1
|
Cui C, Jia Y, Lin S, Geng L, Luo Z. The Reactivity of Pt n + Clusters With N 2O Facilitated by Dual Lewis-Acid Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404638. [PMID: 39240073 DOI: 10.1002/smll.202404638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The size dependence of metal cluster reactions frequently reveals valuable information on the mechanism of nanometal catalysis. Here, the reactivity of the Ptn + (n = 1-40) clusters with N2O is studied and a significant dependence on the size of these clusters is noticed. Interestingly, the small Ptn + clusters like Pt3 + and Pt4 + are inclined to form N2O complexes; some larger clusters, such as Pt19 +, Pt21 +, and Pt23 +, appear to be unreactive; however, the others such as Pt3 , 9,15 + and Pt18 + are capable of decomposing N2O. While Pt9 + rapidly reacts with N2O to form a stable quasitetrahedron Pt9O+ product, Pt18 + experiences a series of N2O decompositions to produce Pt18O1-7 +. Utilizing high-precision theoretical calculations, it is shown how the atomic structures and active sites of Ptn + clusters play a vital role in determining their reactivity. Cooperative dual Lewis-acid sites (CDLAS) can be achieved on specific metal clusters like Pt18 +, rendering accelerated N2O decomposition via both N- and O-bonding on the neighboring Pt atoms. The influence of CDLAS on the size-dependent reaction of Pt clusters with N2O is illustrated, offering insights into cluster catalysis in reactions that include the donation of electron pairs.
Collapse
Affiliation(s)
- Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Li R, Li YK, Xu J, Hou GL. Direct reduction of NO into N 2 catalyzed by fullerene-supported rhodium clusters. Phys Chem Chem Phys 2024; 26:15332-15337. [PMID: 38748511 DOI: 10.1039/d4cp01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Catalytic conversion of NO has long been a focus of atmospheric pollution control and diesel vehicle exhaust treatment. Rhodium is one of the most effective metals for catalyzing NO reduction, and understanding the nature of the active sites and underlying mechanisms can help improve the design of Rh-based catalysts towards NO reduction. In this work, we investigated the detailed catalytic mechanisms for the direct reduction of NO to N2 by fullerene-supported rhodium clusters, C60Rh4+, with density functional theory calculations. We found that the presence of C60 facilitates the smooth reduction of NO into N2 and O2, as well as their subsequent desorption, recovering the catalyst C60Rh4+. Such a process fails to be completed by free Rh4+, emphasizing the critical importance of C60 support. We attribute the novel performance of C60Rh4+ to the electron sponge effect of C60, providing useful guidance for designing efficient catalysts for the direct reduction of NO.
Collapse
Affiliation(s)
- Ruomeng Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Ya-Ke Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Jianzhi Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China.
| |
Collapse
|
3
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
4
|
Guo X, Duan H, Cao B, Lu S, Long M, Chen F, Abliz A, Wu Z, Jing Q, Miao Z, Chen X. Adsorption of small molecules on transition metal doped rhodium clusters Rh 3X (X = 3 d, 4 d atom): a first-principles investigation. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1746424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiaolin Guo
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Haiming Duan
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Biaobing Cao
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Shuwei Lu
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Mengqiu Long
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha, People’s Republic of China
| | - Fengjuan Chen
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Ablat Abliz
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Zhaofeng Wu
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Zhenzhen Miao
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| | - Xuan Chen
- School of Physical Science and Technology, Xinjiang University, Urumqi, People’s Republic of China
| |
Collapse
|
5
|
Li X, Tang Y, Li S, Gui Y. Spectroscopic properties and activated mechanism of NO on isolated cationic tantalum clusters: A first-principles study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:335-341. [PMID: 30909090 DOI: 10.1016/j.saa.2019.03.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/18/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
The adsorption and dissociation of NO on the cationic Ta15+ cluster were investigated using the density-functional theory (DFT) calculations, and the Ta-centered bicapped hexagonal antiprism (BHA) structure of cationic Ta15+ cluster can be identified as the global minimum, which reproduces well the infrared multiple photo dissociation (IR-MPD) spectrum. Our results show that the cationic BHATa15+ cluster provides the hollow region for NO to interact effectively, and possess larger adsorption strength on the region than other sites. The density of states, charge density differences and frontier molecular orbitals were analyzed to understand the electronic properties of the stable NO-adsorbed isomers. The characteristic IR peaks of the firstly two low-lying isomers are properly assigned, in which the strongest IR peak originates from the N - O stretching vibration. For the dissociation of NO on the BHATa15+ cluster, it is found that the reaction path II easily occurs rather than path I due to small reaction barrier, and the cluster may possess the great catalytic behavior to dissociate NO molecule. The present results will inevitably stimulate future theoretical and experimental studies for the design of novel Ta-based catalytic materials for the NO dissociation.
