1
|
Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140866. [PMID: 36272537 DOI: 10.1016/j.bbapap.2022.140866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
One of the most abundant, prevailing, and life-threatening human diseases that are currently baffling the scientific community is type 2 diabetes (T2D). The self-association of human amylin has been implicated in the pathogenesis of T2D, though with an inconclusive understanding of the mechanism. Hence, we focused on the characterization of the conformational ensembles of all the species that are believed to define the structural polymorphism of the aggregation process - the functional monomeric, the initially self-associated oligomeric, and the structured protofibril - by employing near-equilibrium, non-equilibrium, and equilibrium atomistic simulations on the sporadic, two familial variants (S20G and G33R), and their proline-substituted forms (S20P and G33P). The dynamic near-equilibrium assays hint toward - the abundance of helical conformation in the monomeric state, the retainment of the helicity in the initial self-associated oligomeric phase pointing toward the existence of the helix-helix association mechanism, the difference in preference of specific segments to have definite secondary structural features, the phase-dependent variability in the dominance of specific segments and mutation sites, and the simultaneous presence of generic and unique features among various sequences. Furthermore, the non-equilibrium pulling assays exemplify a generic sequential unzipping mechanism of the protofibrils, however, the sequence-dependent uniqueness comes from the difference in location and magnitude of the control of a specific terminus. Importantly, the equilibrium thermodynamic assays efficiently rank order the potential of aggregability among sequences and consequently suggests the probability of designing effective aggregation suppressors against sporadic and familial amylin variants incorporating proline as the mutation.
Collapse
|
2
|
Roy R, Paul S. Disparate Effect of Hybrid Peptidomimetics Containing Isomers of Aminobenzoic Acid on hIAPP Aggregation. J Phys Chem B 2022; 126:10427-10444. [PMID: 36459988 DOI: 10.1021/acs.jpcb.2c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The abnormal misfolding of human islet amyloid polypeptide (hIAPP) in pancreatic β-cells is implicated in the progression of type II diabetes (T2D). With the prevalence of T2D increasing worldwide, preventing the aggregation of hIAPP has been recognized as a promising therapeutic strategy to control this disease. Recently, a class of novel conformationally restricted β-sheet breaker hybrid peptidomimetics (BSBHps) was found to demonstrate efficient inhibitory ability toward amyloid formation of hIAPP. One (Ile26) or more (Gly24 and Ile26) residues in these six-membered peptide sequences, which have been extracted from the amyloidogenic core of hIAPP, N22FGAIL27, are substituted by three different isomers of the conformationally restricted aromatic amino acid, i.e., aminobenzoic acid (β, γ, and δ), to generate these BSBHps. The presence of the nonproteinogenic aminobenzoic acid moiety renders the BSBHps to be more stable toward proteolytic degradation. The different isomeric BSBHps exhibit contrasting influence on the self-assembly of hIAPP. The BSBHps containing β- and γ-aminobenzoic acid can sufficiently prevent hIAPP aggregation, but those with the δ-aminobenzoic group stabilize the β-sheet-rich aggregate of hIAPP. The difference in the angle between the amino and carboxyl groups in the isomers of the aminobenzoic moiety causes the BSBHps to attain discrete conformation and hence leads to variation in their binding preference with hIAPP and ultimately their inhibitory potency. This guides the pathway for the dissimilar effect of BSBHps on peptide aggregation and, therefore, provides insights into the design considerations for novel drugs against T2D.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati781039, Assam, India
| |
Collapse
|
3
|
Fortier M, Côté-Cyr M, Nguyen V, Babych M, Nguyen PT, Gaudreault R, Bourgault S. Contribution of the 12–17 hydrophobic region of islet amyloid polypeptide in self-assembly and cytotoxicity. Front Mol Biosci 2022; 9:1017336. [PMID: 36262476 PMCID: PMC9573943 DOI: 10.3389/fmolb.2022.1017336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) is a 37-residue aggregation-prone peptide hormone whose deposition as insoluble fibrils in the islets of Langerhans is associated with type II diabetes. Therapeutic interventions targeting IAPP amyloidogenesis, which contributes to pancreatic β-cell degeneration, remain elusive owing to the lack of understanding of the self-assembly mechanisms and of the quaternary proteospecies mediating toxicity. While countless studies have investigated the contributions of the 20–29 amyloidogenic core in self-assembly, IAPP central region, i.e. positions 11 to 19, has been less studied, notwithstanding its potential key role in oligomerization. In this context, the present study aimed at investigating the physicochemical and conformational properties driving IAPP self-assembly and associated cytotoxicity. Computational tools and all-atom molecular dynamics simulation suggested that the hydrophobic 12–17 segment promotes IAPP self-recognition and aggregation. Alanine scanning revealed that the hydrophobic side chains of Leu12, Phe15 and Val17 are critical for amyloid fibril formation. Destabilization of the α-helical folding by Pro substitution enhanced self-assembly when the pyrrolidine ring was successively introduced at positions Ala13, Asn14 and Phe15, in comparison to respective Ala-substituted counterparts. Modulating the peptide backbone flexibility at position Leu16 through successive incorporation of Pro, Gly and α-methylalanine, inhibited amyloid formation and reduced cytotoxicity, while the isobutyl side chain of Leu16 was not critical for self-assembly and IAPP-mediated toxicity. These results highlight the importance of the 12–17 hydrophobic region of IAPP for self-recognition, ultimately supporting the development of therapeutic approaches to prevent oligomerization and/or fibrillization.
Collapse
Affiliation(s)
- Mathilde Fortier
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Vy Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
| | - Roger Gaudreault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Department of Physics, Université de Montréal, Succursale Centre-ville, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| | - Steve Bourgault
- Department of Chemistry, Succursale Centre-Ville, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Montreal, QC, Canada
- *Correspondence: Roger Gaudreault, ; Steve Bourgault,
| |
Collapse
|
4
|
Kameda T, Awazu A, Togashi Y. Molecular dynamics analysis of biomolecular systems including nucleic acids. Biophys Physicobiol 2022; 19:e190027. [DOI: 10.2142/biophysico.bppb-v19.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | | |
Collapse
|
5
|
Zhang H, Zhang H, Chen C. Investigating the folding mechanism of the N-terminal domain of ribosomal protein L9. Proteins 2021; 89:832-844. [PMID: 33576138 DOI: 10.1002/prot.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/04/2021] [Accepted: 01/31/2021] [Indexed: 11/10/2022]
Abstract
Protein folding is a popular topic in the life science. However, due to the limited sampling ability of experiments and simulations, the general folding mechanism is not yet clear to us. In this work, we study the folding of the N-terminal domain of ribosomal protein L9 (NTL9) in detail by a mixing replica exchange molecular dynamics method. The simulation results are close to previous experimental observations. According to the Markov state model, the folding of the protein follows a nucleation-condensation path. Moreover, after the comparison to its 39-residue β-α-β motif, we find that the helix at the C-terminal has a great influence on the folding process of the intact protein, including the nucleation of the key residues in the transition state ensemble and the packing of the hydrophobic residues in the native state.
