1
|
Ansari R, Kirpalani DM. Insights into ultrasound-promoted degradation of naphthenic acid compounds in oil sands process affected water. Part I: Accelerated H-abstraction and decarboxylation of aromatic and alicyclic compounds. ULTRASONICS SONOCHEMISTRY 2022; 83:105929. [PMID: 35114552 PMCID: PMC8818581 DOI: 10.1016/j.ultsonch.2022.105929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Propelled by enormous increase in demand for fuel sources, Canadian oil sands are becoming increasingly important as a fuel source due to their abundance and upgrading capability. However, extraction of bitumen, a high acid crude (HAC) oil, requires 2-3 units of water per unit of oil resulting in naphthenic acid (NA)-rich oil sands process affected water (OSPW) collected in effluent ponds. This study illustrates the role of sonochemistry in the accelerated degradation through H-abstraction and subsequent decarboxylation of aromatic and alicyclic naphthenic acid model compounds. Benzoic acid and 3-methylcyclohexane carboxylic acid were selected as model NA compounds to investigate the mechanism of hydroxyl radical (OH•) initiated carboxylic acid degradation in 378 KHz sonochemical reactor. Established FTIR methods with low resolution LCMS spectroscopy confirmation were applied to determine the extent of carboxylic acid degradation and identify the formation of products. FTIR monitoring showed a non-linear degradation of carboxylic acids with formation of many intermediates highlighting the shift from cyclic carboxylic acids to cyclic alcohols during BA degradation. Subsequent decrease in carboxylic acid groups signifies scission of cyclic structures before complete mineralization. This is confirmed with the LCMS identification of products such as: 3-hydroxybenzoic acid and phenol. This study postulated new breakdown pathways for degradation of benzoic acid with complete mineralization at a sonochemical reaction time (SRT) of 4 h. A radical quenching process was also inferred through the formation of conglomerates during sonochemical degradation of BA. Extension of the study to 3-methylcyclohexane carboxylic acid (3mCHA) shows similar non-linearity with an increase in carboxylic acid groups indicating H-abstraction followed by ring-opened compounds. However, due to the complex nature of 3mCHA's ring-opened compounds, complete mineralization is not achieved. The putative role of sonochemistry is a promising and sustainable degradation method for mitigating NAs in OSPW, but sonication periods need to be considered carefully to ensure adequate mineralization of their constituents and combinatorial methods with other advanced oxidation methods may be needed to enhance industrial application. In Part II, an in silico screening approach using first principles is reported to identify the breakdown of the organic compounds and determine molecular rates of reaction to confirm the mechanistic origins of the compounds formed.
Collapse
Affiliation(s)
- Rija Ansari
- National Research Council of Canada, Energy Mining and Environment Portfolio, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
| | - Deepak M Kirpalani
- National Research Council of Canada, Energy Mining and Environment Portfolio, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
2
|
Gnanasekaran K, Korpanty J, Berger O, Hampu N, Halperin-Sternfeld M, Cohen-Gerassi D, Adler-Abramovich L, Gianneschi NC. Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy. ACS NANO 2021; 15:16542-16551. [PMID: 34623126 PMCID: PMC9836046 DOI: 10.1021/acsnano.1c06130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we report the in situ growth of FF nanotubes examined via liquid-cell transmission electron microscopy (LCTEM). This direct, high spatial, and temporal resolution imaging approach allowed us to observe the growth of peptide-based nanofibrillar structures through directional elongation. Furthermore, the radial growth profile of FF nanotubes through the addition of monomers perpendicular to the tube axis has been observed in real-time with sufficient resolution to directly observe the increase in diameter. Our study demonstrates that the kinetics, dynamics, structure formation, and assembly mechanism of these supramolecular assemblies can be directly monitored using LCTEM. The performance of the peptides and the assemblies they form can be verified and evaluated using post-mortem techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Sheng H, Huang X, Chen Z, Zhao Z, Liu H. Low-Temperature Hypergolic Ignition of 1-Octene with Low Ignition Delay Time. J Phys Chem A 2021; 125:423-434. [PMID: 33377778 DOI: 10.1021/acs.jpca.0c08999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The attainment of the efficient ignition of traditional liquid hydrocarbons of scramjet combustors at low flight Mach numbers is a challenging task. In this study, a novel chemical strategy to improve the reliable ignition and efficient combustion of hydrocarbon fuels was proposed. A directional hydroboration reaction was used to convert hydrocarbon fuel into highly active alkylborane, thereby leading to changes in the combustion reaction pathway of hydrocarbon fuel. A directional reaction to achieve the hypergolic ignition of 1-octene was designed and developed by using Gaussian simulation. Borane dimethyl sulfide (BDMS), a high-energy additive, was allowed to react spontaneously with 1-octene to achieve the hypergolic ignition of liquid hydrocarbon fuel at -15 °C. Compared with the ignition delay time of pure 1-octene (565 °C), the ignition delay time of 1-octene/BDMS (9:1.2) decreased by 3850% at 50 °C. