1
|
Paradisi A, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Borsari M, Sola M, Battistuzzi G. Effects of removal of the axial methionine heme ligand on the binding of S. cerevisiae iso-1 cytochrome c to cardiolipin. J Inorg Biochem 2024; 252:112455. [PMID: 38141433 DOI: 10.1016/j.jinorgbio.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.
Collapse
Affiliation(s)
- Alessandro Paradisi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Borsari
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41126 Modena, Italy.
| |
Collapse
|
2
|
Phosphorylation disrupts long-distance electron transport in cytochrome c. Nat Commun 2022; 13:7100. [PMID: 36402842 PMCID: PMC9675734 DOI: 10.1038/s41467-022-34809-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.
Collapse
|
3
|
Olloqui-Sariego JL, Pérez-Mejías G, Márquez I, Guerra-Castellano A, Calvente JJ, De la Rosa MA, Andreu R, Díaz-Moreno I. Electric field-induced functional changes in electrode-immobilized mutant species of human cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148570. [PMID: 35643148 DOI: 10.1016/j.bbabio.2022.148570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Post-translational modifications and naturally occurring mutations of cytochrome c have been recognized as a regulatory mechanism to control its biology. In this work, we investigate the effect of such in vivo chemical modifications of human cytochrome c on its redox properties in the adsorbed state onto an electrode. In particular, tyrosines 48 and 97 have been replaced by the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF), thus mimicking tyrosine phosphorylation. Additionally, tyrosine 48 has been replaced by a histidine producing the natural Y48H pathogenic mutant. Thermodynamics and kinetics of the interfacial electron transfer of wild-type cytochrome c and herein produced variants, adsorbed electrostatically under different local interfacial electric fields, were determined by means of variable temperature cyclic film voltammetry. It is shown that non-native cytochrome c variants immobilized under a low interfacial electric field display redox thermodynamics and kinetics similar to those of wild-type cytochrome c. However, upon increasing the strength of the electric field, the redox thermodynamics and kinetics of the modified proteins markedly differ from those of the wild-type species. The mutations promote stabilization of the oxidized form and a significant increase in the activation enthalpy values that can be ascribed to a subtle distortion of the heme cofactor and/or difference of the amino acid rearrangements rather than to a coarse protein structural change. Overall, these results point to a combined effect of the single point mutations at positions 48 and 97 and the strength of electrostatic binding on the regulatory mechanism of mitochondrial membrane activity, when acting as a redox shuttle protein.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Inmaculada Márquez
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain; Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Juan José Calvente
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Rafael Andreu
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain).
| |
Collapse
|
4
|
Di Rocco G, Ranieri A, Borsari M, Sola M, Bortolotti CA, Battistuzzi G. Assessing the Functional and Structural Stability of the Met80Ala Mutant of Cytochrome c in Dimethylsulfoxide. Molecules 2022; 27:molecules27175630. [PMID: 36080396 PMCID: PMC9458088 DOI: 10.3390/molecules27175630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The Met80Ala variant of yeast cytochrome c is known to possess electrocatalytic properties that are absent in the wild type form and that make it a promising candidate for biocatalysis and biosensing. The versatility of an enzyme is enhanced by the stability in mixed aqueous/organic solvents that would allow poorly water-soluble substrates to be targeted. In this work, we have evaluated the effect of dimethylsulfoxide (DMSO) on the functionality of the Met80Ala cytochrome c mutant, by investigating the thermodynamics and kinetics of electron transfer in mixed water/DMSO solutions up to 50% DMSO v/v. In parallel, we have monitored spectroscopically the retention of the main structural features in the same medium, focusing on both the overall protein structure and the heme center. We found that the organic solvent exerts only minor effects on the redox and structural properties of the mutant mostly as a result of the modification of the dielectric constant of the solvent. This would warrant proper functionality of this variant also under these potentially hostile experimental conditions, that differ from the physiological milieu of cytochrome c.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Correspondence: (C.A.B.); (G.B.); Tel.: +39-0592058608 (C.A.B.); +39-059208639 (G.B.)