Collapse
Affiliation(s)
- Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Strodel B. Amyloid aggregation simulations: challenges, advances and perspectives. Curr Opin Struct Biol 2020; 67:145-152. [PMID: 33279865 DOI: 10.1016/j.sbi.2020.10.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 10/22/2022]
Abstract
In amyloid aggregation diseases soluble proteins coalesce into a wide array of undesirable structures, ranging through oligomers and prefibrillar assemblies to highly ordered amyloid fibrils and plaques. Explicit-solvent all-atom molecular dynamics (MD) simulations of amyloid aggregation have been performed for almost 20 years, revealing valuable information about this phenomenon. However, these simulations are challenged by three main problems. Firstly, current force fields modeling amyloid aggregation are insufficiently accurate. Secondly, the protein concentrations in MD simulations are usually orders of magnitude higher than those used in vitro or found in vivo, which has direct consequences on the aggregates that form. Finally, the third problem is the well-known time-scale limit of MD simulations. In this review I highlight recent approaches to overcome these three limitations.
Collapse
Affiliation(s)
- Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
8
|
Dutta P, Sengupta N. Expectation maximized molecular dynamics: Toward efficient learning of rarely sampled features in free energy surfaces from unbiased simulations. J Chem Phys 2020; 153:154104. [DOI: 10.1063/5.0021910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Pallab Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
9
|
Wu MH, Chan AC, Tu LH. Role of lysine residue of islet amyloid polypeptide in fibril formation, membrane binding, and inhibitor binding. Biochimie 2020; 177:153-163. [PMID: 32860895 DOI: 10.1016/j.biochi.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.
Collapse
Affiliation(s)
- Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ai-Ci Chan
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
10
|
Chen Q, Zhou C, Shi W, Wang X, Xia P, Song M, Liu J, Zhu H, Zhang X, Wei S, Yu H. Mechanistic in silico modeling of bisphenols to predict estrogen and glucocorticoid disrupting potentials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138854. [PMID: 32570315 DOI: 10.1016/j.scitotenv.2020.138854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can act as agonists, antagonists or mixed agonists/antagonists toward estrogen receptor α (ERα) and glucocorticoid receptor (GR) in a tissue- and cell-specific manner. However, the activation/inhibition mechanism by which structurally different chemicals induce various types of disruption remain ambiguous. This unrevealed theory limited the in silico modeling of EDCs and the prioritization of potential EDCs for experimental testing. As a kind of chemical widely used in manufacture, bisphenols (BPs) have attracted great attentions on their potential endocrine disrupting effects. BPs used in this study exhibited pure agonistic, pure antagonistic or mixed agonistic/antagonistic activities toward ERα and/or GR. According to the mechanistic modeling, the pure agonistic and pure antagonistic activities were attributed to a single type of protein conformation induced by BPs-ERα and/or BPs-GR interactions, whereas the mixed agonistic/antagonistic activities were attributed to multiple conformations that concomitantly exist. After interacting with BPs, the active conformation recruits coactivator to induce agonistic activity and the blocked conformation inhibits coactivator to induce antagonistic activity, whereas the concomitantly-existing multiple conformations (active, blocked and competing conformations) recruit coactivator, recruit corepressor and/or inhibit coactivator to dually induce the agonistic and antagonistic activities. Therefore, the in silico modeling in this study can not only predict ERα and GR disrupting activities but also, especially, identify the potential mechanisms. This mechanistic study breaks the current bottleneck of computational toxicology and can be widely used to prioritize potential estrogen/glucocorticoid disruptor for experimental testing in both pre-clinic and clinic studies.
Collapse
Affiliation(s)
- Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Maoyong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hao Zhu
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Environmental Monitoring Center, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
11
|
Liao Q. Enhanced sampling and free energy calculations for protein simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:177-213. [PMID: 32145945 DOI: 10.1016/bs.pmbts.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulation is a powerful computational technique to study biomolecular systems, which complements experiments by providing insights into the structural dynamics relevant to biological functions at atomic scale. It can also be used to calculate the free energy landscapes of the conformational transitions to better understand the functions of the biomolecules. However, the sampling of biomolecular configurations is limited by the free energy barriers that need to be overcome, leading to considerable gaps between the timescales reached by MD simulation and those governing biological processes. To address this issue, many enhanced sampling methodologies have been developed to increase the sampling efficiency of molecular dynamics simulations and free energy calculations. Usually, enhanced sampling algorithms can be classified into methods based on collective variables (CV-based) and approaches which do not require predefined CVs (CV-free). In this chapter, the theoretical basis of free energy estimation is briefly reviewed first, followed by the reviews of the most common CV-based and CV-free methods including the presentation of some examples and recent developments. Finally, the combination of different enhanced sampling methods is discussed.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Zhang H, Gong Q, Zhang H, Chen C. FSATOOL: A useful tool to do the conformational sampling and trajectory analysis work for biomolecules. J Comput Chem 2020; 41:156-164. [PMID: 31603251 DOI: 10.1002/jcc.26083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Reliable conformational sampling and trajectory analysis are always important to the study of the folding or binding mechanisms of biomolecules. Generally, one has to prepare many complicated parameters and follow a lot of steps to obtain the final data. The whole process is too complicated to new users. In this article, we provide a convenient and user-friendly tool that is compatible to AMBER, called fast sampling and analysis tool (FSATOOL). FSATOOL has some useful features. First and the most important, the whole work is extremely simplified into two steps, one is the fast sampling procedure and the other is the trajectory analysis procedure. Second, it contains several powerful sampling methods for the simulation on graphics process unit, including our previous mixing replica exchange molecular dynamics method. The method combines the advantages of the biased and unbiased simulations. Finally, it extracts the dominant transition pathways automatically from the folding network by Markov state model. Users do not need to do the tedious intermediate steps by hand. To illustrate the usage of FSATOOL in practice, we perform one simulation for a RNA hairpin in explicit solvent. All the results are presented. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qiankun Gong
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
13
|
