1
|
Bühler B, Schokolowski J, Benderoth A, Englert D, Grün F, Jäschke A, Sunbul M. Avidity-based bright and photostable light-up aptamers for single-molecule mRNA imaging. Nat Chem Biol 2023; 19:478-487. [PMID: 36658339 DOI: 10.1038/s41589-022-01228-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023]
Abstract
Fluorescent light-up aptamers (FLAPs) have emerged as valuable tools to visualize RNAs, but are mostly limited by their poor brightness, low photostability, and high fluorescence background in live cells. Exploiting the avidity concept, here we present two of the brightest FLAPs with the strongest aptamer-dye interaction, high fluorogenicity, and remarkable photostability. They consist of dimeric fluorophore-binding aptamers (biRhoBAST and biSiRA) embedded in an RNA scaffold and their bivalent fluorophore ligands (bivalent tetramethylrhodamine TMR2 and silicon rhodamine SiR2). Red fluorescent biRhoBAST-TMR2 and near-infrared fluorescent biSiRA-SiR2 are orthogonal to each other, facilitating simultaneous visualization of two different RNA species in live cells. One copy of biRhoBAST allows for simple and robust mRNA imaging with strikingly higher signal-to-background ratios than other FLAPs. Moreover, eight biRhoBAST repeats enable single-molecule mRNA imaging and tracking with minimal perturbation of their localization, translation, and degradation, demonstrating the potential of avidity-enhanced FLAPs for imaging RNA dynamics.
Collapse
Affiliation(s)
- Bastian Bühler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Janin Schokolowski
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Anja Benderoth
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Kamalakshan A, Ansilda R, Mandal S. Nanotube Template-Directed Formation of Strongly Coupled Dye Aggregates with Tunable Exciton Fluorescence Controlled by Switching between J- and H-Type Electronic Coupling. J Phys Chem B 2021; 125:7447-7455. [PMID: 34196554 DOI: 10.1021/acs.jpcb.1c02750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Strongly coupled dye aggregates with tailored exciton properties may find their use in developing artificial light-harvesting and optoelectronic devices. Here, we report the control of tubular pseudoisocyanine (PIC) dye J- and H-aggregate formation with tunable exciton fluorescence using lithocholic acid (LCA) as a template. The LCA-templated PIC J-aggregate nanotubes formed at a higher LCA/PIC molar ratio (≥5:1) exhibit a sharp, red-shifted absorption band (at 555 nm), intense fluorescence (at 565 nm), and shorter lifetime (200 ps), all indicating their strong superradiance properties. In contrast, the H-aggregate nanotubes formed at a lower LCA/PIC molar ratio (2:1) exhibit a significantly blue-shifted absorption band (at 420 nm) and highly red-shifted fluorescence emission (at 600 nm) with enhanced lifetime (4.40 ns). The controlled switching of the optical properties of the PIC dye aggregates achieved by controlling the LCA/PIC molar ratio could serve as an important guideline for the design of organic photo-functional materials.
Collapse
Affiliation(s)
- Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Roselin Ansilda
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
3
|
Suhina T, Bonn D, Weber B, Brouwer AM. Photophysics of Fluorescent Contact Sensors Based on the Dicyanodihydrofuran Motif. Chemphyschem 2021; 22:221-227. [PMID: 33210435 PMCID: PMC7898878 DOI: 10.1002/cphc.202000860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Indexed: 11/10/2022]
Abstract
Fluorescent molecular rotors have been used for measurements of local mobility on molecular length scales, for example to determine viscosity, and for the visualization of contact between two surfaces. In the present work, we deepen our insight into the excited-state deactivation kinetics and mechanics of dicyanodihydrofuran-based molecular rotors. We extend the scope of the use of this class of rotors for contact sensing with a red-shifted member of the family. This allows for contact detection with a range of excitation wavelengths up to ∼600 nm. Steady-state fluorescence shows that the fluorescence quantum yield of these rotors depends not only on the rigidity of their environment, but - under certain conditions - also on its polarity. While excited state decay via rotation about the exocyclic double bond is rapid in nonpolar solvents and twisting of a single bond allows for fast decay in polar solvents, the barriers for both processes are significant in solvents of intermediate polarity. This effect may also occur in other molecular rotors, and it should be considered when applying such molecules as local mobility probes.