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Correspondence: (C.A.B.); (G.B.); Tel.: +39-0592058608 (C.A.B.); +39-059208639 (G.B.)
| |
Collapse
|
5
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules 2021; 26:molecules26164950. [PMID: 34443538 PMCID: PMC8398203 DOI: 10.3390/molecules26164950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.
Collapse
|
7
|
Di Rocco G, Bighi B, Borsari M, Bortolotti CA, Ranieri A, Sola M, Battistuzzi G. Electron Transfer and Electrocatalytic Properties of the Immobilized Met80Ala Cytochrome
c
Variant in Dimethylsulfoxide. ChemElectroChem 2021. [DOI: 10.1002/celc.202100499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Beatrice Bighi
- Department of Chemistry and Geology University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Marco Borsari
- Department of Chemistry and Geology University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Carlo Augusto Bortolotti
- Department of Life Sciences University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Antonio Ranieri
- Department of Life Sciences University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Marco Sola
- Department of Life Sciences University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry and Geology University of Modena and Reggio Emilia via Campi 103 41125 Modena Italy
| |
Collapse
|
8
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
9
|
Lancellotti L, Borsari M, Bellei M, Bonifacio A, Bortolotti CA, Di Rocco G, Ranieri A, Sola M, Battistuzzi G. Urea-induced denaturation of immobilized yeast iso-1 cytochrome c: Role of Met80 and Tyr67 in the thermodynamics of unfolding and promotion of pseudoperoxidase and nitrite reductase activities. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Pignataro M, Rocco GD, Lancellotti L, Bernini F, Subramanian K, Castellini E, Bortolotti CA, Malferrari D, Moro D, Valdrè G, Borsari M, Monte FD. Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D. Data Brief 2020; 33:106345. [PMID: 33024804 PMCID: PMC7528206 DOI: 10.1016/j.dib.2020.106345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 10/26/2022] Open
Abstract
The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°') are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°' values and analyse the pH dependence of E°'. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.
Collapse
Affiliation(s)
- Marcello Pignataro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, USA
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lidia Lancellotti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Elena Castellini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Daniele Malferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Moro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Valdrè
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Del Monte
- Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, USA.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry 2020; 136:107628. [PMID: 32795942 DOI: 10.1016/j.bioelechem.2020.107628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
The Met80Ala and Met80Ala/Tyr67Ala variants of S. cerevisiae iso-1 cytochrome c (ycc) and their adducts with cardiolipin immobilized onto a gold electrode coated with a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol were studied through cyclic voltammetry and surface-enhanced resonance Raman spectroscopy (SERRS). The electroactive species - containing a six-coordinate His/His axially ligated heme and a five-coordinate His/- heme stable in the oxidized and reduced state, respectively - and the pseudoperoxidase activity match those found previously for the wt species and are only slightly affected by CL binding. Most importantly, the reduced His/- ligated form of these variants is able to catalytically reduce the nitrite ion, while electrode-immobilized wt ycc and other His/Met heme ligated variants under a variety of conditions are not. Besides the pseudoperoxidase and nitrite reductase functions, which are the most physiologically relevant abilities of these constructs, also axial heme ligation and the equilibria between conformers are strongly affected by the nature - hydrophobic vs. electrostatic - of the non-covalent interactions determining protein immobilization. Also affected are the catalytic activity changes induced by a given mutation as well as those due to partial unfolding due to CL binding. It follows that under the same solution conditions the structural and functional properties of immobilized ycc are surface-specific and therefore cannot be transferred from an immobilized system to another involving different interfacial protein-SAM interactions.
Collapse
|
12
|
Paradisi A, Lancellotti L, Borsari M, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M, Battistuzzi G. Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome c: comparing the solution vs.immobilized state. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The motional regime affects the unfolding propensity and axial heme coordination of the Met80Ala and Met80Ala/Tyr67Ala variants of yeast iso-1 cytochromec.