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry confirmed the directional reaction of the hypergolic ignition reaction pathway of 1-octene and BDMS. Moreover, optical measurements showed the development trend of hydroxyl radicals (OH·) in the lower temperature hypergolic ignition and combustion of 1-octene. Finally, this study indicates that the enhancement of the low-temperature ignition performance of 1-octene by hydroboration in the presence of BDMS is feasible and promising for jet propellant design with tremendous future applications.
Collapse
Affiliation(s)
- Haoqiang Sheng
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Xiaobin Huang
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Zhijia Chen
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Zhengchuang Zhao
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| | - Hong Liu
- Shanghai Jiao Tong University School of Aeronautics and Astronautics, Shanghai 200240, China
| |
Collapse
|
4
|
Vereecken L, Carlsson PTM, Novelli A, Bernard F, Brown SS, Cho C, Crowley JN, Fuchs H, Mellouki W, Reimer D, Shenolikar J, Tillmann R, Zhou L, Kiendler-Scharr A, Wahner A. Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene. Phys Chem Chem Phys 2021; 23:5496-5515. [DOI: 10.1039/d0cp06267g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under atmospheric conditions, nitrate-RO2 radicals are equilibrated and react predominantly with HO2, RO2 and NO. The nitrate-RO chemistry is affected strongly by ring closure to epoxy radicals, impeding formation of MVK/MACR.
Collapse
Affiliation(s)
- L. Vereecken
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - P. T. M. Carlsson
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - A. Novelli
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - F. Bernard
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique
- 45071 Orléans CEDEX 2
- France
| | - S. S. Brown
- NOAA Chemical Sciences Laboratory
- Boulder
- USA
- Department of Chemistry, University of Colorado Boulder
- Boulder
| | - C. Cho
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - J. N. Crowley
- Atmospheric Chemistry Department, Max-Planck-Institut für Chemie
- 55128 Mainz
- Germany
| | - H. Fuchs
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - W. Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique
- 45071 Orléans CEDEX 2
- France
| | - D. Reimer
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - J. Shenolikar
- Atmospheric Chemistry Department, Max-Planck-Institut für Chemie
- 55128 Mainz
- Germany
| | - R. Tillmann
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - L. Zhou
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique
- 45071 Orléans CEDEX 2
- France
| | - A. Kiendler-Scharr
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| | - A. Wahner
- Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH
- 52428 Jülich
- Germany
| |
Collapse
|
5
|
Hyttinen N, Knap HC, Rissanen MP, Jørgensen S, Kjaergaard HG, Kurtén T. Unimolecular HO2 Loss from Peroxy Radicals Formed in Autoxidation Is Unlikely under Atmospheric Conditions. J Phys Chem A 2016; 120:3588-95. [PMID: 27163880 DOI: 10.1021/acs.jpca.6b02281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concerted HO2 loss reaction from a peroxy radical (RO2), formed from the addition of O2 to an alkyl radical, has been proposed as a mechanism to form closed-shell products in the atmospheric oxidation of organic molecules. We investigate this reaction computationally with four progressively oxidized radicals. Potential energy surfaces of the O2 addition and HO2 loss reactions were calculated at ROHF-RCCSD(T)-F12a/VDZ-F12//ωB97xD/aug-cc-pVTZ level of theory and the master equation solver for multienergy well reactions (MESMER) was used to calculate Bartis-Widom phenomenological rate coefficients. The rate coefficients were also compared with the unimolecular rate coefficients of the HO2 loss reaction calculated with transition state theory at atmospheric temperature and pressure. On the basis of our calculations, the unimolecular concerted HO2 loss is unlikely to be a major pathway in the formation of highly oxidized closed-shell molecules in the atmosphere.