Collapse
Affiliation(s)
- Tomislav Suhina
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
- Institute of PhysicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Daniel Bonn
- Institute of PhysicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Bart Weber
- Institute of PhysicsUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Albert M. Brouwer
- van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
4
|
Cannon BL, Patten LK, Kellis DL, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates. J Phys Chem A 2018; 122:2086-2095. [PMID: 29420037 DOI: 10.1021/acs.jpca.7b12668] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exciton delocalization in dye aggregate systems is a phenomenon that is revealed by spectral features, such as Davydov splitting, J- and H-aggregate behavior, and fluorescence suppression. Using DNA as an architectural template to assemble dye aggregates enables specific control of the aggregate size and dye type, proximal and precise positioning of the dyes within the aggregates, and a method for constructing large, modular two- and three-dimensional arrays. Here, we report on dye aggregates, organized via an immobile Holliday junction DNA template, that exhibit large Davydov splitting of the absorbance spectrum (125 nm, 397.5 meV), J- and H-aggregate behavior, and near-complete suppression of the fluorescence emission (∼97.6% suppression). Because of the unique optical properties of the aggregates, we have demonstrated that our dye aggregate system is a viable candidate as a sensitive absorbance and fluorescence optical reporter. DNA-templated aggregates exhibiting exciton delocalization may find application in optical detection and imaging, light-harvesting, photovoltaics, optical information processing, and quantum computing.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
5
|
Eder T, Stangl T, Gmelch M, Remmerssen K, Laux D, Höger S, Lupton JM, Vogelsang J. Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nat Commun 2017; 8:1641. [PMID: 29158508 PMCID: PMC5696370 DOI: 10.1038/s41467-017-01773-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022] Open
Abstract
The aggregation of conjugated polymers and electronic coupling of chromophores play a central role in the fundamental understanding of light and charge generation processes. Here we report that the predominant coupling in isolated aggregates of conjugated polymers can be switched reversibly between H-type and J-type coupling by partially swelling and drying the aggregates. Aggregation is identified by shifts in photoluminescence energy, changes in vibronic peak ratio, and photoluminescence lifetime. This experiment unravels the internal electronic structure of the aggregate and highlights the importance of the drying process in the final spectroscopic properties. The electronic coupling after drying is tuned between H-type and J-type by changing the side chains of the conjugated polymer, but can also be entirely suppressed. The types of electronic coupling correlate with chain morphology, which is quantified by excitation polarization spectroscopy and the efficiency of interchromophoric energy transfer that is revealed by the degree of single-photon emission.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Thomas Stangl
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Max Gmelch
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Klaas Remmerssen
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Dirk Laux
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Vietz C, Lalkens B, Acuna GP, Tinnefeld P. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes. NANO LETTERS 2017; 17:6496-6500. [PMID: 28956440 DOI: 10.1021/acs.nanolett.7b03844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.
Collapse
Affiliation(s)
- Carolin Vietz
- Institute for Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Rebenring 56, 38106 Braunschweig, Germany
| | - Birka Lalkens
- Institute for Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Rebenring 56, 38106 Braunschweig, Germany
| | - Guillermo P Acuna
- Institute for Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Rebenring 56, 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institute for Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Rebenring 56, 38106 Braunschweig, Germany
- Department of Chemistry, Ludwig-Maximilians-Universitaet Muenchen , Butenandtstr. 5-13, 81377 Muenchen, Germany
| |
Collapse
|
7
|
Cannon BL, Kellis DL, Patten LK, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Coherent Exciton Delocalization in a Two-State DNA-Templated Dye Aggregate System. J Phys Chem A 2017; 121:6905-6916. [PMID: 28813152 DOI: 10.1021/acs.jpca.7b04344] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coherent exciton delocalization in dye aggregate systems gives rise to a variety of intriguing optical phenomena, including J- and H-aggregate behavior and Davydov splitting. Systems that exhibit coherent exciton delocalization at room temperature are of interest for the development of artificial light-harvesting devices, colorimetric detection schemes, and quantum computers. Here, we report on a simple dye system templated by DNA that exhibits tunable optical properties. At low salt and DNA concentrations, a DNA duplex with two internally functionalized Cy5 dyes (i.e., dimer) persists and displays predominantly J-aggregate behavior. Increasing the salt and/or DNA concentrations was found to promote coupling between two of the DNA duplexes via branch migration, thus forming a four-armed junction (i.e., tetramer) with H-aggregate behavior. This H-tetramer aggregate exhibits a surprisingly large Davydov splitting in its absorbance spectrum that produces a visible color change of the solution from cyan to violet and gives clear evidence of coherent exciton delocalization.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
8
|
Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proc Natl Acad Sci U S A 2015; 112:E5560-6. [PMID: 26417079 DOI: 10.1073/pnas.1512582112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An appealing definition of the term "molecule" arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.