Collapse
Affiliation(s)
| | - Lidia Lancellotti
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Borsari
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marzia Bellei
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Antonio Ranieri
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Sola
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | |
Collapse
|
13
|
Ranieri A, Bortolotti CA, Di Rocco G, Battistuzzi G, Sola M, Borsari M. Electrocatalytic Properties of Immobilized Heme Proteins: Basic Principles and Applications. ChemElectroChem 2019. [DOI: 10.1002/celc.201901178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonio Ranieri
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Carlo Augusto Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Giulia Di Rocco
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Sola
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| |
Collapse
|
14
|
Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Self-assembled monolayers in organic electronics. Chem Soc Rev 2018; 46:40-71. [PMID: 27722675 DOI: 10.1039/c6cs00509h] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembly is possibly the most effective and versatile strategy for surface functionalization. Self-assembled monolayers (SAMs) can be formed on (semi-)conductor and dielectric surfaces, and have been used in a variety of technological applications. This work aims to review the strategy behind the design and use of self-assembled monolayers in organic electronics, discuss the mechanism of interaction of SAMs in a microscopic device, and highlight the applications emerging from the integration of SAMs in an organic device. The possibility of performing surface chemistry tailoring with SAMs constitutes a versatile approach towards the tuning of the electronic and morphological properties of the interfaces relevant to the response of an organic electronic device. Functionalisation with SAMs is important not only for imparting stability to the device or enhancing its performance, as sought at the early stages of development of this field. SAM-functionalised organic devices give rise to completely new types of behavior that open unprecedented applications, such as ultra-sensitive label-free biosensors and SAM/organic transistors that can be used as robust experimental gauges for studying charge tunneling across SAMs.
Collapse
Affiliation(s)
- Stefano Casalini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Carlo Augusto Bortolotti
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanosciences, Via Campi 213/a, 41125 Modena, Italy
| | - Francesca Leonardi
- Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Fabio Biscarini
- Life Sciences Department, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy. and Consiglio Nazionale delle Ricerche (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
15
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
16
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
17
|
Husband J, Aaron MS, Bains RK, Lewis AR, Warren JJ. Catalytic reduction of dioxygen with modified Thermus thermophilus cytochrome c552. J Inorg Biochem 2016; 157:8-14. [PMID: 26816109 DOI: 10.1016/j.jinorgbio.2016.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50 mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggesting that increased electron density at the Fe site does not improve O2 reduction chemistry.
Collapse
Affiliation(s)
- Jonathan Husband
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Michael S Aaron
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Rajneesh K Bains
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Andrew R Lewis
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
18
|
Ranieri A, Di Rocco G, Millo D, Battistuzzi G, Bortolotti CA, Lancellotti L, Borsari M, Sola M. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Ranieri A, Millo D, Di Rocco G, Battistuzzi G, Bortolotti CA, Borsari M, Sola M. Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. J Biol Inorg Chem 2015; 20:531-40. [PMID: 25627142 DOI: 10.1007/s00775-015-1238-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/27/2014] [Indexed: 11/26/2022]
Abstract
Mitochondrial cytochrome c (cytc) plays an important role in programmed cell death upon binding to cardiolipin (CL), a negatively charged phospholipid of the inner mitochondrial membrane (IMM). Although this binding has been thoroughly investigated in solution, little is known on the nature and reactivity of the adduct (cytc-CL) immobilized at IMM. In this work, we have studied electrochemically cytc-CL immobilized on a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol. This construct would reproduce the motional restriction and the nonpolar environment experienced by cytc-CL at IMM. Surface-enhanced resonance Raman (SERR) studies allowed the axial heme iron ligands to be identified, which were found to be oxidation state dependent and differ from those of cytc-CL in solution. In particular, immobilized cytc-CL experiences an equilibrium between a low-spin (LS) 6c His/His and a high-spin (HS) 5c His/- coordination states. The former prevails in the oxidized and the latter in the reduced form. Axial coordination of the ferric heme thus differs from the (LS) 6c His/Lys and (LS) 6c His/OH(-) states observed in solution. Moreover, a relevant finding is that the immobilized ferrous cytc-CL is able to catalytically reduce dioxygen, likely to superoxide ion. These findings indicate that restriction of motional freedom due to interaction with the membrane is an additional factor playing in the mechanism of cytc unfolding and cytc-mediated peroxidation functional to the apoptosis cascade.
