1
|
Cheng KJ, Shastry S, Campolargo JD, Hallock MJ, Pogorelov TV. Charge, Hydrophobicity, and Lipid Type Drive Antimicrobial Peptides' Unique Perturbation Ensembles. Biochemistry 2025; 64:1484-1500. [PMID: 40105792 DOI: 10.1021/acs.biochem.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to the escalating public health threat caused by multidrug-resistant bacteria. Although ongoing research efforts have established AMP's role in membrane permeabilization and leakage, the precise mechanisms driving these disruption patterns remain unclear. We leverage molecular dynamics (MD) simulations enhanced by membrane mimetic (HMMM) to systematically investigate how the physiochemical properties of magainin (+3) and pexiganan (+9) affect their localization, insertion, curvature perturbation, and membrane binding ensemble. Building on existing microbiology, NMR, circular dichroism, and fluorescence data, our analysis reveals that the lipid makeup is a key determinant in the binding dynamics and structural conformation of AMPs. We find that phospholipid type is crucial for peptide localization, demonstrated through magainin's predominant interaction with lipid tails and pexiganan's with polar headgroups in POPC/POPS membranes. The membrane curvature changes induced by pexiganan relative to magainin suggest that AMPs with larger charges have more potential in modulating bilayer bending. These insights advance our understanding of AMP-membrane interactions at the molecular level, offering guidance for the design of targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Kevin J Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shashank Shastry
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juan David Campolargo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael J Hallock
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Hasdemir HS, Pozzi N, Tajkhorshid E. Atomistic characterization of β2-glycoprotein I domain V interaction with anionic membranes. J Thromb Haemost 2024; 22:3277-3289. [PMID: 39047943 PMCID: PMC11992691 DOI: 10.1016/j.jtha.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Interaction of β2-glycoprotein I (β2GPI) with anionic membranes is crucial in antiphospholipid syndrome (APS), implicating the role of its membrane-binding domain, domain V (DV). The mechanism of DV binding to anionic lipids is not fully understood. OBJECTIVES This study aimed to elucidate the molecular details of β2GPI DV binding to anionic membranes. METHODS We utilized molecular dynamics simulations to investigate the structural basis of anionic lipid recognition by DV. To corroborate the membrane-binding mode identified in the highly mobile membrane mimetic simulations, we conducted additional simulations using a full membrane model. RESULTS The study identified critical regions in DV, namely the lysine-rich loop and the hydrophobic loop, which are essential for membrane association via electrostatic and hydrophobic interactions, respectively. A novel lysine pair contributing to membrane binding was also discovered, providing new insights into β2GPI's membrane interaction. Simulations revealed 2 distinct binding modes of DV to the membrane, with mode 1 characterized by the insertion of the hydrophobic loop into the lipid bilayer, suggesting a dominant mechanism for membrane association. This interaction is pivotal for the pathogenesis of APS, as it facilitates the recognition of β2GPI by antiphospholipid antibodies. CONCLUSION The study advances our understanding of the molecular interactions between β2GPI's DV and anionic membranes, which are crucial for APS pathogenesis. It highlights the importance of specific regions in DV for membrane binding and reveals a predominant binding mode. These findings have significant implications for APS diagnostics and therapeutics, offering a deeper insight into the molecular basis of the syndrome.
Collapse
Affiliation(s)
- Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA. https://www.twitter.com/LabPozzi
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
3
|
Ohkubo YZ, Radulovic PW, Kahira AN, Madsen JJ. Membrane binding and lipid-protein interaction of the C2 domain from coagulation factor V. Curr Res Struct Biol 2024; 7:100149. [PMID: 38766652 PMCID: PMC11098723 DOI: 10.1016/j.crstbi.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Anchoring of coagulation factors to anionic regions of the membrane involves the C2 domain as a key player. The rate of enzymatic reactions of the coagulation factors is increased by several orders of magnitude upon membrane binding. However, the precise mechanisms behind the rate acceleration remain unclear, primarily because of a lack of understanding of the conformational dynamics of the C2-containing factors and corresponding complexes. We elucidate the membrane-bound form of the C2 domain from human coagulation factor V (FV-C2) by characterizing its membrane binding the specific lipid-protein interactions. Employing all-atom molecular dynamics simulations and leveraging the highly mobile membrane-mimetic (HMMM) model, we observed spontaneous binding of FV-C2 to a phosphatidylserine (PS)-containing membrane within 2-25 ns across twelve independent simulations. FV-C2 interacted with the membrane through three loops (spikes 1-3), achieving a converged, stable orientation. Multiple HMMM trajectories of the spontaneous membrane binding provided extensive sampling and ample data to examine the membrane-induced effects on the conformational dynamics of C2 as well as specific lipid-protein interactions. Despite existing crystal structures representing presumed "open" and "closed" states of FV-C2, our results revealed a continuous distribution of structures between these states, with the most populated structures differing from both "open" and "closed" states observed in crystal environments. Lastly, we characterized a putative PS-specific binding site formed by K23, Q48, and S78 located in the groove enclosed by spikes 1-3 (PS-specificity pocket), suggesting a different orientation of a bound headgroup moiety compared to previous proposals based upon analysis of static crystal structures.