Collapse
|
9
|
Dendrimer probes for enhanced photostability and localization in fluorescence imaging. Biophys J 2013; 104:1566-75. [PMID: 23561533 DOI: 10.1016/j.bpj.2013.01.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 01/08/2023] Open
Abstract
Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability.
Collapse
|
10
|
Abstract
Fluorescent silver nanoclusters (few atoms, quantum sized) have attracted much attention as promising substitutes for conventional fluorophores. Due to their unique environmental sensitivities, new fluorescent probes have been developed based on silver nanoclusters for the sensitive and specific detection of DNA. In this review we present the recent discoveries of activatable and color-switchable properties of DNA-templated silver nanoclusters and discuss the strategies to use these new properties in DNA sensing.
Collapse
Affiliation(s)
- Judy M Obliosca
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
11
|
Hall LM, Gerowska M, Brown T. A highly fluorescent DNA toolkit: synthesis and properties of oligonucleotides containing new Cy3, Cy5 and Cy3B monomers. Nucleic Acids Res 2012; 40:e108. [PMID: 22495935 PMCID: PMC3413114 DOI: 10.1093/nar/gks303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cy3B is an extremely bright and stable fluorescent dye, which is only available for coupling to nucleic acids post-synthetically. This severely limits its use in the fields of genomics, biology and nanotechnology. We have optimized the synthesis of Cy3B, and for the first time produced a diverse range of Cy3B monomers for use in solid-phase oligonucleotide synthesis. This molecular toolkit includes phosphoramidite monomers with Cy3B linked to deoxyribose, to the 5-position of thymine, and to a hexynyl linker, in addition to an oligonucleotide synthesis resin in which Cy3B is linked to deoxyribose. These monomers have been used to incorporate single and multiple Cy3B units into oligonucleotides internally and at both termini. Cy3B Taqman probes, Scorpions and HyBeacons have been synthesized and used successfully in mutation detection, and a dual Cy3B Molecular Beacon was synthesized and found to be superior to the corresponding Cy3B/DABCYL Beacon. Attachment of Cy3, Cy3B and Cy5 to the 5-position of thymidine by an ethynyl linker enabled the synthesis of an oligonucleotide FRET system. The rigid linker between the dye and nucleobase minimizes dye–dye and dye–DNA interactions and reduces fluorescence quenching. These reagents open up new future applications of Cy3B, including more sensitive single-molecule and cell-imaging studies.
