakov (TU) [J. Chem. Phys. 115, 3621 (2001)], and the new XXZLG ab initio surface by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. Our results show that the total reaction probabilities from both the TU and XXZLG surfaces are much smaller in magnitude for collision energies above 1.2 eV compared to the DMBE IV surface. The three surfaces also show different behavior with regards to the effect of initial state excitation. The reactivity is increased on the XXZLG and the TU surfaces and decreased on the DMBE IV surface. Vibrational and rotational product state distributions for the XXZLG and the DMBE IV surface show different behaviors for both types of distributions. Our results show that for energies above 1.25 eV the dynamics on the DMBE IV surface are not statistical. However, there is also evidence that the dynamics on the XXZLG surface are not purely statistical for energies above the onset of the first excited product vibrational state v'=1. The magnitude of the total reaction probability is decreased for J>0 for the DMBE IV and the XXZLG surfaces for ground-state reactants. However, for initially rovibrationally excited reactants, the total reaction probability does not decrease as expected for both surfaces. As a result the total cross section averaged over all Boltzmann accessible rotational states may well be larger than the cross section reported in the literature for j=1.
Collapse
Affiliation(s)
- Marlies Hankel
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | | | | |
Collapse
|
36
|
Xu C, Jiang B, Xie D, Farantos SC, Lin SY, Guo H. Analysis of the HO2 Vibrational Spectrum on an Accurate Ab Initio Potential Energy Surface. J Phys Chem A 2007; 111:10353-61. [PMID: 17602457 DOI: 10.1021/jp072319c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complete vibrational spectrum of the HO2(X(2)A' ') radical, up to the H + O2 dissociation limit, has been determined quantum mechanically on an accurate potential energy surface (PES), based on approximately 15000 ab initio points at the icMRCI+Q/aug-cc-pVQZ level of theory. The vibrational states are found to be assignable at low energies but become more irregular as the energy approaches the dissociation limit. However, even at very high energies, regularity still exists, in sharp contrast to earlier results based on the double many-body expansion (DMBE) IV potential. Several Fermi resonances have been identified, and the spectrum is fit with a spectroscopic Hamiltonian. In addition, the vibrational dynamics is analyzed using a periodic orbit approach.
Collapse
Affiliation(s)
- Chuanxiu Xu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Honvault P, Lin SY, Xie D, Guo H. Differential and Integral Cross Sections for the H + O2 → OH + O Combustion Reaction. J Phys Chem A 2007; 111:5349-52. [PMID: 17547384 DOI: 10.1021/jp072904d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present accurate differential and integral cross sections for the H + O2 --> OH + O reaction obtained on a newly developed ab initio potential energy surface using time-independent and time-dependent quantum mechanical methods. The product angular distributions near the reaction threshold show pronounced forward and backward peaks, reflecting the complex-forming mechanism. However, the asymmetry of these peaks suggests certain nonstatistical behaviors, presumably due to some relatively short-lived resonances. The integral cross section increases monotonically with the collision energy above a reaction threshold.
Collapse
Affiliation(s)
- Pascal Honvault
- Institut UTINAM, UMR CNRS 6213, University of Franche-Comté, Campus de la Bouloie, UFR Sciences et Techniques, 25030 Besançon cedex, France
| | | | | | | |
Collapse
|
38
|
Zanchet A, Halvick P, Rayez JC, Bussery-Honvault B, Honvault P. Cross sections and rate constants for the C(P3)+OH(XΠ2)→CO(XΣ+1)+H(S2) reaction using a quasiclassical trajectory method. J Chem Phys 2007; 126:184308. [PMID: 17508804 DOI: 10.1063/1.2731788] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
First quasiclassical trajectory calculations have been carried out for the C(3P)+OH(X 2Pi)-->CO(X 1Sigma+)+H(2S) reaction using a recent ab initio potential energy surface for the ground electronic state, X 2A', of HCO/COH. Total and state-specific integral cross sections have been determined for a wide range of collision energies (0.001-1 eV). Then, thermal and state-specific rate constants have been calculated in the 1-500 K temperature range. The thermal rate constant varies from 1.78x10(-10) cm3 s-1 at 1 K down to 5.96x10(-11) cm3 s-1 at 500 K with a maximum value of 3.39x10(-10) cm3 s-1 obtained at 7 K. Cross sections and rate constants are found to be almost independent of the rovibrational state of OH.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Laboratoire PALMS, UMR CNRS 6627, University Rennes 1, 35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Xie D, Xu C, Ho TS, Rabitz H, Lendvay G, Lin SY, Guo H. Global analytical potential energy surfaces for HO2(X2A") based on high-level ab initio calculations. J Chem Phys 2007; 126:074315. [PMID: 17328613 DOI: 10.1063/1.2446994] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two global analytical potential energy surfaces for the HO2(X2A") system have been developed by fitting approximately 15,000 ab initio points at the icMRCI+Qaug-cc-pVQZ level of theory, using the reproducing kernel Hilbert space method. One analytical potential is designed to give a very accurate representation of the low energy range that determines the vibrational spectrum, while the other attempts to provide a fast and uniformly accurate potential function for reaction dynamics. The quality of the fitted potential functions is confirmed by good agreement of the (J=0) HO2 vibrational spectrum and (J=0) quantum reaction probability for the H+O2(ji=0,nui=0) reaction with those obtained using the spline fitted potential. Quasiclassical trajectory calculations carried out on the new potential energy surface provided the reaction probability with a zero impact parameter (b=0), which is in reasonably good agreement with the J=0 quantum results.
Collapse
Affiliation(s)
- Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bargueño P, González-Lezana T, Larrégaray P, Bonnet L, Claude Rayez J. Time dependent wave packet and statistical calculations on the H + O(2) reaction. Phys Chem Chem Phys 2007; 9:1127-37. [PMID: 17311155 DOI: 10.1039/b613375d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H + O(2)--> OH + O reaction has been theoretically investigated by means of an exact time dependent wave packet method and two statistical approaches: a recently developed statistical quantum model and phase-space theory. The exhaustive analysis of reaction probabilities at a zero total angular momentum would, in principle, reveal the existence of a complex-forming mechanism at low collision energies (E(c) = 1.15 eV), whereas deviations from a statistical behaviour at higher energies may be interpreted as the onset of a direct abstraction pathway which favours the production of highly excited rotational states of the OH fragment in its ground vibrational state. The good description by statistical means of previously measured product rotational distributions and excitation functions seems to support such an interpretation. However the statistical predictions clearly overestimate both existing and present exact quantum mechanical reaction probabilities and total cross sections, thereby precluding to conclude definitely the statistical nature of the collision. The exact time dependent method yields values of the integral cross sections in agreement with results by Goldfield and Meijer, and below the experimental findings.
Collapse
Affiliation(s)
- Pedro Bargueño
- Instituto de Matemáticas y Física Fundamental (CSIC), Serrano 123, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|