Lao Z, Chen Y, Tang Y, Wei G. Molecular Dynamics Simulations Reveal the Inhibitory Mechanism of Dopamine against Human Islet Amyloid Polypeptide (hIAPP) Aggregation and Its Destabilization Effect on hIAPP Protofibrils. ACS Chem Neurosci 2019; 10:4151-4159. [PMID: 31436406 DOI: 10.1021/acschemneuro.9b00393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aberrant self-assembly of human islet amyloid polypeptide (hIAPP) into toxic oligomers, protofibrils, and mature fibrils is associated with the pathogenesis of type 2 diabetes (T2D). Inhibition of hIAPP aggregation and destabilization of preformed hIAPP fibrils are considered as two major therapeutic strategies for treating T2D. Previous experimental studies reported that dopamine prevented the formation of hIAPP oligomers and fibrils. However, the underlying inhibitory mechanism at the atomic level remains elusive. Herein we investigated the conformational ensembles of hIAPP dimer with and without dopamine using replica-exchange molecular dynamics simulations. The simulations demonstrated that dopamine preferentially bound to R11, L12, F15, H18, F23, I26, L27, and Y37 residues, inhibited the formation of β-sheets in the amyloidogenic regions spanning residues 11RLANFLVH18, 22NFGAIL27, and 30TNVGSNT36, and resulted in more disordered hIAPP dimers, thus hindering the amyloid formation of hIAPP. Protonated and deprotonated dopamine molecules displayed distinct binding capabilities but bound to similar residue sites on hIAPP. Additional microsecond molecular dynamics simulations showed that dopamine mainly bound to the β1 and turn regions of hIAPP protofibril and destabilized the protofibril structure. This study not only revealed the molecular mechanism of dopamine toward the inhibition of hIAPP aggregation but also demonstrated the protofibril-destabilizing effects of dopamine, which may be helpful for the design of drug candidates to treat T2D.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
14
|
Kakinen A, Xing Y, Arachchi NH, Javed I, Feng L, Faridi A, Douek AM, Sun Y, Kaslin J, Davis TP, Higgins MJ, Ding F, Ke PC. Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. NANO LETTERS 2019; 19:6535-6546. [PMID: 31455083 PMCID: PMC6742555 DOI: 10.1021/acs.nanolett.9b02771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human amyloids and plaques uncovered post mortem are highly heterogeneous in structure and composition, yet literature concerning the heteroaggregation of amyloid proteins is extremely scarce. This knowledge deficiency is further exacerbated by the fact that peptide delivery is a major therapeutic strategy for targeting their full-length counterparts associated with the pathologies of a range of human diseases, including dementia and type 2 diabetes (T2D). Accordingly, here we examined the coaggregation of full-length human islet amyloid polypeptide (IAPP), a peptide associated with type 2 diabetes, with its primary and secondary amyloidogenic fragments 19-29 S20G and 8-20. Single-molecular aggregation dynamics was obtained by high-speed atomic force microscopy, augmented by transmission electron microscopy, X-ray diffraction, and super-resolution stimulated emission depletion microscopy. The coaggregation significantly prolonged the pause phase of fibril elongation, increasing its dwell time by 3-fold. Surprisingly, unidirectional elongation of mature fibrils, instead of protofilaments, was observed for the coaggregation, indicating a new form of tertiary protein aggregation unknown to existing theoretical models. Further in vivo zebrafish embryonic assay indicated improved survival and hatching, as well as decreased frequency and severity of developmental abnormalities for embryos treated with the heteroaggregates of IAPP with 19-29 S20G, but not with 8-20, compared to the control, indicating the therapeutic potential of 19-29 S20G against T2D.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Nuwan Hegoda Arachchi
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Lei Feng
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Physics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J. Higgins
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, NSW 2522, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Levine ZA, Teranishi K, Okada AK, Langen R, Shea JE. The Mitochondrial Peptide Humanin Targets but Does Not Denature Amyloid Oligomers in Type II Diabetes. J Am Chem Soc 2019; 141:14168-14179. [DOI: 10.1021/jacs.9b04995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | | | |
Collapse
|
16
|
Zhang H, Gong Q, Zhang H, Chen C. Combining the biased and unbiased sampling strategy into one convenient free energy calculation method. J Comput Chem 2019; 40:1806-1815. [PMID: 30942500 DOI: 10.1002/jcc.25834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022]
Abstract
Constructing a free energy landscape for a large molecule is difficult. One has to use either a high temperature or a strong driving force to enhance the sampling on the free energy barriers. In this work, we propose a mixed method that combines these two kinds of acceleration strategies into one simulation. First, it applies an adaptive biasing potential to some replicas of the molecule. These replicas are particularly accelerated in a collective variable space. Second, it places some unbiased and exchangeable replicas at various temperature levels. These replicas generate unbiased sampling data in the canonical ensemble. To improve the sampling efficiency, biased replicas transfer their state variables to the unbiased replicas after equilibrium by Monte Carlo trial moves. In comparison to previous integrated methods, it is more convenient for users. It does not need an initial reference biasing potential to guide the sampling of the molecule. And it is also unnecessary to insert many replicas for the requirement of passing the free energy barriers. The free energy calculation is accomplished in a single stage. It samples the data as fast as a biased simulation and it processes the data as simple as an unbiased simulation. The method provides a minimalist approach to the construction of the free energy landscape. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haomiao Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qiankun Gong
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
17
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Xu J, Zhang B, Gong G, Huang X, Du W. Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments. J Inorg Biochem 2019; 197:110721. [PMID: 31146152 DOI: 10.1016/j.jinorgbio.2019.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is synthesized by pancreatic β-cells and co-secreted with insulin. Misfolding and amyloidosis of hIAPP induce β-cell dysfunction in type II diabetes mellitus. Numerous small organic molecules and metal complexes act as inhibitors against amyloid-related diseases, justifying the need to explore the inhibitory mechanism of these compounds. In this work, three oxidovanadium complexes, namely, (NH4)[VO(O2)2(bipy)]·4H2O (1) (bipy = 2,2' bipyridine), bis(ethyl-maltolato, O,O)oxido-vanadium(IV) (2), and (bipyH2)H2[O{VO(O2)(bipy)}2]·5H2O (3), were synthesized and used to inhibit the aggregation of hIAPP and its fragments, namely, hIAPP19-37 and hIAPP20-29. Results revealed that shortening the peptide sequence decreased the aggregation capability of hIAPP fragments, and the oxidovanadium complexes inhibited the fibrillization of hIAPP better than its fragments. Interestingly, the binding of oxidovanadium complexes to hIAPP and its fragments presented a distinct thermodynamic behavior. Oxidovanadium complexes featured the disaggregation capability against hIAPP, better than against its fragments. These complexes also decreased the cytotoxicity caused by hIAPP and its fragments by reducing the production of oligomers. 3 may be a good hIAPP inhibitor based on its inhibition, disaggregation capability, and regulatory effect on peptide-induced cytotoxicity. Oxidovanadium complexes exhibit potential as metallodrugs against amyloidosis-related diseases.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Baohong Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
