1
|
Spataru T. The complete electronic structure and mechanism of the methionine synthase process as determined by the MCSCF method. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Methyl transfer reactions catalyzed by cobalamin-dependent enzymes: Insight from molecular docking. J Mol Graph Model 2020; 104:107831. [PMID: 33529932 DOI: 10.1016/j.jmgm.2020.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
Methyl transfer reactions, mediated by methyltransferases (MeTrs), such as methionine synthase (MetH) or monomethylamine: CoM (MtmBC), constitute one of the most important classes of vitamin B12-dependent reactions. The challenge in exploring the catalytic function of MeTrs is related to their modular structure. From the crystallographic point of view, the structure of each subunit has been determined, but there is a lack of understanding of how each subunit interacts with each other. So far, theoretical studies of methyl group transfer were carried out for the structural models of the active site of each subunit. However, those studies do not include the effect of the enzymatic environment, which is crucial for a comprehensive understanding of enzyme-mediated methyl transfer reactions. Herein, to explore how two subunits interact with each other and how the methyl transfer reaction is catalyzed by MeTrs, molecular docking of the functional units of MetH and MtmBC was carried out. Along with the interactions of the functional units, the reaction coordinates, including the Co-C bond distance for methylation of cob(I)alamin (CoICbl) and the C-S bond distance in demethylation reaction of cob(III)alamin (CoIIICbl), were considered. The functional groups should be arranged so that there is an appropriate distance to transfer a methyl group and present results indicate that steric interactions can limit the number of potential arrangements. This calls into question the possibility of SN2-type mechanism previously proposed for MeTrs. Further, it leads to the conclusion that the methyl transfer reaction involves some spatial changes of modules suggesting an alternate radical-based pathway for MeTrs-mediated methyl transfer reactions. The calculations also showed that changes in torsion angles induce a change in reaction coordinates, namely Co-C and C-S bond distances, for the methylation and demethylation reactions catalyzed both by MetH and MtmBC.
Collapse
|
3
|
Design, synthesis and biological activity of N 5-substituted tetrahydropteroate analogs as non-classical antifolates against cobalamin-dependent methionine synthase and potential anticancer agents. Eur J Med Chem 2020; 190:112113. [PMID: 32058237 DOI: 10.1016/j.ejmech.2020.112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Cobalamin-dependent methionine synthase (MetH) is involved in the process of tumor cell growth and survival. In this study, a novel series of N5-electrophilic substituted tetrahydropteroate analogs without glutamate residue were designed as non-classical antifolates and evaluated for their inhibitory activities against MetH. In addition, the cytotoxicity of target compounds was evaluated in human tumor cell lines. With N5-chloracetyl as the optimum group, further structure research on the benzene substituent and on the 2,4-diamino group was also performed. Compound 6c, with IC50 value of 12.1 μM against MetH and 0.16-6.12 μM against five cancer cells, acted as competitive inhibitor of MetH. Flow cytometry studies indicated that compound 6c arrested HL-60 cells in the G1-phase and then inducted late apoptosis. The molecular docking further explained the structure-activity relationship.