Collapse
Affiliation(s)
- Xiaojun Li
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China.
| | - Yongqiang Tang
- School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Shuna Li
- School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Yangyang Gui
- School of Chemical Engineering, Xi'an University, Xi'an, China
| |
Collapse
|
6
|
Klein MP, Ehrhard AA, Mohrbach J, Dillinger S, Niedner-Schatteburg G. Infrared Spectroscopic Investigation of Structures and N2 Adsorption Induced Relaxations of Isolated Rhodium Clusters. Top Catal 2017. [DOI: 10.1007/s11244-017-0865-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hirabayashi S, Ichihashi M. Effects of Second-Metal (Al, V, Co) Doping on the NO Reactivity of Small Rhodium Cluster Cations. J Phys Chem A 2017; 121:2545-2551. [PMID: 28319381 DOI: 10.1021/acs.jpca.6b11613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of pure and doped rhodium cluster cations, RhnX+ (n = 2-6; X = Al, V, Co, Rh), with NO molecules were investigated at near-thermal energy using a guided ion beam tandem mass spectrometer. We found that the doping with Al and V increases the total reaction cross section mostly. Under single-collision conditions, Rh2X+ reacts with NO to produce Rh2N+ with release of metal monoxide, XO, whereas RhnX+ (n = 3-6) adsorb NO. For the specific clusters RhnAl+ (n = 3 and 4) and RhnV+ (n = 4-6), the NO adsorption is often accompanied by the release of one Rh atom. In addition, we examined the reactions of Rh5X+ (X = Al, V, Co, Rh) with NO under multiple-collision conditions and observed the cluster dioxide formation and the N2 release, i.e., NO decomposition. Particularly, the V-doping is most effective for the NO decomposition. One possible explanation for the present results is that the formation of a stable dopant metal-oxygen bond directly leads to the increase of NO dissociative adsorption energy and the reduction of the energy barrier between the molecular and dissociative adsorption, thereby encouraging the NO decomposition on the small RhnX+ clusters studied.
Collapse
Affiliation(s)
- Shinichi Hirabayashi
- East Tokyo Laboratory, Genesis Research Institute, Inc. , 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Masahiko Ichihashi
- Cluster Research Laboratory, Toyota Technological Institute: in East Tokyo Laboratory, Genesis Research Institute, Inc. , 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| |
Collapse
|
8
|
Koyama K, Nagata T, Kudoh S, Miyajima K, Huitema DMM, Chernyy V, Bakker JM, Mafuné F. Geometrical Structures of Partially Oxidized Rhodium Cluster Cations, Rh6Om+ (m = 4, 5, 6), Revealed by Infrared Multiple Photon Dissociation Spectroscopy. J Phys Chem A 2016; 120:8599-8605. [DOI: 10.1021/acs.jpca.6b08822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohei Koyama
- Department
of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshiaki Nagata
- Department
of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department
of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department
of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Douwe M. M. Huitema
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Valeriy Chernyy
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Joost M. Bakker
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Fumitaka Mafuné
- Department
of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Mafuné F, Takenouchi M, Miyajima K, Kudoh S. Rhodium Oxide Cluster Ions Studied by Thermal Desorption Spectrometry. J Phys Chem A 2016; 120:356-63. [DOI: 10.1021/acs.jpca.5b09531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Masato Takenouchi
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Yang HQ, Fu HQ, Su BF, Xiang B, Xu QQ, Hu CW. Theoretical Study on the Catalytic Reduction Mechanism of NO by CO on Tetrahedral Rh4 Subnanocluster. J Phys Chem A 2015; 119:11548-64. [DOI: 10.1021/acs.jpca.5b07713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-Qing Yang
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Hong-Quan Fu
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Ben-Fang Su
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Bo Xiang
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Qian-Qian Xu
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Chang-Wei Hu
- College of Chemical Engineering and ‡Key Laboratory of Green Chemistry
and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| |
Collapse
|
11
|
|
12
|
Tawaraya Y, Kudoh S, Miyajima K, Mafuné F. Thermal Desorption and Reaction of NO Adsorbed on Rhodium Cluster Ions Studied by Thermal Desorption Spectroscopy. J Phys Chem A 2015; 119:8461-8. [DOI: 10.1021/acs.jpca.5b04224] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Tawaraya
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Su BF, Fu HQ, Yang HQ, Hu CW. Catalytic reduction of NO by CO on Rh4+ clusters: a density functional theory study. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00119f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An extensive study was conducted to explore the catalytic reduction of NO by CO on Rh4+ clusters at the ground and first excited states at the B3LYP/6-311+G(2d), SDD level.