19
|
Analysis of multiply charged monomers and dimers of human islet amyloid polypeptide by collision-induced dissociation with electrospray ionization mass spectrometry. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Rawat A, Maity BK, Chandra B, Maiti S. Aggregation-induced conformation changes dictate islet amyloid polypeptide (IAPP) membrane affinity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1734-1740. [DOI: 10.1016/j.bbamem.2018.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
|
21
|
Moore SJ, Sonar K, Bharadwaj P, Deplazes E, Mancera RL. Characterisation of the Structure and Oligomerisation of Islet Amyloid Polypeptides (IAPP): A Review of Molecular Dynamics Simulation Studies. Molecules 2018; 23:E2142. [PMID: 30149632 PMCID: PMC6225196 DOI: 10.3390/molecules23092142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is a naturally occurring, intrinsically disordered protein whose abnormal aggregation into amyloid fibrils is a pathological feature in type 2 diabetes, and its cross-aggregation with amyloid beta has been linked to an increased risk of Alzheimer's disease. The soluble, oligomeric forms of hIAPP are the most toxic to β-cells in the pancreas. However, the structure of these oligomeric forms is difficult to characterise because of their intrinsic disorder and their tendency to rapidly aggregate into insoluble fibrils. Experimental studies of hIAPP have generally used non-physiological conditions to prevent aggregation, and they have been unable to describe its soluble monomeric and oligomeric structure at physiological conditions. Molecular dynamics (MD) simulations offer an alternative for the detailed characterisation of the monomeric structure of hIAPP and its aggregation in aqueous solution. This paper reviews the knowledge that has been gained by the use of MD simulations, and its relationship to experimental data for both hIAPP and rat IAPP. In particular, the influence of the choice of force field and water models, the choice of initial structure, and the configurational sampling method used, are discussed in detail. Characterisation of the solution structure of hIAPP and its mechanism of oligomerisation is important to understanding its cellular toxicity and its role in disease states, and may ultimately offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Sandra J Moore
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Krushna Sonar
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Prashant Bharadwaj
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, 270 Joondalup Drive, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
22
|
Ridgway Z, Zhang X, Wong AG, Abedini A, Schmidt AM, Raleigh DP. Analysis of the Role of the Conserved Disulfide in Amyloid Formation by Human Islet Amyloid Polypeptide in Homogeneous and Heterogeneous Environments. Biochemistry 2018; 57:3065-3074. [PMID: 29697253 DOI: 10.1021/acs.biochem.8b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is a hormone secreted from β-cells in the Islets of Langerhans in response to the same stimuli that lead to insulin secretion. hIAPP plays an adaptive role in glucose homeostasis but misfolds to form insoluble, fibrillar aggregates in type II diabetes that are associated with the disease. Along the misfolding pathway, hIAPP forms species that are toxic to β-cells, resulting in reduced β-cell mass. hIAPP contains a strictly conserved disulfide bond between residues 2 and 7, which forms a small loop at the N-terminus of the molecule. The loop is located outside of the cross β-core in all models of the hIAPP amyloid fibrils. Mutations in this region are rare, and the disulfide loop plays a role in receptor binding; however, the contribution of this region to the aggregation of hIAPP is not well understood. We define the role of the disulfide by analyzing a collection of analogues that remove the disulfide, by mutation of Cys to Ser, by reduction and modification of the Cys residues, or by deletion of the first seven residues. The cytotoxic properties of hIAPP are retained in the Cys to Ser disulfide-free mutant. Removal of the disulfide bond accelerates amyloid formation in all constructs, both in solution and in the presence of model membranes. Removal of the disulfide weakens the ability of hIAPP to induce leakage of vesicles consisting of POPS and POPC. Smaller effects are observed with vesicles that contain 40 mol % cholesterol, although N-terminal truncation still reduces the extent of leakage.
Collapse
Affiliation(s)
- Zachary Ridgway
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Xiaoxue Zhang
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Amy G Wong
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| | - Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine , New York University School of Medicine , New York , New York 10016 , United States
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , United States.,Laufer Center for Quantitative Biology , Stony Brook University , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
23
|
Quittot N, Sebastiao M, Al-Halifa S, Bourgault S. Kinetic and Conformational Insights into Islet Amyloid Polypeptide Self-Assembly Using a Biarsenical Fluorogenic Probe. Bioconjug Chem 2018; 29:517-527. [DOI: 10.1021/acs.bioconjchem.7b00827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Soultan Al-Halifa
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| |
Collapse
|
24
|
Maj M, Lomont JP, Rich KL, Alperstein AM, Zanni MT. Site-specific detection of protein secondary structure using 2D IR dihedral indexing: a proposed assembly mechanism of oligomeric hIAPP. Chem Sci 2018; 9:463-474. [PMID: 29619202 PMCID: PMC5868010 DOI: 10.1039/c7sc03789a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) aggregates into fibrils through oligomers that have been postulated to contain α-helices as well as β-sheets. We employ a site-specific isotope labeling strategy that is capable of detecting changes in dihedral angles when used in conjunction with 2D IR spectroscopy. The method is analogous to the chemical shift index used in NMR spectroscopy for assigning protein secondary structure. We introduce isotope labels at two neighbouring residues, which results in an increased intensity and positive frequency shift if those residues are α-helical versus a negative frequency shift in β-sheets and turns. The 2D IR dihedral index approach is demonstrated for hIAPP in micelles for which the polypeptide structure is known, using pairs of 13C18O isotope labels L12A13 and L16V17, along with single labeled control experiments. Applying the approach to aggregation experiments performed in buffer, we show that about 27-38% of hIAPP peptides adopt an α-helix secondary structure in the monomeric state at L12A13, prior to aggregation, but not at L16V17 residues. At L16V17, the kinetics are described solely by the monomer and fiber conformations, but at L12A13 the kinetics exhibit a third state that is created by an oligomeric intermediate. Control experiments performed with a single isotope label at A13 exhibit two-state kinetics, indicating that a previously unknown change in dihedral angle occurs at L12A13 as hIAPP transitions from the intermediate to fiber structures. We propose a mechanism for aggregation, in which helices seed oligomer formation via structures analogous to leucine rich repeat proteins.
