1
|
Koshiyama K, Nakata K. Effects of lipid saturation on bicelle to vesicle transition of a binary phospholipid mixture: a molecular dynamics simulation study. SOFT MATTER 2023; 19:7655-7662. [PMID: 37782209 DOI: 10.1039/d3sm00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Controlling the transition from lipid bicelles to vesicles is essential for producing engineered vesicles. We perform coarse-grained molecular dynamics (CGMD) simulations of unsaturated/saturated lipid mixtures to clarify the effects of lipid unsaturation on vesiculation at the molecular scale. The results demonstrate that vesiculation depends on the concentration of unsaturated lipids and the degree of unsaturation. The probability of vesiculation increases linearly with the apparent unsaturated lipid concentration at a low degree of unsaturation. Higher degrees of unsaturation lead to phase segregation within the binary bicelles, reducing the probability of vesiculation. A comparison between CGMD simulations and the conventional theory of vesiculation shows that the theoretical predictions of binary lipid systems must explicitly include phase segregation effects. Furthermore, simulations with biased lipid distributions reveal that vesiculation is facilitated by the preconcentration of unsaturated lipids in the core region of the bicelle but is then temporally limited as the unsaturated lipids move to the bicelle edges. These findings advance theoretical and experimental studies on binary lipid systems and promote the development of tailor-made vesicles.
Collapse
Affiliation(s)
- Kenichiro Koshiyama
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan.
| | - Kazuki Nakata
- Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima 770-8506, Japan.
| |
Collapse
|
2
|
Roux M, Legrand FX, Bil A, Bonnet V, Djedaini-Pilard F. Fragmentation of DMPC Membranes by a Wedge-Shaped Amphiphilic Cyclodextrin into Bicellar-like Aggregates. J Phys Chem B 2023; 127:2475-2487. [PMID: 36913407 DOI: 10.1021/acs.jpcb.2c07331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Small bilayer lipid aggregates such as bicelles provide useful isotropic or anisotropic membrane mimetics for structural studies of biological membranes. We have shown previously by deuterium NMR that a wedge-shaped amphiphilic derivative of trimethyl βcyclodextrin anchored in deuterated DMPC-d27 bilayers through a lauryl acyl chain (TrimβMLC) is able to induce magnetic orientation and fragmentation of the multilamellar membranes. The fragmentation process fully detailed in the present paper is observed with 20% cyclodextrin derivative below 37 °C, where pure TrimβMLC self-assembles in water into large giant micellar structures. After deconvolution of a broad composite 2H NMR isotropic component, we propose a model where the DMPC membranes are progressively disrupted by TrimβMLC into small and large micellar aggregates depending whether they are extracted from the outer or inner layers of the liposomes. Below the fluid-to-gel transition of pure DMPC-d27 membranes (Tc = 21.5 °C), the micellar aggregates vanish progressively until complete extinction at 13 °C, with a probable release of pure TrimβMLC micelles leaving lipid bilayers in the gel phase doped with only a small amount of the cyclodextrin derivative. Bilayer fragmentation between Tc and 13 °C was also observed with 10% and 5% of TrimβMLC, with NMR spectra suggesting possible interactions of micellar aggregates with fluid-like lipids of the Pβ' ripple phase. No membrane orientation and fragmentation was detected with unsaturated POPC membranes, which are able to accommodate the insertion of TrimβMLC without important perturbation. The data are discussed in relation to the formation of possible DMPC bicellar aggregates such as those known to occur after insertion of dihexanoylphosphatidylcholine (DHPC). These bicelles are in particular associated with similar deuterium NMR spectra exhibiting identical composite isotropic components which were never characterized before.