Collapse
Affiliation(s)
- Lucy M Hall
- School of Chemistry, University of Southampton, SO17 1BJ, UK
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Yin Nah Teo
- Department of Chemistry, Stanford University, California 94305, United States
| | | |
Collapse
|
13
|
Avetisyan AA, Alvandzhyan AG, Avetisyan KS. Convenient synthesis of 2-imino-3-(2-thienyl)-2(5H)-furans and their certain transformations. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428011020175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Ranasinghe RT, Brown T. Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. Chem Commun (Camb) 2011; 47:3717-35. [DOI: 10.1039/c0cc04215c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Lymperopoulos K, Kiel A, Seefeld A, Stöhr K, Herten DP. Fluorescent probes and delivery methods for single-molecule experiments. Chemphyschem 2010; 11:43-53. [PMID: 19960557 DOI: 10.1002/cphc.200900359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent explosion in papers utilising single-molecule experiments pushes the envelope further for increased spatial and temporal resolution. In order to achieve this, a combination of novel fluorescent probes and spectroscopy techniques are required. Herein, we provide an overview on our contribution to developments in the field of fluorescent probes along with a palette of alternative delivery methods for introducing the probes into living cells. We discuss probe requirements arising from the use of single-molecule spectroscopy methods and the customisation of probes that depends on the target molecule, the chemical state of the molecule as well as the distance and the type of interaction between sensor and ligand. We explain how Förster resonance energy transfer (FRET) and photon-induced electron transfer (PET) can increase the probe customisation. We also discuss additional requirements that arise when performing experiments in living cells like toxicity and cell permeability. Regarding the latter, we devote a special paragraph on the different ways to introduce the desired probe into the cell and how the different properties of each probe and cell type may require different delivery methods. We offer insights based on our experience working with a variety of single-molecule methods, fluorescent probes and delivery systems. Overall, we encompass the latest developments on probe design and delivery and illustrate that the wealth of information provided by single-molecule studies goes along with increased complexity.
Collapse
Affiliation(s)
- Konstantinos Lymperopoulos
- Cellnetworks Cluster and Institute for Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Fujii T, Kashida H, Asanuma H. Analysis of coherent heteroclustering of different dyes by use of threoninol nucleotides for comparison with the molecular exciton theory. Chemistry 2010; 15:10092-102. [PMID: 19722239 DOI: 10.1002/chem.200900962] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To test the molecular exciton theory for heterodimeric chromophores, various heterodimers and clusters, in which two different dyes were stacked alternately, were prepared by hybridizing two oligodeoxyribonucleotides (ODNs), each of which tethered a different dye on D-threoninol at the center of the strand. NMR analyses revealed that two different dyes from each strand were stacked antiparallel to each other in the duplex, and were located adjacent to the 5'-side of a natural nucleobase. The spectroscopic behavior of these heterodimers was systematically examined as a function of the difference in the wavelength of the dye absorption maxima (Delta lambda(max)). We found that the absorption spectrum of the heterodimer was significantly different from that of the simple sum of each monomeric dye in the single strand. When azobenzene and Methyl Red, which have lambda(max) at 336 and 480 nm, respectively, in the single strand (Delta lambda(max) = 144 nm), were assembled on ODNs, the band derived from azobenzene exhibited a small hyperchromism, whereas the band from Methyl Red showed hypochromism and both bands shifted to a longer wavelength (bathochromism). These hyper- and hypochromisms were further enhanced in a heterodimer derived from 4'-methylthioazobenzene and Methyl Red, which had a much smaller Delta lambda(max) (82 nm; lambda(max) = 398 and 480 nm in the single-strand, respectively). With a combination of 4'-dimethylamino-2-nitroazobenzene and Methyl Red, which had an even smaller Delta lambda(max) (33 nm), a single sharp absorption band that was apparently different from the sum of the single-stranded spectra was observed. These changes in the intensity of the absorption band could be explained by the molecular exciton theory, which has been mainly applied to the spectral behavior of H- and/or J-aggregates composed of homo dyes. However, the bathochromic band shifts observed at shorter wavelengths did not agree with the hypsochromism predicted by the theory. Thus, these data experimentally verify the molecular exciton theory of heterodimerization. This coherent coupling among the heterodimers could also partly explain the bathochromicity and hypochromicity that were observed when the dyes were intercalated into the duplex.