Collapse
Affiliation(s)
- Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41125, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Di Rocco G, Ranieri A, Bortolotti CA, Battistuzzi G, Bonifacio A, Sergo V, Borsari M, Sola M. Axial iron coordination and spin state change in a heme c upon electrostatic protein-SAM interaction. Phys Chem Chem Phys 2014; 15:13499-505. [PMID: 23824165 DOI: 10.1039/c3cp50222h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A bacterial di-heme cytochrome c binds electrostatically to a gold electrode surface coated with a negatively charged COOH-terminated SAM adopting a sort of 'perpendicular' orientation. Cyclic voltammetry, Resonance Raman and SERRS spectroscopies indicate that the high-potential C-terminal heme center proximal to the SAM's surface undergoes an adsorption-induced swapping of one axial His ligand with a water molecule, which is probably lost in the reduced form, and a low- to high-spin transition. This coordination change for a bis-His ligated heme center upon an electrostatically-driven molecular recognition is as yet unprecedented, as well as the resulting increase in reduction potential. We discuss it in comparison with the known methionine ligand lability in monoheme cytochromes c occurring upon interaction with charged molecular patches. One possible implication of this finding in biological ET is that mobile redox partners do not behave as rigid and invariant bodies, but in the ET complex are subjected to molecular changes and structural fluctuations that affect in a complex way the thermodynamics and the kinetics of the process.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, I-41125 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Efimov I, Parkin G, Millett ES, Glenday J, Chan CK, Weedon H, Randhawa H, Basran J, Raven EL. A simple method for the determination of reduction potentials in heme proteins. FEBS Lett 2014; 588:701-4. [PMID: 24440354 PMCID: PMC3999514 DOI: 10.1016/j.febslet.2013.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 11/28/2022]
Abstract
A simple method for determination of heme protein reduction potentials is described. We use the method to determine reduction potentials for human NPAS2 and human CLOCK. The method can be easily applied to other heme proteins.
We describe a simple method for the determination of heme protein reduction potentials. We use the method to determine the reduction potentials for the PAS-A domains of the regulatory heme proteins human NPAS2 (Em = −115 mV ± 2 mV, pH 7.0) and human CLOCK (Em = −111 mV ± 2 mV, pH 7.0). We suggest that the method can be easily and routinely applied to the determination of reduction potentials across the family of heme proteins.
Collapse
Affiliation(s)
- Igor Efimov
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Gary Parkin
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Elizabeth S Millett
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jennifer Glenday
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Cheuk K Chan
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Holly Weedon
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Harpreet Randhawa
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jaswir Basran
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom
| | - Emma L Raven
- Department of Chemistry, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
22
|
Ranieri A, Bortolotti CA, Battistuzzi G, Borsari M, Paltrinieri L, Di Rocco G, Sola M. Effect of motional restriction on the unfolding properties of a cytochrome c featuring a His/Met–His/His ligation switch. Metallomics 2014; 6:874-84. [DOI: 10.1039/c3mt00311f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014; 71:229-55. [PMID: 23615770 PMCID: PMC11113841 DOI: 10.1007/s00018-013-1341-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Collapse
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
24
|
Prabhulkar S, Tian H, Wang X, Zhu JJ, Li CZ. Engineered proteins: redox properties and their applications. Antioxid Redox Signal 2012; 17:1796-822. [PMID: 22435347 PMCID: PMC3474195 DOI: 10.1089/ars.2011.4001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices.