Collapse
Affiliation(s)
- Michał Maj
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Justin P Lomont
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Kacie L Rich
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Ariel M Alperstein
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| | - Martin T Zanni
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , USA .
| |
Collapse
|
25
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Dorosh L, Stepanova M. Probing oligomerization of amyloid beta peptide in silico. MOLECULAR BIOSYSTEMS 2017; 13:165-182. [PMID: 27844078 DOI: 10.1039/c6mb00441e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aggregation of amyloid β (Aβ) peptide is implicated in fatal Alzheimer's disease, for which no cure is available. Understanding the mechanisms responsible for this aggregation is required in order for therapies to be developed. In an effort to better understand the molecular mechanisms involved in spontaneous aggregation of Aβ peptide, extensive molecular dynamics simulations are reported, and the results are analyzed through a combination of structural biology tools and a novel essential collective dynamics method. Several model systems composed of ten or twelve Aβ17-42 chains in water are investigated, and the influence of metal ions is probed. The results suggest that Aβ monomers tend to aggregate into stable globular-like oligomers with 13-23% of β-sheet content. Two stages of oligomer formation have been identified: quick collapse within the first 40 ns of the simulation, characterized by a decrease in inter-chain separation and build-up of β-sheets, and the subsequent slow relaxation of the oligomer structure. The resulting oligomers comprise a stable, coherently moving sub-aggregate of 6-9 strongly inter-correlated chains. Cu2+ and Fe2+ ions have been found to develop coordination bonds with carboxylate groups of E22, D23 and A42, which remain stable during 200 ns simulations. The presence of Fe2+, and particularly Cu2+ ions, in negatively charged cavities has been found to cause significant changes in the structure and dynamics of the oligomers. The results indicate, in particular, that formation of non-fibrillar oligomers might be involved in early template-free aggregation of Aβ17-42 monomers, with charged species such as Cu2+ or Fe2+ ions playing an important role.
Collapse
Affiliation(s)
- L Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada
| | - M Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada and Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO, USA
| |
Collapse
|
27
|
Tracking the amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy. J Struct Biol 2017; 199:140-152. [PMID: 28602716 DOI: 10.1016/j.jsb.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/19/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is the major protein component of extracellular amyloid deposits, located in the islets of Langerhans, a hallmark of type II diabetes. The underlying mechanisms of IAPP aggregation have not yet been clearly defined, although the highly amyloidogenic sequence of the protein has been extensively studied. Several segments have been highlighted as aggregation-prone regions (APRs), with much attention focused on the central 8-17 and 20-29 stretches. In this work, we employ micro-Raman spectroscopy to identify specific regions that are contributing to or are excluded from the amyloidogenic core of IAPP amyloid fibrils. Our results demonstrate that both the N-terminal region containing a conserved disulfide bond between Cys residues at positions 2 and 7, and the C-terminal region containing the only Tyr residue are excluded from the amyloid core. Finally, by performing detailed aggregation assays and molecular dynamics simulations on a number of IAPP variants, we demonstrate that point mutations within the central APRs contribute to the reduction of the overall amyloidogenic potential of the protein but do not completely abolish the formation of IAPP amyloid fibrils.
Collapse
|
28
|
Bouzakraoui S, Mousseau N. Structural and thermodynamical properties of early human amylin oligomers using replica exchange molecular dynamics: mutation effect of three key residues F15, H18 and F23. Phys Chem Chem Phys 2017; 19:31290-31299. [DOI: 10.1039/c7cp06463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A schematic representation of a possible oligomerization mechanism of hIAPP. β-Hairpins are proposed to self-assemble into early ordered oligomers by side-to-side association.
Collapse
Affiliation(s)
- S. Bouzakraoui
- Laboratoire d'ingénierie des Matériaux et d'Environnement: Modélisation et Application
- Faculté des Sciences
- Université Ibn Tofail
- Kénitra
- Morocco
| | - N. Mousseau
- Département de Physique and Groupe de Recherche sur les Protéines Membranaires (GEPROM)
- Université de Montréal
- Montréal
- Canada
| |
Collapse
|
29
|
Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Sci Rep 2016; 6:33076. [PMID: 27620620 PMCID: PMC5020610 DOI: 10.1038/srep33076] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Small oligomers formed early along human islet amyloid polypeptide (hIAPP) aggregation is responsible for the cell death in Type II diabetes. The epigallocatechin gallate (EGCG), a green tea extract, was found to inhibit hIAPP fibrillation. However, the inhibition mechanism and the conformational distribution of the smallest hIAPP oligomer – dimer are mostly unknown. Herein, we performed extensive replica exchange molecular dynamic simulations on hIAPP dimer with and without EGCG molecules. Extended hIAPP dimer conformations, with a collision cross section value similar to that observed by ion mobility-mass spectrometry, were observed in our simulations. Notably, these dimers adopt a three-stranded antiparallel β-sheet and contain the previously reported β-hairpin amyloidogenic precursor. We find that EGCG binding strongly blocks both the inter-peptide hydrophobic and aromatic-stacking interactions responsible for inter-peptide β-sheet formation and intra-peptide interaction crucial for β-hairpin formation, thus abolishes the three-stranded β-sheet structures and leads to the formation of coil-rich conformations. Hydrophobic, aromatic-stacking, cation-π and hydrogen-bonding interactions jointly contribute to the EGCG-induced conformational shift. This study provides, on atomic level, the conformational ensemble of hIAPP dimer and the molecular mechanism by which EGCG inhibits hIAPP aggregation.
