1
|
Chekmarev SF. Protein folding as a complex reaction: a two-component potential for the driving force of folding and its variation with folding scenario. PLoS One 2015; 10:e0121640. [PMID: 25848943 PMCID: PMC4388825 DOI: 10.1371/journal.pone.0121640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
The Helmholtz decomposition of the vector field of probability fluxes in a two-dimensional space of collective variables makes it possible to introduce a potential for the driving force of protein folding [Chekmarev, J. Chem. Phys. 139 (2013) 145103]. The potential has two components: one component (Φ) is responsible for the source and sink of the folding flow, which represent, respectively, the unfolded and native state of the protein, and the other (Ψ) accounts for the flow vorticity inherently generated at the periphery of the flow field and provides the canalization of the flow between the source and sink. Both components obey Poisson’s equations with the corresponding source/sink terms. In the present paper, we consider how the shape of the potential changes depending on the scenario of protein folding. To mimic protein folding dynamics projected onto a two-dimensional space of collective variables, the two-dimensional Müller and Brown potential is employed. Three characteristic scenarios are considered: a single pathway from the unfolded to the native state without intermediates, two parallel pathways without intermediates, and a single pathway with an off-pathway intermediate. To determine the probability fluxes, the hydrodynamic description of the folding reaction is used, in which the first-passage folding is viewed as a steady flow of the representative points of the protein from the unfolded to the native state. We show that despite the possible complexity of the folding process, the Φ-component is simple and universal in shape. The Ψ-component is more complex and reveals characteristic features of the process of folding. The present approach is potentially applicable to other complex reactions, for which the transition from the reactant to the product can be described in a space of two (collective) variables.
Collapse
Affiliation(s)
- Sergei F. Chekmarev
- Institute of Thermophysics, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
2
|
Kalgin IV, Chekmarev SF, Karplus M. First passage analysis of the folding of a β-sheet miniprotein: is it more realistic than the standard equilibrium approach? J Phys Chem B 2014; 118:4287-99. [PMID: 24669953 PMCID: PMC4002127 DOI: 10.1021/jp412729r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Simulations of first-passage folding
of the antiparallel β-sheet
miniprotein beta3s, which has been intensively studied under equilibrium
conditions by A. Caflisch and co-workers, show that the kinetics and
dynamics are significantly different from those for equilibrium folding.
Because the folding of a protein in a living system generally corresponds
to the former (i.e., the folded protein is stable and unfolding is
a rare event), the difference is of interest. In contrast to equilibrium
folding, the Ch-curl conformations become very rare because they contain
unfavorable parallel β-strand arrangements, which are difficult
to form dynamically due to the distant N- and C-terminal strands.
At the same time, the formation of helical conformations becomes much
easier (particularly in the early stage of folding) due to short-range
contacts. The hydrodynamic descriptions of the folding reaction have
also revealed that while the equilibrium flow field presented a collection
of local vortices with closed ”streamlines”, the first-passage
folding is characterized by a pronounced overall flow from the unfolded
states to the native state. The flows through the locally stable structures
Cs-or and Ns-or, which are conformationally close to the native state,
are negligible due to detailed balance established between these structures
and the native state. Although there are significant differences in
the general picture of the folding process from the equilibrium and
first-passage folding simulations, some aspects of the two are in
agreement. The rate of transitions between the clusters of characteristic
protein conformations in both cases decreases approximately exponentially
with the distance between the clusters in the hydrogen bond distance
space of collective variables, and the folding time distribution in
the first-passage segments of the equilibrium trajectory is in good
agreement with that for the first-passage folding simulations.
Collapse
Affiliation(s)
- Igor V Kalgin
- Department of Physics, Novosibirsk State University , 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
3
|
Kalgin IV, Caflisch A, Chekmarev SF, Karplus M. New insights into the folding of a β-sheet miniprotein in a reduced space of collective hydrogen bond variables: application to a hydrodynamic analysis of the folding flow. J Phys Chem B 2013; 117:6092-105. [PMID: 23621790 DOI: 10.1021/jp401742y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.