Collapse
Affiliation(s)
- Michel Roux
- Université Paris-Saclay, Institute for Integrative Biology of the Cell, URA CNRS 9198, F-91191 Gif sur Yvette CEDEX, France
| | | | - Abed Bil
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| | - Véronique Bonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| | - Florence Djedaini-Pilard
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, (CNRS UMR 7378), Université de Picardie Jules Verne, 33 Rue Saint Leu, F-80039 Amiens, France
| |
Collapse
|
3
|
Kamimoto-Kuroki J, Yamashita M, Tanaka K, Kadomatsu Y, Tsukamoto D, Aramaki K, Adachi K, Konno Y. Formulation of bicelles with cholesterol using a semi-spontaneous method. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Dufourc EJ. Bicelles and nanodiscs for biophysical chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183478. [PMID: 32971065 DOI: 10.1016/j.bbamem.2020.183478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023]
Abstract
Membrane nanoobjects are very important tools to study biomembrane properties. Two types are described herein: Bicelles and Nanodiscs. Bicelles are obtained by thorough water mixing of long chain and short chain lipids and may take the form of membranous discs of 10-50 nm. Temperature-composition-hydration diagrams have been established for Phosphatidylcholines and show limited domains of existence. Bicelles can be doped with charged lipids, surfactants or with cholesterol and offer a wide variety of membranous platforms for structural biology. Internal dynamics as measured by solid-state NMR is very similar to that of liposomes in their fluid phase. Because of the magnetic susceptibility anisotropy of the lipid chains, discs may be aligned along or perpendicular to the magnetic field. They may serve as weak orienting media to provide distance information in determining the 3D structure of soluble proteins. In different conditions they show strong orienting properties which may be used to study the 3D structure, topology and dynamics of membrane proteins. Lipid Bicelles with biphenyl chains or doped with lanthanides show long lasting remnant orientation after removing the magnetic field due to smectic-like properties. An alternative to pure lipid Bicelles is provided by nanodiscs where the half torus composed by short chain lipids is replaced by proteins. This renders the nano-objects less fragile as they can be used to stabilize membrane protein assemblies to be studied by electron microscopy. Internal dynamics is again similar to liposomes except that the phase transition is abolished, possibly due to lateral constrain imposed by the toroidal proteins limiting the disc size. Advantages and drawbacks of both nanoplatforms are discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
5
|
Li M, Heller WT, Liu CH, Gao CY, Cai Y, Hou Y, Nieh MP. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183315. [PMID: 32304755 DOI: 10.1016/j.bbamem.2020.183315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023]
Abstract
The spontaneously formed structures of physiologically relevant lipid model membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1,2-hexanoyl-sn-glycero-3-phosphocholine have been evaluated in depth using small angle neutron scattering. Although a common molar ratio of long- to short- chain phospholipids (~4) as reported in many bicellar mixtures was used, discoidal bicelles were not found as the major phase throughout the range of lipid concentration and temperature studied, indicating that the required condition for the formation of bicelle is the immiscibility between the long- and short- chain lipids, which were in the gel and Lα phases, respectively, in previous reports. In this study, all lipids are in the Lα phase. The characterization outcome suggests that the spontaneous structures tie strongly with the physical parameters of the system such as melting transition temperature of the long-chain lipid, total lipid concentration and charge density of the system. Multilamellar vesicles, unilamellar vesicles, ribbons and perforated lamellae can be obtained based on the analysis of the small angle neutron scattering results, leading to the construction of structural diagrams. This report provides the important map to choose suitable lipid systems for the structural study of membrane-associated proteins, design of theranostic nanocarriers or other related research fields.
Collapse
Affiliation(s)
- Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA
| | - Carrie Y Gao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yutian Cai
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Yiming Hou
- Department of Polymer Material Science and Engineering, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410000, China
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs 06269, USA; Department of Biomedical Engineering, University of Connecticut, Storrs 06269, USA.
| |
Collapse
|
6
|
Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, Pantelopulos GA, Harrington HR, Mittendorf KF, Qian S, Stein RA, Collier SE, Chambers MG, Katsaras J, Voehler MW, Ruotolo BT, Huster D, McFeeters RL, Straub JE, Nieh MP, Sanders CR. Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. J Am Chem Soc 2020; 142:12715-12729. [PMID: 32575981 DOI: 10.1021/jacs.0c04669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.