Collapse
Affiliation(s)
- Ben-Fang Su
- College of Chemical Engineering
- Sichuan University
- Chengdu
- PR China
| | - Hong-Quan Fu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- PR China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- PR China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
14
|
Computational investigation on the catalytic activity of Rh6 and Rh4Ru2 clusters towards methanol activation. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1597-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Lecours MJ, Chow WCT, Hopkins WS. Density Functional Theory Study of RhnS0,± and Rhn+10,± (n = 1–9). J Phys Chem A 2014; 118:4278-87. [PMID: 24784348 DOI: 10.1021/jp412457m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael J. Lecours
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - W. C. Theodore Chow
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Roscioni OM, Lee EPF, Dyke JM. Development and testing of a compact basis set for use in effective core potential calculations on rhodium complexes. J Comput Chem 2012; 33:2049-57. [DOI: 10.1002/jcc.23034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/10/2022]
|
17
|
Romo-Ávila SL, Guirado-López RA. Adsorption of Nitric Oxide on Small Rhn± Clusters: Role of the Local Atomic Environment on the Dissociation of the N–O Bond. J Phys Chem A 2012; 116:1059-68. [DOI: 10.1021/jp208847r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- S. L. Romo-Ávila
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Lateral Av. Salvador Nava s/n, 78290, San Luis Potosí, México
| | - R. A. Guirado-López
- Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis Potośi, Alvaro Obregón 64, 78000, San Luis Potosí, México
| |
Collapse
|
18
|
Xie H, Ren M, Lei Q, Fang W. Nitric oxide adsorption and reduction reaction mechanism on the Rh7(+) cluster: a density functional theory study. J Phys Chem A 2011; 115:14203-8. [PMID: 22029266 DOI: 10.1021/jp2044652] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transition metal rhodium has been proved the effective catalyst to convert from NO(x) to N(2.) In the present work, we are mainly focused on the NO adsorption and decomposition reaction mechanism on the surface of the Rh(7)(+) cluster, and the calculated results suggest that the reaction can proceed via three steps. First, the NO can adsorb on the surface of the Rh(7)(+) cluster; second, the NO decomposes to N and O atoms; finally, the N atom reacts with the second adsorbed NO and reduces to a N(2) molecule. The N-O bond breaks to yield N and O atoms in the second step, which is the rate-limiting step of the whole catalytic cycle. This step goes over a relatively high barrier (TS(12)) of 39.6 kcal/mol and is strongly driven by a large exothermicity of 55.1 kcal/mol during the formation of stable compound 3, accompanied by the N and O atoms dispersed on the different Rh atoms of the Rh(7)(+) cluster. In addition, the last step is very complex due to the different possibilities of reaction mechanism. On the basis of the calculations, in contrast to the reaction path II that generates N(2) from two nitrogen atoms coupling, the reaction path I for the formation of intermediate N(2)O is found to be energetically more favorable. Present work would provide some valuable fundamental insights into the behavior of the nitric oxide adsorption and reduction reaction mechanism on the Rh(7)(+) cluster.
Collapse
Affiliation(s)
- Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, China.
| | | | | | | |
Collapse
|