1
|
Rahman AU, Panichayupakaranant P. Exploring the diverse biological activities of Garcinia cowa: Implications for future cancer chemotherapy and beyond. FOOD BIOSCI 2024; 61:104525. [DOI: 10.1016/j.fbio.2024.104525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Brown D, Barraco M, Benes NE, Neyertz S. Development of All-Atom Empirical Potentials for Phloroglucinol (Phg) and Hexachlorocyclotriphosphazene (HCCP) Based on their Crystal Phase Structures. J Phys Chem A 2024; 128:7023-7035. [PMID: 39136974 DOI: 10.1021/acs.jpca.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two existing generic force fields have been augmented with partial charges and tuned in order to give intercompatible all-atom empirical potentials that can satisfactorily represent the known crystal phase structures of the organic phloroglucinol (Phg) (C6H6O3) and inorganic hexachlorocyclotriphosphazene (HCCP) (N3P3Cl6) molecules at several temperatures. It has been proposed that HCCP-Phg network polymers could act as efficient H2 barrier layers in hydrogen storage tanks for cars. However, essential requirements for modeling such networks are adequate representations of both monomers in their pure dense phases using a common form of force field. Tests of their ability to maintain stable crystal structures have been made using classical molecular dynamics (MD) simulations on large 800-molecule supercells. The force fields have been optimized to match the densities calculated from the experimental unit cell dimensions at ambient conditions as well as the intermolecular potential energy, as estimated from experimental enthalpies of sublimation. For Phg, the crystal structure is stabilized by a network of hydrogen bonds and the Coulombic interactions contribute to over 55% of the total intermolecular potential energy. In contrast, the crystal structure of HCCP is intrinsically stabilized by the van der Waals terms. Both optimized force fields reproduce very well the orthorhombic symmetry of their respective crystals under constant-pressure NPT conditions. The model parameters tuned at ambient temperature also give reasonable agreement with crystallographic data at lower temperatures.
Collapse
Affiliation(s)
- David Brown
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Méryll Barraco
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
- Films in Fluids, Department of Science and Technology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- DPI, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Nieck E Benes
- Films in Fluids, Department of Science and Technology, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sylvie Neyertz
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| |
Collapse
|
3
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
4
|
Radmanesh F, Tena A, Sudhölter EJR, Hempenius MA, Benes NE. Nonaqueous Interfacial Polymerization-Derived Polyphosphazene Films for Sieving or Blocking Hydrogen Gas. ACS APPLIED POLYMER MATERIALS 2023; 5:1955-1964. [PMID: 36935655 PMCID: PMC10012169 DOI: 10.1021/acsapm.2c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A series of cyclomatrix polyphosphazene films have been prepared by nonaqueous interfacial polymerization (IP) of small aromatic hydroxyl compounds in a potassium hydroxide dimethylsulfoxide solution and hexachlorocyclotriphosphazene in cyclohexane on top of ceramic supports. Via the amount of dissolved potassium hydroxide, the extent of deprotonation of the aromatic hydroxyl compounds can be changed, in turn affecting the molecular structure and permselective properties of the thin polymer networks ranging from hydrogen/oxygen barriers to membranes with persisting hydrogen permselectivities at high temperatures. Barrier films are obtained with a high potassium hydroxide concentration, revealing permeabilities as low as 9.4 × 10-17 cm3 cm cm-2 s-1 Pa-1 for hydrogen and 1.1 × 10-16 cm3 cm cm-2 s-1 Pa-1 for oxygen. For films obtained with a lower concentration of potassium hydroxide, single gas permeation experiments reveal a molecular sieving behavior, with a hydrogen permeance of around 10-8 mol m-2 s-1 Pa-1 and permselectivities of H2/N2 (52.8), H2/CH4 (100), and H2/CO2 (10.1) at 200 °C.