Collapse
Affiliation(s)
- James M Hutchison
- Chemical and Physical Biology Graduate Program and Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Kuo-Chih Shih
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Sarah M Fantin
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Haley R Harrington
- Center for Structural Biology and Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville 37240, Tennessee, United States
| | - Kathleen F Mittendorf
- Center for Health Research, Kaiser Permanente, Portland 97227, Oregon, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville37240, Tennessee, United States
| | - Scott E Collier
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland 97227, Oregon, United States
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Markus W Voehler
- Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama, Huntsville 35899, Alabama, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Mu-Ping Nieh
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Charles R Sanders
- Center for Structural Biology, Department of Biochemistry, and Department of Medicine, Vanderbilt University School of Medicine, Nashville 37240, Tennessee, United States
| |
Collapse
|
7
|
Suga K, Kitagawa K, Taguchi S, Okamoto Y, Umakoshi H. Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3242-3250. [PMID: 32163713 DOI: 10.1021/acs.langmuir.9b03710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bicelles are submicrometer-sized disc-shaped molecular self-assemblies that can be obtained in aqueous solution by dispersing mixtures of certain amphiphiles. Although phospholipid bicelle and phospholipid vesicle assemblies adopt similar lipid bilayer structures, the differences in bilayer characteristics, especially physicochemical properties such as bilayer fluidity, are not clearly understood. Herein, we report the lipid ordering properties of bicelle bilayer membranes based on induced circular dichroism (ICD) and fluorescence polarization analyses using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Bicelles were prepared by using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), while pure DMPC vesicles and pure DHPC micelles were used as references. At temperatures below the phase transition temperature of DMPC, the bicelles showed lower membrane fluidities, whereas DHPC micelles showed higher membrane fluidity, suggesting no significant differences in bilayer fluidity between the bicelle and vesicle assemblies. The ICD signals of DPH were induced only when the membrane was in ordered (solid-ordered or ripple-gel) phases. In the bicelle systems, the ICD of DPH was more significant than that of the DMPC vesicle. The induced chirality of DPH was dependent on the chirality of the bilayer lipid. Compared to that of the DMPC/DHPC bicelle, the ICD of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/DHPC bicelle was higher, while that of the bovine sphingomyelin/DHPC bicelle was lower. Because the lipids are tightly packed in the ordered phase, the ICD intensity reflects the molecular ordering state of the lipids in the bicelle bilayer.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Kazuki Kitagawa
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 6712280, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 5608531, Japan
| |
Collapse
|
8
|
Koshiyama K, Taneo M, Shigematsu T, Wada S. Bicelle-to-Vesicle Transition of a Binary Phospholipid Mixture Guided by Controlled Local Lipid Compositions: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:3118-3123. [DOI: 10.1021/acs.jpcb.8b10682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kenichiro Koshiyama
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
| | - Masaki Taneo
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Taiki Shigematsu
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
9
|
Isabettini S, Massabni S, Kohlbrecher J, Schuler LD, Walde P, Sturm M, Windhab EJ, Fischer P, Kuster S. Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8533-8544. [PMID: 28759249 DOI: 10.1021/acs.langmuir.7b01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol (Chol-OH) and its conjugates are powerful molecules for engineering the physicochemical and magnetic properties of phospholipid bilayers in bicelles. Introduction of aminocholesterol (3β-amino-5-cholestene, Chol-NH2) in bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the thulium-ion-chelating phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA/Tm3+) results in unprecedented high magnetic alignments by selectively tuning the magnetic susceptibility Δχ of the bilayer. However, little is known on the underlying mechanisms behind the magnetic response and, more generally, on the physicochemical forces governing a Chol-NH2 doped DMPC bilayer. We tackled this shortcoming with a multiscale bottom-up comparative investigation of Chol-OH and Chol-NH2 mixed with DMPC. First, simplified monolayer models on a Langmuir trough were employed to compare the two steroid molecules at various contents in DMPC. In a second step, a molecular dynamics (MD) simulation allowed for a more representative model of the bicelle bilayer while monitoring the amphiphiles and their interactions on the molecular level. In a final step, we moved away from the models and investigated the effect of temperature on the structure and magnetic alignment of Chol-NH2 doped bicelles by SANS. The DMPC/steroid monolayer studies showed that Chol-OH induces a larger condensation effect than Chol-NH2 at steroid contents of 16 and 20 mol %. However, this tendency was inversed at steroid contents of 10, 30, and 40 mol %. Although the MD simulation with 16 mol % steroid revealed that both compounds induce a liquid-ordered state in DMPC, the bilayer containing Chol-NH2 was much less ordered than the analogous system containing Chol-OH. Chol-NH2 underwent significantly more hydrogen bonding interactions with neighboring DMPC lipids than Chol-OH. It seems that, by altering the dynamics of the hydrophilic environment of the bicelle, Chol-NH2 changes the crystal field and angle of the phospholipid-lanthanide DMPE-DTPA/Tm3+ complex. These parameters largely determine the magnetic susceptibility Δχ of the complex, explaining the SANS results, which show significant differences in magnetic alignment of the steroid doped bicelles. Highly magnetically alignable DMPC/Chol-NH2/DMPE-DTPA/Tm3+ (molar ratio 16:4:5:5) bicelles were achieved up to temperatures of 35 °C before a thermoreversible rearrangement into nonalignable vesicles occurred. The results confirm the potential of Chol-NH2 doped bicelles to act as building blocks for the development of the magnetically responsive soft materials of tomorrow.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sarah Massabni
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| | | | - Peter Walde
- Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marina Sturm
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
10
|
Liebau J, Ye W, Mäler L. Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:395-404. [PMID: 26662467 DOI: 10.1002/mrc.4399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Small isotropic bicelles are versatile membrane mimetics, which, in contrast to micelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rim of the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Weihua Ye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Schmidt ML, Davis JH. Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1881-1890. [PMID: 28165749 DOI: 10.1021/acs.langmuir.6b02834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Model membranes composed of two types of long chain phospholipids, one unsaturated and one saturated, along with cholesterol can exhibit two coexisting fluid phases (liquid disordered ([Formula: see text]) and liquid ordered ([Formula: see text])) at various temperatures and compositions. Here we used 1D and 2D 2H NMR to compare the behavior of multilamellar dispersions, magnetically oriented bicelles, and mechanically aligned bilayers on glass plates, all of which contain the same proportions of dipalmitoleoylphosphatidylcholine (DPoPC), dimyristoylphosphatidylcholine (DMPC), and cholesterol. We found that multilamellar dispersions and bilayers aligned on glass plates behave very similarly. These samples were close to a critical composition and exhibit exchange of the lipids between the two fluid phases at temperatures near the [Formula: see text] to [Formula: see text]-[Formula: see text] phase boundary. On the other hand, when a short chain lipid is added to the ternary long chain lipid/cholesterol mixture to form bicelles, the phase behavior is changed significantly and the [Formula: see text] phase occurs at a higher than expected temperature. In addition, there was no evidence of exchange of lipids between the [Formula: see text] and [Formula: see text] phases or critical fluctuations at the temperature where the bulk of the sample enters the two-phase region for these bicelles. It appears that the addition of the short chain lipid results in these samples no longer being near a critical composition.