Collapse
Affiliation(s)
- Y. Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Peter W. Radulovic
- Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Albert N. Kahira
- Graduate Programs, School of Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Hasdemir HS, Pozzi N, Tajkhorshid E. Atomistic Characterization of Beta-2-Glycoprotein I Domain V Interaction with Anionic Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585743. [PMID: 38562685 PMCID: PMC10983932 DOI: 10.1101/2024.03.19.585743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Interaction of beta-2-glycoprotein I ( β 2 GPI) with anionic membranes is crucial in antiphospholipid syndrome (APS), implicating the role of it's membrane bind-ing domain, Domain V (DV). The mechanism of DV binding to anionic lipids is not fully understood. Objectives This study aims to elucidate the mechanism by which DV of β 2 GPI binds to anionic membranes. Methods We utilized molecular dynamics (MD) simulations to investigate the struc-tural basis of anionic lipid recognition by DV. To corroborate the membrane-binding mode identified in the HMMM simulations, we conducted additional simulations using a full mem-brane model. Results The study identified critical regions in DV, namely the lysine-rich loop and the hydrophobic loop, essential for membrane association via electrostatic and hydrophobic interactions, respectively. A novel lysine pair contributing to membrane binding was also discovered, providing new insights into β 2 GPI's membrane interaction. Simulations revealed two distinct binding modes of DV to the membrane, with mode 1 characterized by the insertion of the hydrophobic loop into the lipid bilayer, suggesting a dominant mechanism for membrane association. This interaction is pivotal for the pathogenesis of APS, as it facilitates the recognition of β 2 GPI by antiphospholipid antibodies. Conclusion The study advances our understanding of the molecular interactions be-tween β 2 GPI's DV and anionic membranes, crucial for APS pathogenesis. It highlights the importance of specific regions in DV for membrane binding and reveals a predominant bind-ing mode. These findings have significant implications for APS diagnostics and therapeutics, offering a deeper insight into the molecular basis of the syndrome.
Collapse
|
5
|
Zhang Y, Soubias O, Pant S, Heinrich F, Vogel A, Li J, Li Y, Clifton LA, Daum S, Bacia K, Huster D, Randazzo PA, Lösche M, Tajkhorshid E, Byrd RA. Myr-Arf1 conformational flexibility at the membrane surface sheds light on the interactions with ArfGAP ASAP1. Nat Commun 2023; 14:7570. [PMID: 37989735 PMCID: PMC10663523 DOI: 10.1038/s41467-023-43008-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
ADP-ribosylation factor 1 (Arf1) interacts with multiple cellular partners and membranes to regulate intracellular traffic, organelle structure and actin dynamics. Defining the dynamic conformational landscape of Arf1 in its active form, when bound to the membrane, is of high functional relevance and key to understanding how Arf1 can alter diverse cellular processes. Through concerted application of nuclear magnetic resonance (NMR), neutron reflectometry (NR) and molecular dynamics (MD) simulations, we show that, while Arf1 is anchored to the membrane through its N-terminal myristoylated amphipathic helix, the G domain explores a large conformational space, existing in a dynamic equilibrium between membrane-associated and membrane-distal conformations. These configurational dynamics expose different interfaces for interaction with effectors. Interaction with the Pleckstrin homology domain of ASAP1, an Arf-GTPase activating protein (ArfGAP), restricts motions of the G domain to lock it in what seems to be a conformation exposing functionally relevant regions.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Ring Therapeutics, Inc., Cambridge, MA, USA
| | - Olivier Soubias
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Loxo Oncology at Lilly, Louisville, CO, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- NIST Center for Neutron Research, Gaithersburg, MD, USA
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Yifei Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Vonsun Pharmatech Co., Ltd., Suzhou, China
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Sebastian Daum
- Institute for Chemistry, Department of Biophysical Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Kirsten Bacia
- Institute for Chemistry, Department of Biophysical Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- NIST Center for Neutron Research, Gaithersburg, MD, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
6
|
Gorgun D, Lihan M, Kapoor K, Tajkhorshid E. Binding mode of SARS-CoV-2 fusion peptide to human cellular membrane. Biophys J 2021; 120:2914-2926. [PMID: 33675757 PMCID: PMC7929786 DOI: 10.1016/j.bpj.2021.02.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Infection of human cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics simulations that take advantage of the highly mobile membrane mimetic model to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas, each for 300 ns. In 73% of the simulations, the FP reaches a stable, membrane-bound configuration, in which the peptide deeply penetrated into the membrane. Clustering of the results reveals three major membrane-binding modes (binding modes 1-3), in which binding mode 1 populates over half of the data points. Taking into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, the significant depth of penetration of the whole peptide, and the dense population of the respective cluster, we propose that the most deeply inserted membrane-bound form (binding mode 1) represents more closely the biologically relevant form. Analysis of FP-lipid interactions shows the involvement of specific residues, previously described as the "fusion-active core residues," in membrane binding. Taken together, the results shed light on a key step involved in SARS-CoV2 infection, with potential implications in designing novel inhibitors.