Collapse
|
4
|
Elucidating the mechanism of cob(I)alamin mediated methylation reactions by alkyl halides: SN2 or radical mechanism? J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Demissie TB, Garabato BD, Ruud K, Kozlowski PM. Mercury Methylation by Cobalt Corrinoids: Relativistic Effects Dictate the Reaction Mechanism. Angew Chem Int Ed Engl 2016; 55:11503-6. [DOI: 10.1002/anie.201606001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Taye B. Demissie
- Centre for Theoretical and Computational Chemistry; Department of Chemistry; UiT The Arctic University of Norway; 9037 Tromsø Norway
| | - Brady D. Garabato
- Department of Chemistry; University of Louisville; 2320 South Brook Street Louisville KY 40292 USA
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry; Department of Chemistry; UiT The Arctic University of Norway; 9037 Tromsø Norway
| | - Pawel M. Kozlowski
- Department of Chemistry; University of Louisville; 2320 South Brook Street Louisville KY 40292 USA
- Department of Food Sciences; Medical University of Gdansk; Al. Gen. J. Hallera 107 80-416 Gdansk Poland
| |
Collapse
|
6
|
Demissie TB, Garabato BD, Ruud K, Kozlowski PM. Mercury Methylation by Cobalt Corrinoids: Relativistic Effects Dictate the Reaction Mechanism. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taye B. Demissie
- Centre for Theoretical and Computational Chemistry; Department of Chemistry; UiT The Arctic University of Norway; 9037 Tromsø Norway
| | - Brady D. Garabato
- Department of Chemistry; University of Louisville; 2320 South Brook Street Louisville KY 40292 USA
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry; Department of Chemistry; UiT The Arctic University of Norway; 9037 Tromsø Norway
| | - Pawel M. Kozlowski
- Department of Chemistry; University of Louisville; 2320 South Brook Street Louisville KY 40292 USA
- Department of Food Sciences; Medical University of Gdansk; Al. Gen. J. Hallera 107 80-416 Gdansk Poland
| |
Collapse
|
7
|
Spataru T, Fernandez F. The Nature of the Co-C Bond Cleavage Processes in Methylcob(II)Alamin and Adenosylcob(III)Alamin. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(1).01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Andruniów T, Lodowski P, Garabato BD, Jaworska M, Kozlowski PM. The role of spin-orbit coupling in the photolysis of methylcobalamin. J Chem Phys 2016; 144:124305. [DOI: 10.1063/1.4943184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tadeusz Andruniów
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Technology, 50-370 Wroclaw, Poland
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Brady D. Garabato
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
9
|
Garabato BD, Kumar N, Lodowski P, Jaworska M, Kozlowski PM. Electronically excited states of cob(ii)alamin: insights from CASSCF/XMCQDPT2 and TD-DFT calculations. Phys Chem Chem Phys 2016; 18:4513-4526. [PMID: 26797317 DOI: 10.1039/c5cp06439b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The low-lying excited states of cob(ii)alamin were investigated using time-dependent density functional theory (TD-DFT). The performance of TD-DFT calculations was further evaluated using CASSCF/XMCQDPT2, where both four-coordinate and five-coordinate models of cob(ii)alamin were considered. Dependence of electronic structure on the axial base was then investigated using TD-DFT. Consistent with previous benchmarks, the BP86 functional provides a reliable description of the electronically excited states. It was found that the dyz + π → dz(2) character of the D1 state increases with respect to the axial base distance, corresponding to a lowering in energy of anti-bonding dz(2) orbitals, leading to near a degeneracy between the ground, and D1 states in the base-off form.
Collapse
Affiliation(s)
- Brady D Garabato
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA.
| | - Neeraj Kumar
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA. and Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, WA 99352, USA
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, USA. and Visiting Professor at the Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
10
|
Morita Y, Oohora K, Sawada A, Doitomi K, Ohbayashi J, Kamachi T, Yoshizawa K, Hisaeda Y, Hayashi T. Intraprotein transmethylation via a CH3–Co(iii) species in myoglobin reconstituted with a cobalt corrinoid complex. Dalton Trans 2016; 45:3277-84. [DOI: 10.1039/c5dt04109k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A cobalt corrinoid complex bound in the myoglobin heme pocket demonstrates the formation of a CH3–Co(iii) bond and subsequent transmethylation.
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Koji Oohora
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Akiyoshi Sawada
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazuki Doitomi
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Jun Ohbayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| | - Takashi Kamachi
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Centre for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Takashi Hayashi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita 565-0871
- Japan
| |
Collapse
|
11
|
Kurian R, Bruce MRM, Bruce AE, Amar FG. The influence of zinc(ii) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(ii) accelerates exchange in higher dielectric environments. Metallomics 2015; 7:1265-73. [DOI: 10.1039/c5mt00070j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM calculations on thiolate disulfide exchange reveal that a polar, 4-centered, cyclic transition state is formed when Zn(ii) is present, helping to explain faster exchange rates in higher dielectric solvents for metal-assisted exchange.