Collapse
Affiliation(s)
- Miranda L Schmidt
- University of Guelph , Department of Physics, 50 Stone Road East, Guelph, Ontario, Canada , N1G 2W1
| | - James H Davis
- University of Guelph , Department of Physics, 50 Stone Road East, Guelph, Ontario, Canada , N1G 2W1
| |
Collapse
|
12
|
Dong X, Herrera-Hernández MG, Ramon E, Garriga P. Docosahexaenoic acid phospholipid differentially modulates the conformation of G90V and N55K rhodopsin mutants associated with retinitis pigmentosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:975-981. [PMID: 28212859 DOI: 10.1016/j.bbamem.2017.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/26/2022]
Abstract
Rhodopsin is the visual photoreceptor of the retinal rod cells that mediates dim light vision and a prototypical member of the G protein-coupled receptor superfamily. The structural stability and functional performance of rhodopsin are modulated by membrane lipids. Docosahexaenoic acid has been shown to interact with native rhodopsin but no direct evidence has been established on the effect of such lipid on the stability and regeneration of rhodopsin mutants associated with retinal diseases. The stability and regeneration of two thermosensitive mutants G90V and N55K, associated with the retinal degenerative disease retinitis pigmentosa, have been analyzed in docosohexaenoic phospholipid (1,2-didocosa-hexaenoyl-sn-glycero-3-phosphocholine; DDHA-PC) liposomes. G90V mutant reconstituted in DDHA-PC liposomes significantly increased its thermal stability, but N55K mutant showed similar thermal sensitivity both in dodecyl maltoside detergent solution and in DDHA-PC liposomes. The retinal release process, measured by fluorescence spectroscopy, became faster in the lipid system for the two mutants. The opsin conformation was stabilized for the G90V mutant allowing improved retinal uptake whereas no chromophore binding could be detected for N55K opsin after photoactivation. The results emphasize the distinct role of DHA on different phenotypic rhodopsin mutations associated with classical (G90V) and sector (N55K) retinitis pigmentosa.
Collapse
Affiliation(s)
- Xiaoyun Dong
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - María Guadalupe Herrera-Hernández
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
| |
Collapse
|
13
|
Cornelio K, Espiritu RA, Todokoro Y, Hanashima S, Kinoshita M, Matsumori N, Murata M, Nishimura S, Kakeya H, Yoshida M, Matsunaga S. Sterol-dependent membrane association of the marine sponge-derived bicyclic peptide Theonellamide A as examined by 1H NMR. Bioorg Med Chem 2016; 24:5235-5242. [DOI: 10.1016/j.bmc.2016.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022]
|
14
|
Matsui R, Uchida N, Ohtani M, Yamada K, Shigeta A, Kawamura I, Aida T, Ishida Y. Magnetically Alignable Bicelles with Unprecedented Stability Using Tunable Surfactants Derived from Cholic Acid. Chemphyschem 2016; 17:3916-3922. [DOI: 10.1002/cphc.201600897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ryoichi Matsui
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Noriyuki Uchida
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Masataka Ohtani
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| | - Arisu Shigeta
- Graduate School of Engineering; Yokohama National University; Tokiwadai 79-5, Hodogaya-ku Yokohama 240-8501 Japan
| | - Izuru Kawamura
- Graduate School of Engineering; Yokohama National University; Tokiwadai 79-5, Hodogaya-ku Yokohama 240-8501 Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
- Department of Chemistry and Biotechnology; School of Engineering, the; University of Tokyo; Hongo 7-3-1, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science; Hirosawa 2-1, Wako Saitama 351-0198 Japan
| |
Collapse
|
15
|
Schmidt ML, Davis JH. Liquid disordered–liquid ordered phase coexistence in bicelles containing unsaturated lipids and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:619-26. [DOI: 10.1016/j.bbamem.2015.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
16
|
McCaffrey JE, James ZM, Svensson B, Binder BP, Thomas DD. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:50-56. [PMID: 26720587 PMCID: PMC4716873 DOI: 10.1016/j.jmr.2015.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.
Collapse
Affiliation(s)
- Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary M James
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR. Methods Enzymol 2015; 564:101-23. [PMID: 26477249 DOI: 10.1016/bs.mie.2015.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination.