Collapse
Affiliation(s)
- Farzaneh Radmanesh
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Alberto Tena
- The
European Membrane Institute Twente, Faculty of Science and Technology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
- Surfaces
and Porous Materials (SMAP), Associated Research Unit to CSIC, UVainnova
Bldg, Po de Belén 11 and Institute of Sustainable Processes
(ISP), Dr. Mergelina S/n, University of
Valladolid, 47071 Valladolid, Spain
| | - Ernst J. R. Sudhölter
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Organic
Materials & Interfaces, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, 2629 HZ Delft, The Netherlands
| | - Mark A. Hempenius
- Sustainable
Polymer Chemistry, Faculty of Science and Technology, MESA Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Nieck E. Benes
- Membrane
Science and Technology Cluster, Faculty of Science and Technology,
MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Yang H, Gladich I, Boucly A, Artiglia L, Ammann M. Orcinol and resorcinol induce local ordering of water molecules near the liquid-vapor interface. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1277-1291. [PMID: 36561553 PMCID: PMC9648629 DOI: 10.1039/d2ea00015f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
Abstract
Resorcinol and orcinol are simple members of the family of phenolic compounds present in particulate matter in the atmosphere; they are amphiphilic in nature and thus surface active in aqueous solution. Here, we used X-ray photoelectron spectroscopy to probe the concentration of resorcinol (benzene-1,3-diol) and orcinol (5-methylbenzene-1,3-diol) at the liquid-vapor interface of aqueous solutions. Qualitatively consistent surface propensity and preferential orientation was obtained by molecular dynamics simulations. Auger electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to probe the hydrogen bonding (HB) structure, indicating that the local structure of water molecules near the surface of the resorcinol and orcinol solutions tends towards a larger fraction of tetrahedrally coordinated molecules than observed at the liquid-vapor interface of pure water. The order parameter obtained from the molecular dynamics simulations confirm these observations. This effect is being discussed in terms of the formation of an ordered structure of these molecules at the surface leading to patterns of hydrated OH groups with distances among them that are relatively close to those in ice. These results suggest that the self-assembly of phenolic species at the aqueous solution-air interface could induce freezing similar to the case of fatty alcohol monolayers and, thus, be of relevance for ice nucleation in the atmosphere. We also attempted at looking at the changes of the O 1b1, 3a2 and 1b2 molecular orbitals of liquid water, which are known to be sensitive to the HB structure as well, in response to the presence of resorcinol and orcinol. However, these changes remained negligible within uncertainty for both experimentally obtained valence spectra and theoretically calculated density of states.
Collapse
Affiliation(s)
- Huanyu Yang
- Laboratory of Environmental Chemistry, Paul Scherrer Institut5232 VilligenSwitzerland,Institute of Atmospheric and Climate Science, ETH Zürich8092 ZürichSwitzerland
| | - Ivan Gladich
- Qatar Environment & Energy Research Institute, Hamad Bin Khalifa UniversityP.O. Box 34110DohaQatar
| | - Anthony Boucly
- Laboratory of Environmental Chemistry, Paul Scherrer Institut5232 VilligenSwitzerland,Electrochemistry Laboratory, Paul Scherrer Institut5232 VilligenSwitzerland
| | - Luca Artiglia
- Laboratory of Environmental Chemistry, Paul Scherrer Institut5232 VilligenSwitzerland,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut5232 VilligenSwitzerland
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institut5232 VilligenSwitzerland
| |
Collapse
|
6
|
Kobylarczyk J, Pakulski P, Potępa I, Podgajny R. Manipulation of the cyanido-bridged Fe2W2 rhombus in the crystalline state: Co-crystallization, desolvation and thermal treatment. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Supramolecular cis-“Bis(Chelation)” of [M(CN)6]3− (M = CrIII, FeIII, CoIII) by Phloroglucinol (H3PG). Molecules 2022; 27:molecules27134111. [PMID: 35807353 PMCID: PMC9268030 DOI: 10.3390/molecules27134111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure–properties–application schemes. Co-crystal salts involving anionic d-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh4)3[M(CN)6](H3PG)2·2MeCN (M = Cr, 1; Fe, 2; Co 3; H3PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, 1–3 were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, 57Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)6]3−;(H3PG)2}∞ network features original {[M(CN)6]3−;(H3PG)4} supramolecular cis-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CN⋅⋅⋅HO-)2Ar, {[M(CN)6]3−;H2PGH}, between cis-oriented cyanido ligands of [M(CN)6]3− and resorcinol-like face of H3PG, and (ii) two single hydrogen bonds M-CN⋅⋅⋅HO-Ar, {[M(CN)6]3−;HPGH2}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)6]3− by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network.