Collapse
|
30
|
Chua KP, Chew LY, Mu Y. Replica exchange molecular dynamics simulation of cross-fibrillation of IAPP and PrP106-126. Proteins 2016; 84:1134-46. [DOI: 10.1002/prot.25060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/14/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Khi Pin Chua
- Interdisciplinary Graduate School; Nanyang Technological University; 637551 Singapore
- Complexity Institute, Nanyang Technological University; 637551 Singapore
| | - Lock Yue Chew
- Interdisciplinary Graduate School; Nanyang Technological University; 637551 Singapore
- Complexity Institute, Nanyang Technological University; 637551 Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences; Nanyang Technological University; 637551 Singapore
| | - Yuguang Mu
- School of Biological Sciences; Nanyang Technological University; 637551 Singapore
| |
Collapse
|
31
|
Kim B, Do TD, Hayden EY, Teplow DB, Bowers MT, Shea JE. Aggregation of Chameleon Peptides: Implications of α-Helicity in Fibril Formation. J Phys Chem B 2016; 120:5874-83. [PMID: 27001160 DOI: 10.1021/acs.jpcb.6b00830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the relationship between the inherent secondary structure and aggregation propensity of peptides containing chameleon sequences (i.e., sequences that can adopt either α or β structure depending on context) using a combination of replica exchange molecular dynamics simulations, ion-mobility mass spectrometry, circular dichroism, and transmission electron microscopy. We focus on an eight-residue long chameleon sequence that can adopt an α-helical structure in the context of the iron-binding protein from Bacillus anthracis (PDB id 1JIG ) and a β-strand in the context of the baculovirus P35 protein (PDB id 1P35 ). We show that the isolated chameleon sequence is intrinsically disordered, interconverting between α-helical and β-rich conformations. The inherent conformational plasticity of the sequence can be constrained by addition of flanking residues with a given secondary structure propensity. Intriguingly, we show that the chameleon sequence with helical flanking residues aggregates rapidly into fibrils, whereas the chameleon sequence with flanking residues that favor β-conformations has weak aggregation propensity. This work sheds new insights into the possible role of α-helical intermediates in fibril formation.
Collapse
Affiliation(s)
| | | | - Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Brain Research Institute and Molecular Biology Institute, University of California , 635 Charles Young Drive South, Los Angeles, California 90095, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, and Brain Research Institute and Molecular Biology Institute, University of California , 635 Charles Young Drive South, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
32
|
Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016; 17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
33
|
Carballo-Pacheco M, Strodel B. Advances in the Simulation of Protein Aggregation at the Atomistic Scale. J Phys Chem B 2016; 120:2991-9. [PMID: 26965454 DOI: 10.1021/acs.jpcb.6b00059] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation into highly structured amyloid fibrils is associated with various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Amyloids can also have normal biological functions and, in the future, could be used as the basis for novel nanoscale materials. However, a full understanding of the physicochemical forces that drive protein aggregation is still lacking. Such understanding is crucial for the development of drugs that can effectively inhibit aberrant amyloid aggregation and for the directed design of functional amyloids. Atomistic simulations can help understand protein aggregation. In particular, atomistic simulations can be used to study the initial formation of toxic oligomers which are hard to characterize experimentally and to understand the difference in aggregation behavior between different amyloidogenic peptides. Here, we review the latest atomistic simulations of protein aggregation, concentrating on amyloidogenic protein fragments, and provide an outlook for the future in this field.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,AICES Graduate School, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Nedumpully-Govindan P, Gurzov EN, Chen P, Pilkington EH, Stanley WJ, Litwak SA, Davis TP, Ke PC, Ding F. Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Phys Chem Chem Phys 2016; 18:94-100. [PMID: 26625841 PMCID: PMC4684718 DOI: 10.1039/c5cp05924k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or amylin) aggregation is directly associated with pancreatic β-cell death and subsequent insulin deficiency in type 2 diabetes (T2D). Since no cure is currently available for T2D, it is of great benefit to devise new anti-aggregation molecules, which protect β-cells against hIAPP aggregation-induced toxicity. Engineered nanoparticles have been recently exploited as anti-aggregation nanomedicines. In this work, we studied graphene oxide (GO) nanosheets for their potential for hIAPP aggregation inhibition by combining computational modeling, biophysical characterization and cell toxicity measurements. Using discrete molecular dynamics (DMD) simulations and in vitro studies, we showed that GO exhibited an inhibitory effect on hIAPP aggregation. DMD simulations indicated that the strong binding of hIAPP to GO nanosheets was driven by hydrogen bonding and aromatic stacking and that the strong peptide-GO binding efficiently inhibited hIAPP self-association and aggregation on the nanosheet surface. Secondary structural changes of hIAPP upon GO binding derived from DMD simulations were consistent with circular dichroism (CD) spectroscopy measurements. Transmission electron microscopy (TEM) images confirmed the reduction of hIAPP aggregation in the presence of GO. Furthermore, we carried out a cell toxicity assay and found that these nanosheets protected insulin-secreting NIT-1 pancreatic β-cells against hIAPP-induced toxicity. Our multidisciplinary study suggests that GO nanosheets have the potential to be utilized as an anti-aggregation nanomedicine itself in addition to a biosensor or delivery vehicle for the mitigation of T2D progression.
Collapse
Affiliation(s)
| | - Esteban N. Gurzov
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Pengyu Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 28109, USA
| | - Emily H. Pilkington
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - William J. Stanley
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Sara A. Litwak
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
35
|
Qiao Q, Qi R, Wei G, Huang X. Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Phys Chem Chem Phys 2016; 18:29892-29904. [DOI: 10.1039/c6cp05590g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dimerization pathways of the human islet amyloid polypeptide fragment are elucidated from extensive molecular dynamics simulations.
Collapse
Affiliation(s)
- Qin Qiao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- University of Science and Technology of China
- Hefei
- China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Xuhui Huang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Division of Biomedical Engineering
| |
Collapse
|
36
|
Shea JE, Levine ZA. Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations. Methods Mol Biol 2016; 1345:225-250. [PMID: 26453216 DOI: 10.1007/978-1-4939-2978-8_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The simulation of protein aggregation poses several computational challenges due to the disparate time and lengths scales that are involved. This chapter focuses on the use of atomistically detailed simulations to probe the initial steps of aggregation, with an emphasis on the Tau peptide as a model system, run under a replica exchange molecular dynamics protocol.