Collapse
Affiliation(s)
- Defne Gorgun
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Muyun Lihan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
7
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Soubias O, Pant S, Heinrich F, Zhang Y, Roy NS, Li J, Jian X, Yohe ME, Randazzo PA, Lösche M, Tajkhorshid E, Byrd RA. Membrane surface recognition by the ASAP1 PH domain and consequences for interactions with the small GTPase Arf1. SCIENCE ADVANCES 2020; 6:6/40/eabd1882. [PMID: 32998886 PMCID: PMC7527224 DOI: 10.1126/sciadv.abd1882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 05/05/2023]
Abstract
Adenosine diphosphate-ribosylation factor (Arf) guanosine triphosphatase-activating proteins (GAPs) are enzymes that need to bind to membranes to catalyze the hydrolysis of guanosine triphosphate (GTP) bound to the small GTP-binding protein Arf. Binding of the pleckstrin homology (PH) domain of the ArfGAP With SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is key for maximum GTP hydrolysis but not fully understood. By combining nuclear magnetic resonance, neutron reflectometry, and molecular dynamics simulation, we show that binding of multiple PI(4,5)P2 molecules to the ASAP1 PH domain (i) triggers a functionally relevant allosteric conformational switch and (ii) maintains the PH domain in a well-defined orientation, allowing critical contacts with an Arf1 mimic to occur. Our model provides a framework to understand how binding of the ASAP1 PH domain to PI(4,5)P2 at the membrane may play a role in the regulation of ASAP1.
Collapse
Affiliation(s)
- Olivier Soubias
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- NIST Center for Neutron Research, Gaithersburg, MD 20878, USA
| | - Yue Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Neeladri Sekhar Roy
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jess Li
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- NIST Center for Neutron Research, Gaithersburg, MD 20878, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
9
|
Pant S, Tajkhorshid E. Microscopic Characterization of GRP1 PH Domain Interaction with Anionic Membranes. J Comput Chem 2020; 41:489-499. [PMID: 31762060 PMCID: PMC7000246 DOI: 10.1002/jcc.26109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023]
Abstract
The pleckstrin homology (PH) domain of general receptor for phosphoionositides 1 (GRP1-PHD) binds specifically to phosphatidylinositol (3,4,5)-triphosphate (PIP3 ), and acts as a second messenger. Using an extensive array of molecular dynamics (MD) simulations employing highly mobile membrane mimetic (HMMM) model as well as complementary full membrane simulations, we capture differentiable binding and dynamics of GRP1-PHD in the presence of membranes containing PC, PS, and PIP3 lipids in varying compositions. While GRP1-PHD forms only transient interactions with pure PC membranes, incorporation of anionic lipids resulted in stable membrane-bound configurations. We report the first observation of two distinct PIP3 binding modes on GRP1-PHD, involving PIP3 interactions at a "canonical" and at an "alternate" site, suggesting the possibility of simultaneous binding of multiple anionic lipids. The full membrane simulations confirmed the stability of the membrane bound pose of GRP1-PHD as captured from our HMMM membrane binding simulations. By performing additional steered membrane unbinding simulations and calculating nonequilibrium work associated with the process, as well as metadynamics simulations, on the protein bound to full membranes, allowing for more quantitative examination of the binding strength of the GRP1-PHD to the membrane, we demonstrate that along with the bound PIP3 , surrounding anionic PS lipids increase the energetic cost of unbinding of GRP1-PHD from the canonical mode, causing them to dissociate more slowly than the alternate mode. Our results demonstrate that concurrent binding of multiple anionic lipids by GRP1-PHD contributes to its membrane affinity, which in turn control its signaling activity. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shashank Pant
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
10
|
McLean MA, Stephen AG, Sligar SG. PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b. Biochemistry 2019; 58:3537-3545. [DOI: 10.1021/acs.biochem.9b00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mark A. McLean
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21701, United States
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
14
|
Vermaas JV, Pogorelov TV, Tajkhorshid E. Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems through Customized in Silico Solvents. J Phys Chem B 2017; 121:3764-3776. [PMID: 28241729 PMCID: PMC5558153 DOI: 10.1021/acs.jpcb.6b11378] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanics of the protein-lipid interactions of transmembrane proteins are difficult to capture with conventional atomic molecular dynamics, due to the slow lateral diffusion of lipids restricting sampling to states near the initial membrane configuration. The highly mobile membrane mimetic (HMMM) model accelerates lipid dynamics by modeling the acyl tails nearest to the membrane center as a fluid organic solvent while maintaining an atomic description of the lipid headgroups and short acyl tails. The HMMM has been applied to many peripheral protein systems; however, the organic solvent used to date caused deformations in transmembrane proteins by intercalating into the protein and disrupting interactions between individual side chains. We ameliorate the effect of the solvent on transmembrane protein structure through the development of two new in silico Lennard-Jones solvents. The parameters for the new solvents were determined through an extensive parameter search in order to match the bulk properties of alkanes in a highly simplified model. Using these new solvents, we substantially improve the insertion free energy profiles of 10 protein side chain analogues across the entire bilayer. In addition, we reduce the intercalation of solvent into transmembrane systems, resulting in native-like transmembrane protein structures from five different topological classes within a HMMM bilayer. The parametrization of the solvents, in addition to their computed physical properties, is discussed. By combining high lipid lateral diffusion with intact transmembrane proteins, we foresee the developed solvents being useful to efficiently identify membrane composition inhomogeneities and lipid binding caused by the presence of membrane proteins.
