1
|
Vugmeyster L, Ostrovsky D, Rodgers A, Gwin K, Smirnov SL, McKnight CJ, Fu R. Persistence of Methionine Side Chain Mobility at Low Temperatures in a Nine-Residue Low Complexity Peptide, as Probed by 2 H Solid-State NMR. Chemphyschem 2024; 25:e202300565. [PMID: 38175858 PMCID: PMC10922872 DOI: 10.1002/cphc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-β1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Kirsten Gwin
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, WA 98225
| | - C. James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL USA 32310
| |
Collapse
|
2
|
Vugmeyster L, Rodgers A, Ostrovsky D, James McKnight C, Fu R. Deuteron off-resonance rotating frame relaxation for the characterization of slow motions in rotating and static solid-state proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107493. [PMID: 37271094 PMCID: PMC10330767 DOI: 10.1016/j.jmr.2023.107493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
We demonstrate the feasibility of deuterium solid-state NMR off-resonance rotating frame relaxation measurements for studies of slow motions in biomolecular solids. The pulse sequence, which includes adiabatic pulses for magnetization alignment, is illustrated for static and magic-angle spinning conditions away from rotary resonances. We apply the measurements for three systems with selective deuterium labels at methyl groups: a) a model compound, Fluorenylmethyloxycarbonyl methionine-D3 amino acid, for which the principles of the measurements and corresponding motional modeling based on rotameric interconversions are demonstrated; b) amyloid-β1-40 fibrils labeled at a single alanine methyl group located in the disordered N-terminal domain. This system has been extensively studied in prior work and here serves as a test of the method for complex biological systems. The essential features of the dynamics consist of large-scale rearrangements of the disordered N-terminal domain and the conformational exchange between the free and bound forms of the domain, the latter one due to transient interactions with the structured core of the fibrils. and c) a 15-residue helical peptide which belongs to the predicted α-helical domain near the N-terminus of apolipoprotein B. The peptide is solvated with triolein and incorporates a selectively labeled leucine methyl groups. The method permits model refinement, indicating rotameric interconversions with a distribution of rate constants.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| | - C James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, United States
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
3
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
4
|
Vugmeyster L, Ostrovsky D. Comparative Dynamics of Methionine Side-Chain in FMOC-Methionine and in Amyloid Fibrils. Chem Phys Lett 2017; 673:108-112. [PMID: 28959059 DOI: 10.1016/j.cplett.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compared the dynamics of key methionine methyl groups in the water-accessible hydrophobic cavity of amyloid fibrils and Fluorenylmethyloxycarbonyl-Methionine (FMOC-Met), which renders general hydrophobicity to the environment without the complexity of the protein. Met35 in the hydrated cavity was recently found to undergo a dynamical cross-over from the dominance of methyl rotations at low temperatures to the dominance of diffusive motion of methyl axis at high temperatures. Current results indicate that in FMOC-Met this cross-over is suppressed, similar to what was observed for the dry fibrils, indicating that hydration of the cavity is driving the onset of the dynamical transition.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, 1201 Larimer Street, University of Colorado at Denver, Denver, CO 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, 1201 Larimer Street, University of Colorado at Denver, Denver, CO 80204, USA
| |
Collapse
|
5
|
Vugmeyster L, Ostrovsky D. Static solid-state 2H NMR methods in studies of protein side-chain dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:1-17. [PMID: 28844219 PMCID: PMC5576518 DOI: 10.1016/j.pnmrs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 05/27/2023]
Abstract
In this review, we discuss the experimental static deuteron NMR techniques and computational approaches most useful for the investigation of side-chain dynamics in protein systems. Focus is placed on the interpretation of line shape and relaxation data within the framework of motional modeling. We consider both jump and diffusion models and apply them to uncover glassy behaviors, conformational exchange and dynamical transitions in proteins. Applications are chosen from globular and membrane proteins, amyloid fibrils, peptide adsorbed on surfaces and proteins specific to connective tissues.
Collapse
|
6
|
Ferreira HE, Drobny GP. Solid state deuterium NMR study of LKα14 peptide aggregation in biosilica. Biointerphases 2017; 12:02D418. [PMID: 28655279 PMCID: PMC5552403 DOI: 10.1116/1.4986907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
In nature, organisms including diatoms, radiolaria, and marine sponges use proteins, long chain polyamines, and other organic molecules to regulate the assembly of complex silica-based structures. Here, the authors investigate structural features of small peptides, designed to mimic the silicifying activities of larger proteins found in natural systems. LKα14 (Ac-LKKLLKLLKKLLKL-C), an amphiphilic lysine/leucine repeat peptide with an α-helical secondary structure at polar/apolar interfaces, coprecipitates with silica to form nanospheres. Previous 13C magic angle spinning studies suggest that the tetrameric peptide bundles that LKα14 is known to form in solution may persist in the silica-complexed form, and may also function as catalysts and templates for silica formation. To further investigate LKα14 aggregation in silica, deuterium solid-state nuclear magnetic resonance (2H ssNMR) was used to establish how leucine side-chain dynamics differ in solid LKα14 peptides isolated from aqueous solution, from phosphate-buffered solution, and in the silica-precipitated states. Modeling the 2H ssNMR line shapes probed the mechanisms of peptide preaggregation and silica coprecipitation. The resulting NMR data indicates that the peptide bundles in silica preserve the hydrophobic interior that they display in the hydrated solid state. However, NMR data also indicate free motion of the leucine residues in silica, a condition that may result from structural deformation of the aggregates arising from interactions between the surface lysine side chains and the surrounding silica matrix.
Collapse
Affiliation(s)
- Helen E Ferreira
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| |
Collapse
|
7
|
Beckmann PA, Rheingold AL. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms. J Chem Phys 2016; 144:154308. [DOI: 10.1063/1.4944981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Beckmann PA, Conn KG, Mallory CW, Mallory FB, Rheingold AL, Rotkina L, Wang X. Distributions of methyl group rotational barriers in polycrystalline organic solids. J Chem Phys 2013; 139:204501. [DOI: 10.1063/1.4830411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Vugmeyster L, Ostrovsky D, Penland K, Hoatson GL, Vold RL. Glassy dynamics of protein methyl groups revealed by deuteron NMR. J Phys Chem B 2013; 117:1051-61. [PMID: 23301823 DOI: 10.1021/jp311112j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K using deuteron solid-state NMR longitudinal relaxation measurements. The relaxation of the longitudinal magnetization is weakly nonexponential (glassy) at high temperatures and exhibits a stronger degree of nonexponentiality below about 175 K. In addition, the characteristic relaxation times deviate from the simple Arrhenius law. We interpret this behavior via the existence of distribution of activation energy barriers for the three-site methyl jumps, which originates from somewhat different methyl environments within the local energy landscape. The width of the distribution of the activation barriers for methyl jumps is rather significant, about 1.4 kJ/mol. Our experimental results and modeling allow for the description of the apparent change at about 175 K without invoking a specific transition temperature. For most residues in the core, the relaxation behavior at high temperatures points to the existence of conformational exchange between the substates of the landscape, and our model takes into account the kinetics of this process. The observed dynamics are the same for dry and hydrated protein. We also looked at the effect of F58L mutation inside the hydrophobic core on the dynamics of one of the residues and observed a significant increase in its conformational exchange rate constant at high temperatures.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska 99508, USA.
| | | | | | | | | |
Collapse
|