Collapse
Affiliation(s)
- Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Zachary A Levine
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
37
|
Lopes DHJ, Attar A, Nair G, Hayden EY, Du Z, McDaniel K, Dutt S, Bandmann H, Bravo-Rodriguez K, Mittal S, Klärner FG, Wang C, Sanchez-Garcia E, Schrader T, Bitan G. Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem Biol 2015; 10:1555-69. [PMID: 25844890 DOI: 10.1021/acschembio.5b00146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In type-2 diabetes (T2D), islet amyloid polypeptide (IAPP) self-associates into toxic assemblies causing islet β-cell death. Therefore, preventing IAPP toxicity is a promising therapeutic strategy for T2D. The molecular tweezer CLR01 is a supramolecular tool for selective complexation of K residues in (poly)peptides. Surprisingly, it inhibits IAPP aggregation at substoichiometric concentrations even though IAPP has only one K residue at position 1, whereas efficient inhibition of IAPP toxicity requires excess CLR01. The basis for this peculiar behavior is not clear. Here, a combination of biochemical, biophysical, spectroscopic, and computational methods reveals a detailed mechanistic picture of the unique dual inhibition mechanism for CLR01. At low concentrations, CLR01 binds to K1, presumably nucleating nonamyloidogenic, yet toxic, structures, whereas excess CLR01 binds also to R11, leading to nontoxic structures. Encouragingly, the CLR01 concentrations needed for inhibition of IAPP toxicity are safe in vivo, supporting its development toward disease-modifying therapy for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Zhenming Du
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Som Dutt
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Heinz Bandmann
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Sumit Mittal
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Chunyu Wang
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
38
|
Louros NN, Tsiolaki PL, Zompra AA, Pappa EV, Magafa V, Pairas G, Cordopatis P, Cheimonidou C, Trougakos IP, Iconomidou VA, Hamodrakas SJ. Structural studies and cytotoxicity assays of “aggregation-prone” IAPP8-16and its non-amyloidogenic variants suggest its important role in fibrillogenesis and cytotoxicity of human amylin. Biopolymers 2015; 104:196-205. [DOI: 10.1002/bip.22650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Nikolaos N. Louros
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Paraskevi L. Tsiolaki
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | | | - Eleni V. Pappa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Vassiliki Magafa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - George Pairas
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Paul Cordopatis
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Christina Cheimonidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Vassiliki A. Iconomidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Stavros J. Hamodrakas
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| |
Collapse
|
39
|
Jo S, Chipot C, Roux B. Efficient Determination of Relative Entropy Using Combined Temperature and Hamiltonian Replica-Exchange Molecular Dynamics. J Chem Theory Comput 2015; 11:2234-44. [DOI: 10.1021/ct501034w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sunhwan Jo
- Argonne
Leadership Computing Facility, Argonne National Laboratory, 9700 South
Cass Avenue, Building 240, Lemont, 60439 Illinois, United States
| | - Christophe Chipot
- Laboratoire
International Associé Centre National de la Recherche Scientifique
and University of Illinois at Urbana−Champaign, UMR 7565, Université de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Research and Technology, University of Illinois at Urbana−Champaign, 405 North Mathews, Urbana, Illinois 61801, United States
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, Gordon Center for Integrative
Science, University of Chicago, Chicago, Illinois 60637, United States
- Center
for
Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building
440, Argonne, Illinois 60439, United States
| |
Collapse
|
40
|
Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci Rep 2015; 5:8240. [PMID: 25649462 PMCID: PMC4316164 DOI: 10.1038/srep08240] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
While islet amyloid polypeptide (IAPP) aggregation is associated with β-cell death in type-II diabetes (T2D), environmental elements of β-cell granules — e.g. high concentrations of insulin and Zn2+ — inhibit IAPP aggregation in healthy individuals. The inhibition by insulin is experimentally known, but the role of Zn2+ is controversial as both correlations and anti-correlations at the population level are observed between T2D risk and the activity of a β-cell specific zinc ion transporter, ZnT8. Since Zn2+ concentration determines insulin oligomer equilibrium, we computationally investigated interactions of IAPP with different insulin oligomers and compared with IAPP homodimer formation. We found that IAPP binding with insulin oligomers competes with the formation of both higher-molecular-weight insulin oligomers and IAPP homodimers. Therefore, zinc deficiency due to loss-of-function ZnT8 mutations shifts insulin oligomer equilibrium toward zinc-free monomers and dimers, which bind IAPP monomers more efficiently compared to zinc-bound hexamers. The hetero-molecular complex formation prevents IAPP from self-association and subsequent aggregation, reducing T2D risk.
Collapse
|
41
|
Free energy simulations of amylin I26P mutation in a lipid bilayer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 44:37-47. [DOI: 10.1007/s00249-014-0999-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
42
|
Eugene C, Laghaei R, Mousseau N. Early oligomerization stages for the non-amyloid component of α-synuclein amyloid. J Chem Phys 2014; 141:135103. [DOI: 10.1063/1.4896381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cindie Eugene
- Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Rozita Laghaei
- Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
- Department of Chemistry, University of Pittsburgh, 319 Eberly Hall, Pittsburgh, Pennsylvania 15260, USA
| | - Normand Mousseau
- Department of Chemistry, University of Pittsburgh, 319 Eberly Hall, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
43
|
Lee J, Miller BT, Damjanović A, Brooks BR. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange. J Chem Theory Comput 2014; 10:2738-2750. [PMID: 25061443 PMCID: PMC4095908 DOI: 10.1021/ct500175m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 12/21/2022]
Abstract
We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values.
Collapse
Affiliation(s)
- Juyong Lee
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Benjamin T Miller
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ana Damjanović
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States ; Department of Biophysics, Johns Hopkins University , Baltimore, Maryland, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
44
|
Zhang M, Hu R, Liang G, Chang Y, Sun Y, Peng Z, Zheng J. Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. J Phys Chem B 2014; 118:7026-36. [DOI: 10.1021/jp5022246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhenmeng Peng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
45
|
Morriss-Andrews A, Shea JE. Simulations of Protein Aggregation: Insights from Atomistic and Coarse-Grained Models. J Phys Chem Lett 2014; 5:1899-908. [PMID: 26273871 DOI: 10.1021/jz5006847] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This Perspective highlights recent computational approaches to protein aggregation, from coarse-grained models to atomistic simulations, using the islet amyloid polypeptide (IAPP) as a case study. We review salient open questions where simulations can make an impact, discuss the successes and challenges met by simulations, and explore new directions.
Collapse
Affiliation(s)
- Alex Morriss-Andrews
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry and Department of Physics, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
46
|
Li Q, Liu L, Zhang S, Xu M, Wang X, Wang C, Besenbacher F, Dong M. Modulating aβ33-42 peptide assembly by graphene oxide. Chemistry 2014; 20:7236-40. [PMID: 24838837 DOI: 10.1002/chem.201402022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Graphene oxide (GO) is utilized as the modulator to tune the formation and development of amyloid fibrils (Aβ33-42 ). Atomic force microscopy temporal evolution measurements reveal that the initial binding between the peptide monomer and the large available surface of the GO sheets can redirect the assembly pathway of amyloid beta. The results support the possibility to develop graphene-based materials to inhibit amyloidosis.