Collapse
Affiliation(s)
- Igor V Kalgin
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
4
|
Straub JE, Thirumalai D. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annu Rev Phys Chem 2011; 62:437-63. [PMID: 21219143 PMCID: PMC11237996 DOI: 10.1146/annurev-physchem-032210-103526] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative understanding of the kinetics of fibril formation and the molecular mechanism of transition from monomers to fibrils is needed to obtain insights into the growth of amyloid fibrils and more generally self-assembly multisubunit protein complexes. Significant advances using computations of protein aggregation in a number of systems have established generic and sequence-specific aspects of the early steps in oligomer formation. Theoretical considerations, which view oligomer and fibril growth as diffusion in a complex energy landscape, and computational studies, involving minimal lattice and coarse-grained models, have revealed general principles governing the transition from monomeric protein to ordered fibrillar aggregates. Detailed atomistic calculations have explored the early stages of the protein aggregation pathway for a number of amyloidogenic proteins, most notably amyloid β- (Aβ-) protein and fragments from proteins linked to various diseases. These computational studies have provided insights into the role of sequence, role of water, and specific interatomic interactions underlying the thermodynamics and dynamics of elementary kinetic steps in the aggregation pathway. Novel methods are beginning to illustrate the structural basis for the production of Aβ-peptides through interactions with secretases in the presence of membranes. We show that a variety of theoretical approaches, ranging from scaling arguments to minimal models to atomistic simulations, are needed as a complement to experimental studies probing the principles governing protein aggregation.
Collapse
Affiliation(s)
- John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
5
|
Kalgin IV, Karplus M, Chekmarev SF. Folding of a SH3 Domain: Standard and “Hydrodynamic” Analyses. J Phys Chem B 2009; 113:12759-72. [DOI: 10.1021/jp903325z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Igor V. Kalgin
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Laboratoire de Chimie Biophysique, ISIS Université de Strasbourg, 67000 Strasbourg, France, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
| | - Martin Karplus
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Laboratoire de Chimie Biophysique, ISIS Université de Strasbourg, 67000 Strasbourg, France, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei F. Chekmarev
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia, Laboratoire de Chimie Biophysique, ISIS Université de Strasbourg, 67000 Strasbourg, France, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Institute of Thermophysics, SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Chekmarev SF. Information entropy as a measure of nonexponentiality of waiting-time distributions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:066113. [PMID: 19256911 DOI: 10.1103/physreve.78.066113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 09/18/2008] [Indexed: 05/27/2023]
Abstract
It is shown that the information entropy based on waiting-time distributions (WTDs) offers a natural and robust measure of nonexponentiality of the distributions in the form of the Schrödinger-Brillouin negentropy, or equivalently the Kullback-Leibler divergence, and has a straightforward interpretation in terms of transition state theory. Other measures of nonexponentiality of WTDs, based on comparison of the standard deviation and the median with the mean waiting time, are also discussed. The theoretical analysis is illustrated with results from protein folding studies.
Collapse
Affiliation(s)
- Sergei F Chekmarev
- Institute of Thermophysics, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Abstract
A fundamental problem in the analysis of protein folding and other complex reactions in which the entropy plays an important role is the determination of the activation free energy from experimental measurements or computer simulations. This article shows how to combine minimum-cut-based free energy profiles (F(C)), obtained from equilibrium molecular dynamics simulations, with conventional histogram-based free energy profiles (F(H)) to extract the coordinate-dependent diffusion coefficient on the F(C) (i.e., the method determines free energies and a diffusive preexponential factor along an appropriate reaction coordinate). The F(C), in contrast to the F(H), is shown to be invariant with respect to arbitrary transformations of the reaction coordinate, which makes possible partition of configuration space into basins in an invariant way. A "natural coordinate," for which F(H) and F(C) differ by a multiplicative constant (constant diffusion coefficient), is introduced. The approach is illustrated by a model one-dimensional system, the alanine dipeptide, and the folding reaction of a double beta-hairpin miniprotein. It is shown how the results can be used to test whether the putative reaction coordinate is a good reaction coordinate.