Collapse
Affiliation(s)
- Josh V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Chemistry, School of Chemical Sciences, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Qi Y, Cheng X, Lee J, Vermaas JV, Pogorelov TV, Tajkhorshid E, Park S, Klauda JB, Im W. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. Biophys J 2016; 109:2012-22. [PMID: 26588561 DOI: 10.1016/j.bpj.2015.10.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Slow diffusion of the lipids in conventional all-atom simulations of membrane systems makes it difficult to sample large rearrangements of lipids and protein-lipid interactions. Recently, Tajkhorshid and co-workers developed the highly mobile membrane-mimetic (HMMM) model with accelerated lipid motion by replacing the lipid tails with small organic molecules. The HMMM model provides accelerated lipid diffusion by one to two orders of magnitude, and is particularly useful in studying membrane-protein associations. However, building an HMMM simulation system is not easy, as it requires sophisticated treatment of the lipid tails. In this study, we have developed CHARMM-GUI HMMM Builder (http://www.charmm-gui.org/input/hmmm) to provide users with ready-to-go input files for simulating HMMM membrane systems with/without proteins. Various lipid-only and protein-lipid systems are simulated to validate the qualities of the systems generated by HMMM Builder with focus on the basic properties and advantages of the HMMM model. HMMM Builder supports all lipid types available in CHARMM-GUI and also provides a module to convert back and forth between an HMMM membrane and a full-length membrane. We expect HMMM Builder to be a useful tool in studying membrane systems with enhanced lipid diffusion.
Collapse
Affiliation(s)
- Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Xi Cheng
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Jumin Lee
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Josh V Vermaas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Taras V Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Soohyung Park
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, The University of Maryland, College Park, Maryland
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
16
|
Madsen JJ, Fristrup P, Peters GH. Theoretical Assessment of Fluorinated Phospholipids in the Design of Liposomal Drug-Delivery Systems. J Phys Chem B 2016; 120:9661-71. [DOI: 10.1021/acs.jpcb.6b07206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jesper J. Madsen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Fristrup
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H. Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Baylon JL, Vermaas JV, Muller MP, Arcario MJ, Pogorelov TV, Tajkhorshid E. Atomic-level description of protein-lipid interactions using an accelerated membrane model. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1573-83. [PMID: 26940626 PMCID: PMC4877275 DOI: 10.1016/j.bbamem.2016.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/03/2023]
Abstract
Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Josh V Vermaas
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Melanie P Muller
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Mark J Arcario
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology; School of Chemical Sciences; Department of Chemistry; National Center for Supercomputing Applications.
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
18
|
Zhang L, Rajendram M, Weibel DB, Yethiraj A, Cui Q. Ionic Hydrogen Bonds and Lipid Packing Defects Determine the Binding Orientation and Insertion Depth of RecA on Multicomponent Lipid Bilayers. J Phys Chem B 2016; 120:8424-37. [PMID: 27095675 DOI: 10.1021/acs.jpcb.6b02164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe a computational and experimental approach for probing the binding properties of the RecA protein at the surface of anionic membranes. Fluorescence measurements indicate that RecA behaves differently when bound to phosphatidylglycerol (PG)- and cardiolipin (CL)-containing liposomes. We use a multistage computational protocol that integrates an implicit membrane/solvent model, the highly mobile mimetic membrane model, and the full atomistic membrane model to study how different anionic lipids perturb RecA binding to the membrane. With anionic lipids studied here, the binding interface involves three key regions: the N-terminal helix, the DNA binding loop L2, and the M-M7 region. The nature of binding involves both electrostatic interactions between cationic protein residues and lipid polar/charged groups and insertion of hydrophobic residues. The L2 loop contributes more to membrane insertion than the N-terminal helix. More subtle aspects of RecA-membrane interaction are influenced by specific properties of anionic lipids. Ionic hydrogen bonds between the carboxylate group in phosphatidylserine and several lysine residues in the C-terminal region of RecA stabilize the parallel (∥) binding orientation, which is not locally stable on PG- and CL-containing membranes despite similarity in the overall charge density. Lipid packing defects, which are more prevalent in the presence of conical lipids, are observed to enhance the insertion depth of hydrophobic motifs. The computational finding that RecA binds in a similar orientation to PG- and CL-containing membranes is consistent with the fact that PG alone is sufficient to induce RecA polar localization, although CL might be more effective because of its tighter binding to RecA. The different fluorescence behaviors of RecA upon binding to PG- and CL-containing liposomes is likely due to the different structures and flexibility of the C-terminal region of RecA when it binds to different anionic phospholipids.