Collapse
Affiliation(s)
- Qiang Li
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark), Fax: (+45) 8942-3690
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hu R, Zhang M, Patel K, Wang Q, Chang Y, Gong X, Zhang G, Zheng J. Cross-sequence interactions between human and rat islet amyloid polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5193-5201. [PMID: 24754490 DOI: 10.1021/la500632d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) can assemble into toxic oligomers and fibrils, which are associated with cell degeneration and the pathogenesis of type 2 diabetes. Cross-interaction of hIAPP with rat IAPP (rIAPP)--a non-amyloidogenic peptide with high sequence similarity to hIAPP--might influence the aggregation and toxicity of hIAPP. However, the exact role of rIAPP in hIAPP aggregation and toxicity still remains unclear. In this work, we investigated the effect of cross-sequence interactions between full-length hIAPP(1-37) and rIAPP(1-37) on hybrid amyloid structures, aggregation kinetics, and cell toxicity using combined computational and experimental approaches. Experimental results indicate a contrasting role of rIAPP in hIAPP aggregation, in which rIAPP initially inhibits the early aggregation and nuclei formation of hIAPP, but hIAPP seeds can also recruit both hIAPP and rIAPP to form more hybrid fibrils, thus promoting amyloid fibrillation ultimately. The coincubation of hIAPP and rIAPP also decreases cell viability, presumably due to the formation of more toxic hybrid oligomers at the prolonged lag phase. Comparative MD simulations confirm that the cross-sequence interactions between hIAPP and rIAPP stabilize β-sheet structure and thus likely promote their fibrillization. This work provides valuable insights into a critical role of cross-amyloid interactions in protein aggregation.
Collapse
Affiliation(s)
- Rundong Hu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ning L, Guo J, Bai Q, Jin N, Liu H, Yao X. Structural diversity and initial oligomerization of PrP106-126 studied by replica-exchange and conventional molecular dynamics simulations. PLoS One 2014; 9:e87266. [PMID: 24586266 PMCID: PMC3929351 DOI: 10.1371/journal.pone.0087266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/24/2013] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are marked by cerebral accumulation of the abnormal isoform of the prion protein. A fragment of prion protein composed of residues 106–126 (PrP106–126) exhibits similar properties to full length prion and plays a key role in the conformational conversion from cellular prion to its pathogenic pattern. Soluble oligomers of PrP106–126 have been proposed to be responsible for neurotoxicity. However, the monomeric conformational space and initial oligomerization of PrP106–126 are still obscure, which are very important for understanding the conformational conversion of PrP106–126. In this study, replica exchange molecular dynamics simulations were performed to investigate monomeric and dimeric states of PrP106–126 in implicit solvent. The structural diversity of PrP106–126 was observed and this peptide did not acquire stable structure. The dimeric PrP106–126 also displayed structural diversity and hydrophobic interaction drove the dimerization. To further study initial oligomerization of PrP106–126, 1 µs conventional molecular dynamics simulations of trimer and tetramer formation were carried out in implicit solvent. We have observed the spontaneous formation of several basic oligomers and stable oligomers with high β-sheet contents were sampled in the simulations of trimer and tetramer formation. The β-hairpin formed in hydrophobic tail of PrP106–126 with residues 118–120 in turn may stabilize these oligomers and seed the formation oligomers. This study can provide insight into the detailed information about the structure of PrP106–126 and the dynamics of aggregation of monomeric PrP106–126 into oligomers in atomic level.
Collapse
Affiliation(s)
- Lulu Ning
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Jingjing Guo
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Huanxiang Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
- * E-mail: (HL); (XY)
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Lab for Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- * E-mail: (HL); (XY)
| |
Collapse
|
49
|
Qi R, Luo Y, Ma B, Nussinov R, Wei G. Conformational distribution and α-helix to β-sheet transition of human amylin fragment dimer. Biomacromolecules 2014; 15:122-31. [PMID: 24313776 PMCID: PMC6429924 DOI: 10.1021/bm401406e] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experiments suggested that the fibrillation of the 11-25 fragment (hIAPP(11-25)) of human islet amyloid polypeptide (hIAPP or amylin) involves the formation of transient α-helical intermediates, followed by conversion to β-sheet-rich structure. However, atomic details of α-helical intermediates and the transition mechanism are mostly unknown. We investigated the structural properties of the monomer and dimer in atomistic detail by replica exchange molecular dynamics (REMD) simulations. Transient α-helical monomers and dimers were both observed in the REMD trajectories. Our calculated H(α) chemical shifts based on the monomer REMD run are in agreement with the solution-state NMR experimental observations. Multiple 300 ns MD simulations at 310 K show that α-helix-to-β-sheet transition follows two mechanisms: the first involved direct transition of the random coil part of the helical conformation into antiparallel β-sheet, and in the second, the α-helical conformation unfolded and converted into antiparallel β-sheet. In both mechanisms, the α-helix-to-β-sheet transition occurred via random coil, and the transition was accompanied by an increase of interpeptide contacts. In addition, our REMD simulations revealed different temperature dependencies of helical and β-structures. Comparison with experimental data suggests that the propensity for hIAPP(11-25) to form α-helices and amyloid structures is concentration- and temperature-dependent.
Collapse
Affiliation(s)
- Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai, China
| | | | | | | | | |
Collapse
|
50
|
Qiao Q, Bowman GR, Huang X. Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation. J Am Chem Soc 2013; 135:16092-101. [PMID: 24021023 DOI: 10.1021/ja403147m] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amyloid fibril deposits of the intrinsically disordered hIAPP peptide are found in 95% of type II diabetes patients, and the aggregation of this peptide is suggested to induce apoptotic cell-death in insulin-producing β-cells. Understanding the structure and dynamics of the hIAPP monomer in solution is thus important for understanding the nucleation of aggregation and the formation of oligomers. In this study, we identify the metastable conformational states of the hIAPP monomer and the dynamics of transitioning between them using Markov state models constructed from extensive molecular dynamics simulations. We show that the overall structure of the hIAPP peptide is random coil-like and lacks a dominant folded structure. Despite this fact, our model reveals a large number of reasonably well-populated metastable conformational states (or local free energy minima) having populations of a few percent or less. The time scales for transitioning between these states range from several microseconds to milliseconds. In contrast to folded proteins, there is no kinetic hub. More strikingly, a few states contain significant amounts of β-hairpin secondary structure and extended hydrophobic surfaces that are exposed to the solvent. We propose that these states may facilitate the nucleation of hIAPP aggregation through a significant component of the conformational selection mechanism, because they may increase their populations upon aggregation by promoting hydrophobic interactions and at the same time provide a flat geometry to seed the ordered β-strand packing of the fibrils.
Collapse
Affiliation(s)
- Qin Qiao
- Bioengineering Graduate Program, Division of Biomedical Engineering, ‡Department of Chemistry, §Center of Systems Biology and Human Health, School of Science and Institute for Advance Study, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|