Collapse
Affiliation(s)
- Noora Hyttinen
- Department of Chemistry, University of Helsinki , P.O. Box 55, FI-00014, Helsinki, Finland
| | - Hasse C Knap
- Department of Chemistry, University of Copenhagen , DK-2100, Copenhagen, Denmark
| | - Matti P Rissanen
- Department of Physics, University of Helsinki , P.O. Box 64, FI-00014, Helsinki, Finland
| | - Solvejg Jørgensen
- Department of Chemistry, University of Copenhagen , DK-2100, Copenhagen, Denmark
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen , DK-2100, Copenhagen, Denmark
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki , P.O. Box 55, FI-00014, Helsinki, Finland
| |
Collapse
|
6
|
Buckingham GT, Ormond TK, Porterfield JP, Hemberger P, Kostko O, Ahmed M, Robichaud DJ, Nimlos MR, Daily JW, Ellison GB. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings. J Chem Phys 2015; 142:044307. [DOI: 10.1063/1.4906156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Grant T. Buckingham
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Thomas K. Ormond
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - Patrick Hemberger
- Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - John W. Daily
- Department of Mechanical Engineering, Center for Combustion and Environmental Research,University of Colorado, Boulder, Colorado 80309-0427, USA
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
7
|
Pfeifle M, Olzmann M. Consecutive Chemical Activation Steps in the OH-Initiated Atmospheric Degradation of Isoprene: An Analysis with Coupled Master Equations. INT J CHEM KINET 2014. [DOI: 10.1002/kin.20849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Pfeifle
- Institut für Physikalische Chemie; Karlsruher Institut für Technologie; 76131 Karlsruhe Germany
| | - Matthias Olzmann
- Institut für Physikalische Chemie; Karlsruher Institut für Technologie; 76131 Karlsruhe Germany
| |
Collapse
|
8
|
Nguyen TL, Xue BC, Ellison GB, Stanton JF. Theoretical Study of Reaction of Ketene with Water in the Gas Phase: Formation of Acetic Acid? J Phys Chem A 2013; 117:10997-1005. [DOI: 10.1021/jp408337y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh Lam Nguyen
- Department
of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Bert C. Xue
- Department
of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - G. Barney Ellison
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - John F. Stanton
- Department
of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| |
Collapse
|
9
|
|
10
|
|
11
|
da Silva G. Reaction of Methacrolein with the Hydroxyl Radical in Air: Incorporation of Secondary O2 Addition into the MACR + OH Master Equation. J Phys Chem A 2012; 116:5317-24. [DOI: 10.1021/jp303806w] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Orlando JJ, Tyndall GS. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem Soc Rev 2012; 41:6294-317. [PMID: 22847633 DOI: 10.1039/c2cs35166h] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- John J Orlando
- National Center for Atmospheric Research, Earth System Laboratory, Atmospheric Chemistry Division, Boulder, USA.
| | | |
Collapse
|
13
|
Vereecken L, Francisco JS. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem Soc Rev 2012; 41:6259-93. [DOI: 10.1039/c2cs35070j] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
da Silva G. Kinetics and Mechanism of the Glyoxal + HO2 Reaction: Conversion of HO2 to OH by Carbonyls. J Phys Chem A 2010; 115:291-7. [DOI: 10.1021/jp108358y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
15
|
Asatryan R, da Silva G, Bozzelli JW. Quantum Chemical Study of the Acrolein (CH2CHCHO) + OH + O2 Reactions. J Phys Chem A 2010; 114:8302-11. [DOI: 10.1021/jp104828a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rubik Asatryan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA, and Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA, and Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Joseph W. Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA, and Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|