Collapse
Affiliation(s)
- Taiga Fujii
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | |
Collapse
|
17
|
Moerner WE. Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Nesterova IV, Erdem SS, Pakhomov S, Hammer RP, Soper SA. Phthalocyanine dimerization-based molecular beacons using near-IR fluorescence. J Am Chem Soc 2009; 131:2432-3. [PMID: 19191492 PMCID: PMC2684671 DOI: 10.1021/ja8088247] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we demonstrate the use of a novel dimerization-based molecular beacon (MB) probe consisting of two metallo-phthalocyanine (Pc) fluorophores that use near-IR fluorescence, appropriate for highly specific and sensitive in vivo and/or in vitro DNA/RNA detection. Pc's possess a propensity to form nonfluorescent H-dimers that is utilized as the molecular "off" switch in the closed MB conformation. The "on" switch, which is generated when the solution target binds to the loop of the MB forming the open form, also provides two fluorophores for transduction resulting in a doubling of the extinction coefficient and improving the resulting fluorescence yield compared to a classical single-fluorophore/quencher MB system. In addition, the Pc-based MBs possess high thermal, photo, and chemical stabilities that are essential for many highly sensitive applications, such as molecular imaging. The dimer-based MBs were obtained using a simple single-step synthesis procedure and demonstrated excellent quenching efficiencies (98%) as well as a high signal-to-background ratio (approximately 60) exceeding the performance characteristics of many conventionally available MB probes.
Collapse
Affiliation(s)
- Irina V. Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - S. Sibel Erdem
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Serhii Pakhomov
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Robert P. Hammer
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Steven A. Soper
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
19
|
Lord SJ, Conley NR, Lee HLD, Nishimura SY, Pomerantz AK, Willets KA, Lu Z, Wang H, Liu N, Samuel R, Weber R, Semyonov A, He M, Twieg RJ, Moerner WE. DCDHF fluorophores for single-molecule imaging in cells. Chemphyschem 2009; 10:55-65. [PMID: 19025732 PMCID: PMC2688640 DOI: 10.1002/cphc.200800581] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Indexed: 11/10/2022]
Abstract
There is a persistent need for small-molecule fluorescent labels optimized for single-molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red-shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed "DCDHF" fluorophores, for use in live-cell imaging based on the push-pull design: an amine donor group and a 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) acceptor group, separated by a pi-rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red-emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low-intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small-molecule fluorophores, which are needed for super-resolution imaging schemes that require active control (here turning-on) of single-molecule emission.
Collapse
Affiliation(s)
- Samuel J Lord
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lowry M, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Warner IM. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Anal Chem 2008; 80:4551-74. [DOI: 10.1021/ac800749v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mark Lowry
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Sayo O. Fakayode
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Maxwell L. Geng
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gary A. Baker
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Lin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Matthew E. McCarroll
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Gabor Patonay
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, Department of Chemistry, Nanoscience and Nanotechnology Institute and the Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,
| |
Collapse
|
21
|
Venkatesan N, Seo YJ, Kim BH. Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chem Soc Rev 2008; 37:648-63. [PMID: 18362974 DOI: 10.1039/b705468h] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular beacons (MBs) have been used as viable fluorescent probes in nucleic acid analysis. Many researchers around the world continue to modify the MBs to suit their needs. As a result, a number of nucleic acid probing systems with close resemblance to the MBs are being reported from time to time. Quencher-free molecular beacons (QF-MBs) are a significant modification of the conventional MB; in QF-MBs the quencher part has been eliminated. Despite the absence of the quencher, the QF-MBs can identify specific target DNA. They can also be used in SNP typing and in real-time PCR analysis for quantification of DNAs. The design, factors behind functioning and applications of different types of QF-MBs and closely related quencher-free nucleic acid probing systems (QF-NAPs) have been described in this tutorial review.
Collapse
Affiliation(s)
- Natarajan Venkatesan
- Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
22
|
Abstract
The ability of RNA to catalyze chemical reactions was first demonstrated 25 years ago with the discovery that group I introns and RNase P function as RNA enzymes (ribozymes). Several additional ribozymes were subsequently identified, most notably the ribosome, followed by intense mechanistic studies. More recently, the introduction of single molecule tools has dissected the kinetic steps of several ribozymes in unprecedented detail and has revealed surprising heterogeneity not evident from ensemble approaches. Still, many fundamental questions of how RNA enzymes work at the molecular level remain unanswered. This review surveys the current status of our understanding of RNA catalysis at the single molecule level and discusses the existing challenges and opportunities in developing suitable assays.
Collapse
Affiliation(s)
- Mark A Ditzler
- Biophysics Research Division, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|