Collapse
Affiliation(s)
- Leili Zhang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Manohary Rajendram
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface. Sci Rep 2015; 5:18245. [PMID: 26657413 PMCID: PMC4677404 DOI: 10.1038/srep18245] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Pleckstrin homology (PH) domains are lipid-binding modules present in peripheral membrane proteins which interact with phosphatidyl-inositol phosphates (PIPs) in cell membranes. We use multiscale molecular dynamics simulations to characterize the localization and anomalous dynamics of the DAPP1 PH domain on the surface of a PIP-containing lipid bilayer. Both translational and rotational diffusion of the PH domain on the lipid membrane surface exhibit transient subdiffusion, with an exponent α ≈ 0.5 for times of less than 10 ns. In addition to a PIP3 molecule at the canonical binding site of the PH domain, we observe additional PIP molecules in contact with the protein. Fluctuations in the number of PIPs associated with the PH domain exhibit 1/f noise. We suggest that the anomalous diffusion and long-term correlated interaction of the PH domain with the membrane may contribute to an enhanced probability of encounter with target complexes on cell membrane surfaces.
Collapse
|
20
|
Blanchard AE, Arcario MJ, Schulten K, Tajkhorshid E. A highly tilted membrane configuration for the prefusion state of synaptobrevin. Biophys J 2015; 107:2112-21. [PMID: 25418096 DOI: 10.1016/j.bpj.2014.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022] Open
Abstract
The SNARE complex plays a vital role in vesicle fusion arising during neuronal exocytosis. Key components in the regulation of SNARE complex formation, and ultimately fusion, are the transmembrane and linker regions of the vesicle-associated protein, synaptobrevin. However, the membrane-embedded structure of synaptobrevin in its prefusion state, which determines its interaction with other SNARE proteins during fusion, is largely unknown. This study reports all-atom molecular-dynamics simulations of the prefusion configuration of synaptobrevin in a lipid bilayer, aimed at characterizing the insertion depth and the orientation of the protein in the membrane, as well as the nature of the amino acids involved in determining these properties. By characterizing the structural properties of both wild-type and mutant synaptobrevin, the effects of C-terminal additions on tilt and insertion depth of membrane-embedded synaptobrevin are determined. The simulations suggest a robust, highly tilted state for membrane-embedded synaptobrevin with a helical connection between the transmembrane and linker regions, leading to an apparently new characterization of structural elements in prefusion synaptobrevin and providing a framework for interpreting past mutation experiments.
Collapse
Affiliation(s)
- Andrew E Blanchard
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mark J Arcario
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
21
|
Arcario MJ, Tajkhorshid E. Membrane-induced structural rearrangement and identification of a novel membrane anchor in talin F2F3. Biophys J 2015; 107:2059-69. [PMID: 25418091 DOI: 10.1016/j.bpj.2014.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023] Open
Abstract
Experimental challenges associated with characterization of the membrane-bound form of talin have prevented us from understanding the molecular mechanism of its membrane-dependent integrin activation. Here, utilizing what we believe to be a novel membrane mimetic model, we present a reproducible model of membrane-bound talin observed across multiple independent simulations. We characterize both local and global membrane-induced structural transitions that successfully reconcile discrepancies between biochemical and structural studies and provide insight into how talin might modulate integrin function. Membrane binding of talin, captured in unbiased simulations, proceeds through three distinct steps: initial electrostatic recruitment of the F2 subdomain to anionic lipids via several basic residues; insertion of an initially buried, conserved hydrophobic anchor into the membrane; and association of the F3 subdomain with the membrane surface through a large, interdomain conformational change. These latter two steps, to our knowledge, have not been observed or described previously. Electrostatic analysis shows talin F2F3 to be highly polarized, with a highly positive underside, which we attribute to the initial electrostatic recruitment, and a negative top face, which can help orient the protein optimally with respect to the membrane, thereby reducing the number of unproductive membrane collision events.