Collapse
Affiliation(s)
- Shradha Prabhulkar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, Florida
| | - Hui Tian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Jun-Jie Zhu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, Florida
| |
Collapse
|
25
|
Battistuzzi G, Bortolotti CA, Bellei M, Di Rocco G, Salewski J, Hildebrandt P, Sola M. Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome c. Biochemistry 2012; 51:5967-78. [DOI: 10.1021/bi3007302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gianantonio Battistuzzi
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Marzia Bellei
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Giulia Di Rocco
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Marco Sola
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| |
Collapse
|
26
|
Ranieri A, Bernini F, Bortolotti CA, Castellini E. The Met80Ala point mutation enhances the peroxidase activity of immobilized cytochrome c. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20347b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Casalini S, Leonardi F, Bortolotti CA, Operamolla A, Omar OH, Paltrinieri L, Albonetti C, Farinola GM, Biscarini F. Mono/bidentate thiol oligoarylene-based self-assembled monolayers (SAMs) for interface engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30838j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
A bis-histidine-ligated unfolded cytochrome c immobilized on anionic SAM shows pseudo-peroxidase activity. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2011.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Bortolotti CA, Paltrinieri L, Monari S, Ranieri A, Borsari M, Battistuzzi G, Sola M. A surface-immobilized cytochrome c variant provides a pH-controlled molecular switch. Chem Sci 2012. [DOI: 10.1039/c1sc00821h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Medda L, Salis A, Magner E. Specific ion effects on the electrochemical properties of cytochrome c. Phys Chem Chem Phys 2012; 14:2875-83. [DOI: 10.1039/c2cp23401g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Artefacts induced on c-type haem proteins by electrode surfaces. J Biol Inorg Chem 2010; 16:209-15. [DOI: 10.1007/s00775-010-0717-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
|
32
|
Casalini S, Battistuzzi G, Borsari M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M. Electron Transfer Properties and Hydrogen Peroxide Electrocatalysis of Cytochrome c Variants at Positions 67 and 80. J Phys Chem B 2010; 114:1698-706. [DOI: 10.1021/jp9090365] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Casalini
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Gianantonio Battistuzzi
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Borsari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Giulia Di Rocco
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Antonio Ranieri
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Sola
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
33
|
Monari S, Battistuzzi G, Borsari M, Rocco GD, Martini L, Ranieri A, Sola M. Heterogeneous Electron Transfer of a Two-Centered Heme Protein: Redox and Electrocatalytic Properties of Surface-Immobilized Cytochrome c4. J Phys Chem B 2009; 113:13645-53. [DOI: 10.1021/jp906339u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Monari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Gianantonio Battistuzzi
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Borsari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Giulia Di Rocco
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Laura Martini
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Antonio Ranieri
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Sola
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
34
|
Chen Y, Yang XJ, Guo LR, Li J, Xia XH, Zheng LM. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid. Anal Chim Acta 2009; 644:83-9. [DOI: 10.1016/j.aca.2009.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/19/2008] [Accepted: 04/21/2009] [Indexed: 11/26/2022]
|
35
|
Ranieri A, Battistuzzi G, Borsari M, Casalini S, Fontanesi C, Monari S, Siwek MJ, Sola M. Thermodynamics and kinetics of the electron transfer process of spinach plastocyanin adsorbed on a modified gold electrode. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2008.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Casalini S, Battistuzzi G, Borsari M, Ranieri A, Sola M. Catalytic Reduction of Dioxygen and Nitrite Ion at a Met80Ala Cytochrome c-Functionalized Electrode. J Am Chem Soc 2008; 130:15099-104. [DOI: 10.1021/ja8040724] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Casalini
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces-S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces-S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Borsari
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces-S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Antonio Ranieri
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces-S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Sola
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces-S3, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
37
|
Di Rocco G, Battistuzzi G, Borsari M, De Rienzo F, Ranieri A, Tutino ML, Sola M. Cloning, expression and physicochemical characterization of a di-heme cytochrome c (4) from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC 125. J Biol Inorg Chem 2008; 13:789-99. [PMID: 18386080 DOI: 10.1007/s00775-008-0366-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/14/2008] [Indexed: 11/25/2022]
Abstract
The 20-kDa di-heme cytochrome c (4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned and expressed in Escherichia coli and investigated through UV-vis and (1)H NMR spectroscopies and protein voltammetry. The model structure was computed using the X-ray structure of Pseudomonas stutzeri cytochrome c (4) as a template. The protein shows unprecedented properties within the cytochrome c (4) family, including (1) an almost nonpolar surface charge distribution, (2) the absence of high-spin heme Fe(III) states, indicative of a thermodynamically stable and kinetically inert axial heme His,Met coordination, and (3) identical E degrees ' values for the two heme centers (+0.322 V vs the standard hydrogen elecrode). At pH extremes, both heme groups undergo the "acid" and "alkaline" conformational transitions typical of class I cytochromes c, involving ligand-exchange equilibria, whereas at intermediate pH values their electronic properties are sensitive to several residue ionizations.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Chemistry, Università di Modena and Reggio Emilia, Via Campi 183, 41100, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|