Collapse
|
8
|
Abstract
Amyloidlike fibrils are found in many fatal diseases, including Alzheimer's disease, type II diabetes mellitus, transmissible spongiform encephalopathies, and prion diseases. These diseases are linked to proteins that have partially unfolded, misfolded, and aggregated into amyloidlike fibrils. The kinetics of amyloidlike fibrils aggregation is still hotly debated and remains an important open question. We have utilized the GNNQQNY crystal structure and high-temperature molecular dynamics simulation in explicit solvent to study the disaggregation mechanism of the GNNQQNY fibrils and to infer its likely aggregation pathways. A hexamer model and a 12-mer model both with two parallel beta-sheets separated by a dry side-chain interface were adopted in our computational analysis. A cumulative time of 1 micros was simulated for the hexamer model at five different temperatures (298 K, 348 K, 398 K, 448 K, and 498 K), and a cumulative time of 2.1 micros was simulated for the 12-mer model at four temperatures (298 K, 398 K, 448 K, and 498 K). Our disaggregation landscape and kinetics analyses indicate that tetramers probably act as the transition state in both the hexamer and the 12-mer simulations. In addition, the 12-mer simulations show that the initial aggregation nucleus is with eight peptides. Furthermore, the landscape is rather flat from 8-mers to 12-mers, indicating the absence of major barriers once the initial aggregation nucleus forms. Thus, the likely aggregation pathway is from monomers to the initial nucleus of 8-mers with tetramers as the transition state. Transition state structure analysis shows that the two dominant transition state conformations are tetramers in the 3-1 and 2-2 arrangements. The predominant nucleus conformations are in peptide arrangements maximizing dry side-chain contacts. Landscape and kinetics analyses also indicate that the parallel beta-sheets form earlier than the dry side-chain contacts during aggregation. These results provide further insights in understanding the early fibrils aggregation.
Collapse
|
9
|
Krivov SV, Muff S, Caflisch A, Karplus M. One-dimensional barrier-preserving free-energy projections of a beta-sheet miniprotein: new insights into the folding process. J Phys Chem B 2008; 112:8701-14. [PMID: 18590307 PMCID: PMC2736680 DOI: 10.1021/jp711864r] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational space of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) was sampled by equilibrium folding/unfolding molecular dynamics simulations for a total of 20 micros. The resulting one-dimensional free-energy profiles (FEPs) provide a detailed description of the free-energy basins and barriers for the folding reaction. The similarity of the FEPs obtained using the probability of folding before unfolding (pfold) or the mean first passage time supports the robustness of the procedure. The folded state and the most populated free-energy basins in the denatured state are described by the one-dimensional FEPs, which avoid the overlap of states present in the usual one- or two-dimensional projections. Within the denatured state, a basin with fluctuating helical conformations and a heterogeneous entropic state are populated near the melting temperature at about 11% and 33%, respectively. Folding pathways from the helical basin or enthalpic traps (with only one of the two hairpins formed) reach the native state through the entropic state, which is on-pathway and is separated by a low barrier from the folded state. A simplified equilibrium kinetic network based on the FEPs shows the complexity of the folding reaction and indicates, as augmented by additional analyses, that the basins in the denatured state are connected primarily by the native state. The overall folding kinetics shows single-exponential behavior because barriers between the non-native basins and the folded state have similar heights.
Collapse
Affiliation(s)
- Sergei V. Krivov
- Laboratoire de Chimie Biophysique, ISIS F-67000, Strasbourg, France
| | - Stefanie Muff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Karplus
- Laboratoire de Chimie Biophysique, ISIS F-67000, Strasbourg, France
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|