Collapse
|
18
|
Yamamoto K, Pearcy P, Lee DK, Yu C, Im SC, Waskell L, Ramamoorthy A. Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1496-1504. [PMID: 25565453 DOI: 10.1021/la5043876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three-dimensional structure determination of membrane proteins is important to fully understand their biological functions. However, obtaining a high-resolution structure has been a major challenge mainly due to the difficulties in retaining the native folding and function of membrane proteins outside of the cellular membrane environment. These challenges are acute if the protein contains a large soluble domain, as it needs bulk water unlike the transmembrane domains of an integral membrane protein. For structural studies on such proteins either by nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, bicelles have been demonstrated to be superior to conventional micelles, yet their temperature restrictions attributed to their thermal instabilities are a major disadvantage. Here, we report an approach to overcome this drawback through searching for an optimum combination of bicellar compositions. We demonstrate that bicelles composed of 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholin (DHepPC), without utilizing additional stabilizing chemicals, are quite stable and are resistant to temperature variations. These temperature-resistant bicelles have a robust bicellar phase and magnetic alignment over a broad range of temperatures, between -15 and 80 °C, retain the native structure of a membrane protein, and increase the sensitivity of solid-state NMR experiments performed at low temperatures. Advantages of two-dimensional separated-local field (SLF) solid-state NMR experiments at a low temperature are demonstrated on magnetically aligned bicelles containing an electron carrier membrane protein, cytochrome b5. Morphological information on different DDPC-based bicellar compositions, varying q ratio/size, and hydration levels obtained from (31)P NMR experiments in this study is also beneficial for a variety of biophysical and spectroscopic techniques, including solution NMR and magic-angle-spinning (MAS) NMR for a wide range of temperatures.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Chemistry and Biophysics, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Judge PJ, Taylor GF, Dannatt HRW, Watts A. Solid-state nuclear magnetic resonance spectroscopy for membrane protein structure determination. Methods Mol Biol 2015; 1261:331-47. [PMID: 25502207 DOI: 10.1007/978-1-4939-2230-7_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can provide high-resolution (sub-angstrom) structural data for integral membrane proteins embedded in native and model membrane environments. The methodologies for a priori structure determination have for the most part been developed using samples with crystalline and fibrous morphologies. However, the techniques are now being applied to large, polytopic membrane proteins including receptors, ion channels, and porins. ssNMR data may be used to annotate and refine existing structures in regions of the protein not fully resolved by crystallography (including ligand-binding sites and mobile solvent accessible loop regions). This review describes the spectroscopic experiments and data analysis methods (including assignment) used to generate high-resolution structural data for membrane proteins. We also consider the range of sample morphologies that are appropriate for study by this method.
Collapse
Affiliation(s)
- Peter J Judge
- Biomembrane Structure Unit, Biochemistry Department, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
20
|
McCaffrey JE, James ZM, Thomas DD. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:71-75. [PMID: 25514061 PMCID: PMC4286475 DOI: 10.1016/j.jmr.2014.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.
Collapse
Affiliation(s)
- Jesse E McCaffrey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary M James
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Open and closed conformations of the isolated transmembrane domain of death receptor 5 support a new model of activation. Biophys J 2014; 106:L21-4. [PMID: 24655519 DOI: 10.1016/j.bpj.2014.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/17/2014] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer-sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers-undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.
Collapse
|
22
|
Yamamoto K, Pearcy P, Ramamoorthy A. Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1622-1629. [PMID: 24460179 DOI: 10.1021/la404331t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bicelles are increasingly used as model membranes to suitably mimic the biological cell membrane for biophysical and biochemical studies by a variety of techniques including NMR and X-ray crystallography. Recent NMR studies have successfully utilized bicelles for atomic-resolution structural and dynamic studies of antimicrobial peptides, amyloid peptides, and membrane-bound proteins. Though bicelles composed with several different types of lipids and detergents have been reported, the NMR requirement of magnetic alignment of bicelles limits the temperature range in which they can be used and subsequently their composition. Because of this restriction, low-temperature experiments desirable for heat-sensitive membrane proteins have not been conducted because bicelles could not be aligned. In this study, we characterize the magnetic alignment of bicelles with various compositions for a broad range of temperatures using (31)P static NMR spectroscopy in search of temperature-resistant bicelles. Our systematic investigation identified a temperature range of magnetic alignment for bicelles composed of 4:1 DLPC:DHexPC, 4:1:0.2 DLPC:DHexPC:cholesterol, 4:1:0.13 DLPC:DHexPC:CTAB, 4:1:0.13:0.2 DLPC:DHexPC:CTAB:cholesterol, and 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate. The amount of cholesterol-3-sulfate used was based on mole percent and was varied in order to determine the optimal amount. Our results indicate that the presence of 75 wt % or more water is essential to achieve maximum magnetic alignment, while the presence of cholesterol and cholesterol-3-sulfate stabilizes the alignment at extreme temperatures and the positively charged CTAB avoids the mixing of bicelles. We believe that the use of magnetically aligned 4:1:0.4 DLPC:DHexPC:cholesterol-3-sulfate bicelles at as low as -15 °C would pave avenues to study the structure, dynamics, and membrane orientation of heat-sensitive proteins such as cytochrome P450 and could also be useful to investigate protein-protein interactions in a membrane environment.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | |
Collapse
|
23
|
Probing the transmembrane structure and topology of microsomal cytochrome-p450 by solid-state NMR on temperature-resistant bicelles. Sci Rep 2014; 3:2556. [PMID: 23989972 PMCID: PMC3757361 DOI: 10.1038/srep02556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/15/2013] [Indexed: 01/03/2023] Open
Abstract
Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochromeP4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal.