Collapse
Affiliation(s)
- Mark J Arcario
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
22
|
Baylon JL, Tajkhorshid E. Capturing Spontaneous Membrane Insertion of the Influenza Virus Hemagglutinin Fusion Peptide. J Phys Chem B 2015; 119:7882-93. [PMID: 25996559 DOI: 10.1021/acs.jpcb.5b02135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hemagglutinin (HA) is a protein located on the surface of the influenza virus that mediates viral fusion to the host cellular membrane. During the fusion process the HA fusion peptide (HAfp), formed by the first 23 N-terminal residues of HA and structurally characterized by two alpha helices (Helix A and Helix B) tightly packed in a hairpin-like arrangement, is the only part of the virus in direct contact with the host membrane. After encountering the host cell, HAfp is believed to insert into the membrane, thereby initiating the fusion of the viral and host membranes. Detailed characterization of the interactions between the HAfp and cellular membrane is therefore of high relevance to the mechanism of viral entry into the host cell. Employing HMMM membrane representation with enhanced lipid mobility, we have performed a large set of independent simulations of unbiased membrane binding of HAfp. We have been able to capture spontaneous binding and insertion of HAfp consistently in nearly all the simulations. A reproducible membrane-bound configuration emerges from these simulations, despite employing a diverse set of initial configurations. Extension of several of the simulations into full membrane systems confirms the stability of the membrane-bound form obtained from HMMM binding simulations. The resulting model allows for the characterization of important interactions between the peptide and the membrane and the details of the binding process of the peptide for the first time. Upon membrane binding, Helix A inserts much deeper into the membrane than Helix B, suggesting that the former is responsible for hydrophobic anchoring of the peptide into the membrane. Helix B, in contrast, is found to establish major amphipathic interactions at the interfacial region thereby contributing to binding strength of HAfp.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. J Membr Biol 2015; 248:563-82. [PMID: 25998378 PMCID: PMC4490090 DOI: 10.1007/s00232-015-9806-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Biological membranes constitute a critical component in all living cells. In addition to providing a conducive environment to a wide range of cellular processes, including transport and signaling, mounting evidence has established active participation of specific lipids in modulating membrane protein function through various mechanisms. Understanding lipid-protein interactions underlying these mechanisms at a sufficiently high resolution has proven extremely challenging, partly due to the semi-fluid nature of the membrane. In order to address this challenge computationally, multiple methods have been developed, including an alternative membrane representation termed highly mobile membrane mimetic (HMMM) in which lateral lipid diffusion has been significantly enhanced without compromising atomic details. The model allows for efficient sampling of lipid-protein interactions at atomic resolution, thereby significantly enhancing the effectiveness of molecular dynamics simulations in capturing membrane-associated phenomena. In this review, after providing an overview of HMMM model development, we will describe briefly successful application of the model to study a variety of membrane processes, including lipid-dependent binding and insertion of peripheral proteins, the mechanism of phospholipid insertion into lipid bilayers, and characterization of optimal tilt angle of transmembrane helices. We conclude with practical recommendations for proper usage of the model in simulation studies of membrane processes.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Javier L. Baylon
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Mark J. Arcario
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Melanie P. Muller
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Zhe Wu
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Taras V. Pogorelov
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Emad Tajkhorshid
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| |
Collapse
|
24
|
Rhéault JF, Gagné È, Guertin M, Lamoureux G, Auger M, Lagüe P. Molecular Model of Hemoglobin N from Mycobacterium tuberculosis Bound to Lipid Bilayers: A Combined Spectroscopic and Computational Study. Biochemistry 2015; 54:2073-84. [DOI: 10.1021/bi5010624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-François Rhéault
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | | | - Michel Guertin
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - Guillaume Lamoureux
- Centre for Research
in Molecular Modeling (CERMM), Concordia University, Montréal, Québec, Canada
| | | | - Patrick Lagüe
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| |
Collapse
|
25
|
Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 2014; 42:1418-24. [DOI: 10.1042/bst20140144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many cellular signalling and related events are triggered by the association of peripheral proteins with anionic lipids in the cell membrane (e.g. phosphatidylinositol phosphates or PIPs). This association frequently occurs via lipid-binding modules, e.g. pleckstrin homology (PH), C2 and four-point-one, ezrin, radixin, moesin (FERM) domains, present in peripheral and cytosolic proteins. Multiscale simulation approaches that combine coarse-grained and atomistic MD simulations may now be applied with confidence to investigate the molecular mechanisms of the association of peripheral proteins with model bilayers. Comparisons with experimental data indicate that such simulations can predict specific peripheral protein–lipid interactions. We discuss the application of multiscale MD simulation and related approaches to investigate the association of peripheral proteins which contain PH, C2 or FERM-binding modules with lipid bilayers of differing phospholipid composition, including bilayers containing multiple PIP molecules.