Collapse
Affiliation(s)
- Roby Kurian
- Department of Chemistry
- University of Maine
- Orono, USA
| | | | | | | |
Collapse
|
12
|
Surducan M, Makarov SV, Silaghi-Dumitrescu R. Redox and linkage isomerism with ligands relevant to oxidative and nitrosative stress in cobalamin. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Liu H, Kornobis K, Lodowski P, Jaworska M, Kozlowski PM. TD-DFT insight into photodissociation of the Co-C bond in coenzyme B12. Front Chem 2014; 1:41. [PMID: 24790969 PMCID: PMC3982521 DOI: 10.3389/fchem.2013.00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022] Open
Abstract
Coenzyme B12 (AdoCbl) is one of the most biologically active forms of vitamin B12, and continues to be a topic of active research interest. The mechanism of Co-C bond cleavage in AdoCbl, and the corresponding enzymatic reactions are however, not well understood at the molecular level. In this work, time-dependent density functional theory (TD-DFT) has been applied to investigate the photodissociation of coenzyme B12. To reduce computational cost, while retaining the major spectroscopic features of AdoCbl, a truncated model based on ribosylcobalamin (RibCbl) was used to simulate Co-C photodissociation. Equilibrium geometries of RibCbl were obtained by optimization at the DFT/BP86/TZVP level of theory, and low-lying excited states were calculated by TD-DFT using the same functional and basis set. The calculated singlet states, and absorption spectra were simulated in both the gas phase, and water, using the polarizable continuum model (PCM). Both spectra were in reasonable agreement with experimental data, and potential energy curves based on vertical excitations were plotted to explore the nature of Co-C bond dissociation. It was found that a repulsive 3(σCo−C → σ*Co−C) triplet state became dissociative at large Co-C bond distance, similar to a previous observation for methylcobalamin (MeCbl). Furthermore, potential energy surfaces (PESs) obtained as a function of both Co-CRib and Co-NIm distances, identify the S1 state as a key intermediate generated during photoexcitation of RibCbl, attributed to a mixture of a metal-to-ligand charge transfer (MLCT) and a σ bonding-ligand charge transfer (SBLCT) states.
Collapse
Affiliation(s)
- Hui Liu
- Department of Chemistry, University of Louisville Louisville, KY, USA
| | - Karina Kornobis
- Department of Chemistry, University of Louisville Louisville, KY, USA
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville Louisville, KY, USA
| |
Collapse
|
14
|
Kumar N, Kozlowski PM. Mechanistic Insights for Formation of an Organometallic Co–C Bond in the Methyl Transfer Reaction Catalyzed by Methionine Synthase. J Phys Chem B 2013; 117:16044-57. [PMID: 24164324 DOI: 10.1021/jp4093145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Louisville, 2320
South Brook Street, Louisville, Kentucky 40292, United States
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320
South Brook Street, Louisville, Kentucky 40292, United States
| |
Collapse
|
15
|
Chmielowska A, Lodowski P, Jaworska M. Redox Potentials and Protonation of the A-Cluster from Acetyl-CoA Synthase. A Density Functional Theory Study. J Phys Chem A 2013; 117:12484-96. [DOI: 10.1021/jp402616e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Piotr Lodowski
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Maria Jaworska
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
16
|
Kumar N, Kuta J, Galezowski W, Kozlowski PM. Electronic Structure of One-Electron-Oxidized Form of the Methylcobalamin Cofactor: Spin Density Distribution and Pseudo-Jahn–Teller Effect. Inorg Chem 2013; 52:1762-71. [PMID: 23360322 DOI: 10.1021/ic3013443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| | - Jadwiga Kuta
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| | - Wlodzimierz Galezowski
- Department of Chemistry, A. Mickiewicz University,
Umultowska 89b, 61-614 Poznan, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville,
Louisville, Kentucky 40292, United States
| |
Collapse
|
17
|
Kornobis K, Kumar N, Lodowski P, Jaworska M, Piecuch P, Lutz JJ, Wong BM, Kozlowski PM. Electronic structure of the S1state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations. J Comput Chem 2013; 34:987-1004. [PMID: 23335227 DOI: 10.1002/jcc.23204] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/25/2012] [Accepted: 11/19/2012] [Indexed: 11/12/2022]
|
18
|
Kozlowski PM, Kamachi T, Kumar M, Yoshizawa K. Reductive elimination pathway for homocysteine to methionine conversion in cobalamin-dependent methionine synthase. J Biol Inorg Chem 2012; 17:611-9. [DOI: 10.1007/s00775-012-0881-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
|
19
|
Hirao H. Which DFT Functional Performs Well in the Calculation of Methylcobalamin? Comparison of the B3LYP and BP86 Functionals and Evaluation of the Impact of Empirical Dispersion Correction. J Phys Chem A 2011; 115:9308-13. [DOI: 10.1021/jp2052807] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|