Collapse
|
24
|
Liebi M, van Rhee PG, Christianen PCM, Kohlbrecher J, Fischer P, Walde P, Windhab EJ. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3467-3473. [PMID: 23406168 DOI: 10.1021/la3050785] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm(3+)), and perpendicular alignment with dysprosium (Dy(3+)). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.
Collapse
Affiliation(s)
- Marianne Liebi
- Laboratory of Food Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
26
|
Abstract
Solid-state NMR spectroscopy proved to be a versatile tool for characterization of structure and dynamics of complex biochemical systems. In particular, magic angle spinning (MAS) solid-state NMR came to maturity for application towards structural elucidation of biological macromolecules. Current challenges in applying solid-state NMR as well as progress achieved recently will be discussed in the following chapter focusing on conceptual aspects important for structural elucidation of proteins.
Collapse
Affiliation(s)
- Henrik Müller
- Institute of Physical Biology, Heinrich-Heine-University of Düsseldorf, 40225, Düsseldorf, Germany
| | | | | |
Collapse
|
27
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
28
|
Kimble-Hill AC. A review of factors affecting the success of membrane protein crystallization using bicelles. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Scholtysek P, Achilles A, Hoffmann CV, Lechner BD, Meister A, Tschierske C, Saalwächter K, Edwards K, Blume A. A T-Shaped Amphiphilic Molecule Forms Closed Vesicles in Water and Bicelles in Mixtures with a Membrane Lipid. J Phys Chem B 2012; 116:4871-8. [DOI: 10.1021/jp207996r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peggy Scholtysek
- Institute of Chemistry - Physical
Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Anja Achilles
- Institute of Physics - NMR, Martin-Luther-University Halle-Wittenberg, D-06120,
Halle/Saale, Germany
| | - Claudia-Viktoria Hoffmann
- Institute of Chemistry - Physical
Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Bob-Dan Lechner
- Institute of Chemistry - Physical
Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Annette Meister
- ZIK
HALOmem, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Carsten Tschierske
- Institute of Chemistry - Organic
Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| | - Kay Saalwächter
- Institute of Physics - NMR, Martin-Luther-University Halle-Wittenberg, D-06120,
Halle/Saale, Germany
| | - Katarina Edwards
- Institute for Physical and Analytical
Chemistry, Uppsala University, 75123 Uppsala,
Sweden
| | - Alfred Blume
- Institute of Chemistry - Physical
Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120, Halle/Saale, Germany
| |
Collapse
|
30
|
Morrison EA, Henzler-Wildman KA. Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:814-20. [PMID: 22226849 DOI: 10.1016/j.bbamem.2011.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St.Louis, MO, USA.
| | | |
Collapse
|
31
|
Judge PJ, Watts A. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr Opin Chem Biol 2011; 15:690-5. [DOI: 10.1016/j.cbpa.2011.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/29/2011] [Accepted: 07/29/2011] [Indexed: 12/29/2022]
|