Collapse
|
26
|
Huang K, García AE. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering. J Chem Theory Comput 2014; 10:4264-4272. [PMID: 25328493 PMCID: PMC4196747 DOI: 10.1021/ct500305u] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 01/07/2023]
Abstract
![]()
The
lateral heterogeneity of cellular membranes plays an important
role in many biological functions such as signaling and regulating
membrane proteins. This heterogeneity can result from preferential
interactions between membrane components or interactions with membrane
proteins. One major difficulty in molecular dynamics simulations aimed
at studying the membrane heterogeneity is that lipids diffuse slowly
and collectively in bilayers, and therefore, it is difficult to reach
equilibrium in lateral organization in bilayer mixtures. Here, we
propose the use of the replica exchange with solute tempering (REST)
approach to accelerate lateral relaxation in heterogeneous bilayers.
REST is based on the replica exchange method but tempers only the
solute, leaving the temperature of the solvent fixed. Since the number
of replicas in REST scales approximately only with the degrees of
freedom in the solute, REST enables us to enhance the configuration
sampling of lipid bilayers with fewer replicas, in comparison with
the temperature replica exchange molecular dynamics simulation (T-REMD)
where the number of replicas scales with the degrees of freedom of
the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find
that the lateral distribution functions of all molecular pair types
converge much faster than in the standard MD simulation. The relative
diffusion rate between molecules in REST is, on average, an order
of magnitude faster than in the standard MD simulation. Although REST
was initially proposed to study protein folding and its efficiency
in protein folding is still under debate, we find a unique application
of REST to accelerate lateral equilibration in mixed lipid membranes
and suggest a promising way to probe membrane lateral heterogeneity
through molecular dynamics simulation.
Collapse
Affiliation(s)
- Kun Huang
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Angel E García
- Department of Physics, Applied Physics and Astronomy, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
27
|
Pogorelov TV, Vermaas JV, Arcario MJ, Tajkhorshid E. Partitioning of amino acids into a model membrane: capturing the interface. J Phys Chem B 2014; 118:1481-92. [PMID: 24451004 PMCID: PMC3983343 DOI: 10.1021/jp4089113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Energetics
of protein side chain partitioning between aqueous solution
and cellular membranes is of fundamental importance for correctly
capturing the membrane binding and specific protein–lipid interactions
of peripheral membrane proteins. We recently reported a highly mobile
membrane mimetic (HMMM) model that accelerates lipid dynamics by modeling
the membrane interior partially as a fluid organic solvent while retaining
a literal description of the lipid head groups and the beginning of
the tails. While the HMMM has been successfully applied to study spontaneous
insertion of a number of peripheral proteins into membranes, a quantitative
characterization of the energetics of membrane–protein interactions
in HMMM membranes has not been performed. We report here the free
energy profiles for partitioning of 10 protein side chain analogues
into a HMMM membrane. In the interfacial and headgroup regions of
the membrane, the side chain free energy profiles show excellent agreement
with profiles previously reported for conventional membranes with
full-tail lipids. In regions where the organic solvent is prevalent,
the increased dipole and fluidity of the solvent generally result
in a less accurate description, most notably overstabilization of
aromatic and polar amino acids. As an additional measure of the ability
of the HMMM model to describe membrane–protein interactions,
the water-to-membrane interface transfer energies were analyzed and
found to be in agreement with the previously reported experimental
and computational hydrophobicity scales. We discuss strengths and
weaknesses of HMMM in describing protein–membrane interactions
as well as further development of model membranes.
Collapse
Affiliation(s)
- Taras V Pogorelov
- Center for Biophysics and Computational Biology, School of Chemical Sciences, Departments of Chemistry and Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
28
|
Kalli AC, Morgan G, Sansom MSP. Interactions of the auxilin-1 PTEN-like domain with model membranes result in nanoclustering of phosphatidyl inositol phosphates. Biophys J 2014; 105:137-45. [PMID: 23823232 DOI: 10.1016/j.bpj.2013.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Auxilin-1 is a neuron-specific membrane-binding protein involved in a late stage of clathrin-mediated endocytosis. It recruits Hsc70, thus initiating uncoating of the clathrin-coated vesicles. Interactions of auxilin-1 with the vesicle membrane are crucial for this function and are mediated via an N-terminal PTEN-like domain. We have used multiscale molecular dynamics simulations to probe the interactions of the auxilin-1 PTEN-like domain with lipid bilayers containing differing phospholipid composition, including bilayers containing phosphatidyl inositol phosphates. Our results suggest a novel, to our knowledge, model for the auxilin/membrane encounter and subsequent interactions. Negatively charged lipids (especially PIP2) enhance binding of auxilin to lipid bilayers and facilitate its correct orientation relative to the membrane. Mutations in three basic residues (R301E/R307E/K311E) of the C2 subdomain of the PTEN-like domain perturbed its interaction with the bilayer, changing its orientation. The interaction of membrane-bound auxilin-1 PTEN-like domain with negatively charged lipid headgroups results in nanoclustering of PIP2 molecules in the adjacent bilayer leaflet.
Collapse
Affiliation(s)
- Antreas C Kalli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
29
|
Vermaas JV, Tajkhorshid E. A microscopic view of phospholipid insertion into biological membranes. J Phys Chem B 2013; 118:1754-64. [PMID: 24313792 DOI: 10.1021/jp409854w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the process of membrane insertion is an essential step in developing a detailed mechanism, for example, for peripheral membrane protein association and membrane fusion. The highly mobile membrane mimetic (HMMM) has been used to accelerate the membrane association and binding of peripheral membrane proteins in simulations by increasing the lateral diffusion of phospholipid headgroups while retaining an atomistic description of the interface. Through a comparative study, we assess the difference in insertion rate of a free phospholipid into an HMMM as well as into a conventional phospholipid bilayer and develop a detailed mechanistic model of free phospholipid insertion into biological membranes. The mechanistic insertion model shows that successful irreversible association of the free phospholipid to the membrane interface, which results in its insertion, is the rate-limiting step. Association is followed by independent, sequential insertion of the acyl tails of the free phospholipid into the membrane, with splayed acyl tail intermediates. Use of the HMMM is found to replicate the same intermediate insertion states as in the full phospholipid bilayer; however, it accelerates overall insertion by approximately a factor of 3, with the probability of successful association of phospholipid to the membrane being significantly enhanced.
Collapse
Affiliation(s)
- Josh V Vermaas
- Center for Biophysics and Computational Biology, Department Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
30
|
Lumb CN, Sansom MSP. Defining the membrane-associated state of the PTEN tumor suppressor protein. Biophys J 2013; 104:613-21. [PMID: 23442912 DOI: 10.1016/j.bpj.2012.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Phosphatase and tensin-homolog deleted on chromosome 10 (PTEN) is a tumor-suppressor protein that regulates phosphatidylinositol 3-kinase (PI3-K) signaling by binding to the plasma membrane and hydrolyzing the 3' phosphate from phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) to form phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). Several loss-of-function mutations in PTEN that impair lipid phosphatase activity and membrane binding are oncogenic, leading to the development of a variety of cancers, but information about the membrane-associated state of PTEN remains sparse. We have modeled a membrane-associated state of the truncated PTEN structure bound to PI(3,4,5)P3 via multiscale molecular dynamics simulations. We show that the location of the membrane-binding surface agrees with experimental observations and is robust to changes in lipid composition. The level of membrane interaction is substantially reduced in the phosphatase domain for the triple mutant R161E/K163E/K164E, in line with experimental results. We observe clustering of anionic lipids around the C2 domain in preference to the phosphatase domain, suggesting that the C2 domain is involved in nonspecific interactions with negatively charged lipid headgroups. Finally, our simulations suggest that the oncogenicity of the R335L mutation may be due to a reduction in the interaction of the mutant PTEN with anionic lipids.
Collapse
Affiliation(s)
- Craig N Lumb
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
31
|
Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J Am Chem Soc 2013; 135:8542-51. [PMID: 23697766 PMCID: PMC3682445 DOI: 10.1021/ja4003525] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Cytochrome P450 3A4 (CYP3A4) is the
most abundant membrane-associated
isoform of the P450 family in humans and is responsible for biotransformation
of more than 50% of drugs metabolized in the body. Despite the large
number of crystallographic structures available for CYP3A4, no structural
information for its membrane-bound state at an atomic level is available.
In order to characterize binding, depth of insertion, membrane orientation,
and lipid interactions of CYP3A4, we have employed a combined experimental
and simulation approach in this study. Taking advantage of a novel
membrane representation, highly mobile membrane mimetic (HMMM), with
enhanced lipid mobility and dynamics, we have been able to capture
spontaneous binding and insertion of the globular domain of the enzyme
into the membrane in multiple independent, unbiased simulations. Despite
different initial orientations and positions of the protein in solution,
all the simulations converged into the same membrane-bound configuration
with regard to both the depth of membrane insertion and the orientation
of the enzyme on the surface of the membrane. In tandem, linear dichroism
measurements performed on CYP3A4 bound to Nanodisc membranes were
used to characterize the orientation of the enzyme in its membrane-bound
form experimentally. The heme tilt angles measured experimentally
are in close agreement with those calculated for the membrane-bound
structures resulted from the simulations, thereby verifying the validity
of the developed model. Membrane binding of the globular domain in
CYP3A4, which appears to be independent of the presence of the transmembrane
helix of the full-length enzyme, significantly reshapes the protein
at the membrane interface, causing conformational changes relevant
to access tunnels leading to the active site of the enzyme.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
32
|
Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 2012; 102:2130-9. [PMID: 22824277 DOI: 10.1016/j.bpj.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 11/26/2022] Open
Abstract
Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
33
|
Membrane-Binding Mechanism of a Peripheral Membrane Protein through Microsecond Molecular Dynamics Simulations. J Mol Biol 2012; 423:847-61. [DOI: 10.1016/j.jmb.2012.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 11/22/2022]
|