Collapse
|
8
|
Zenkevich IG, Derouiche A, Nikitina DA. Detection of organic hydrates in reversed phase high performance liquid chromatography using recurrent approximation of their retention times. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1998905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Igor G. Zenkevich
- Institute for Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Abdennour Derouiche
- Institute for Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Darja A. Nikitina
- Institute for Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
9
|
Braun DE, Hald P, Kahlenberg V, Griesser UJ. Expanding the Solid Form Landscape of Bipyridines. CRYSTAL GROWTH & DESIGN 2021; 21:7201-7217. [PMID: 34867088 PMCID: PMC8640990 DOI: 10.1021/acs.cgd.1c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Two bipyridine isomers (2,2'- and 4,4'-), used as coformers and ligands in coordination chemistry, were subjected to solid form screening and crystal structure prediction. One anhydrate and a formic acid disolvate were crystallized for 2,2'-bipyridine, whereas multiple solid-state forms, anhydrate, dihydrate, and eight solvates with carboxylic acids, including a polymorphic acetic acid disolvate, were found for the 4,4'-isomer. Seven of the solvates are reported for the first time, and structural information is provided for six of the new solvates. All twelve solid-state forms were investigated comprehensively using experimental [thermal analysis, isothermal calorimetry, X-ray diffraction, gravimetric moisture (de)sorption, and IR spectroscopy] and computational approaches. Lattice and interaction energy calculations confirmed the thermodynamic driving force for disolvate formation, mediated by the absence of H-bond donor groups of the host molecules. The exposed location of the N atoms in 4,4'-bipyridine facilitates the accommodation of bigger carboxylic acids and leads to higher conformational flexibility compared to 2,2'-bipyridine. For the 4,4'-bipyridine anhydrate ↔ hydrate interconversion hardly any hysteresis and a fast transformation kinetics are observed, with the critical relative humidity being at 35% at room temperature. The computed anhydrate crystal energy landscapes have the 2,2'-bipyridine as the lowest energy structure and the 4,4'-bipyridine among the low-energy structures and suggest a different crystallization behavior of the two compounds.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Patricia Hald
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- Institute
of Mineralogy and Petrography, University
of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Impact of deep eutectic solvents and their constituents on the aqueous solubility of phloroglucinol dihydrate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zenkevich IG, Nikitina DA, Deruish A. Formation and Chromatographic Detection of Organic Compound Hydrates. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu W, Hou B, Huang X, Zong S, Zheng Z, Li S, Zhao B, Liu S, Zhou L, Hao H. Influence of intermolecular interactions and crystal structure on desolvation mechanisms of solvates. CrystEngComm 2021. [DOI: 10.1039/d1ce00284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The desolvation processes of the solvates were systematically investigated by various analytical techniques and were analyzed based on the intermolecular interactions, molecular networks, void types, proportion of voids and packing patterns.
Collapse
Affiliation(s)
- Wanying Liu
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Baohong Hou
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Shuyi Zong
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Zhixin Zheng
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Shuyu Li
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Bugui Zhao
- Shandong Lukang Pharmaceutical Group Co., Ltd
- China
| | | | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
13
|
Braun DE. The trimorphism of 3-hydroxybenzoic acid: an experimental and computational study. CrystEngComm 2021. [DOI: 10.1039/d1ce00159k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computationally driven experimental search for polymorphs of 3-hydroxybenzoic acid confirmed the third form and the small energy differences between the polymorphs.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
14
|
Okura R, Uchiyama H, Kadota K, Tozuka Y. Hydrogen bonding from crystalline water mediates the hydration/dehydration of mequitazine glycolate. CrystEngComm 2021. [DOI: 10.1039/d1ce00543j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparison of crystal structures, dynamic vapor adsorption measurements, lattice energy calculations and structural optimization of the dehydration model were used to evaluate the hydration-dehydration behavior.
Collapse
Affiliation(s)
- Ryuhei Okura
- Department of Formulation Design and Pharmaceutical Technology
- Osaka Medical and Pharmaceutical University
- Takatsuki-shi
- Japan
- Department of Product Development Laboratories
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology
- Osaka Medical and Pharmaceutical University
- Takatsuki-shi
- Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology
- Osaka Medical and Pharmaceutical University
- Takatsuki-shi
- Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology
- Osaka Medical and Pharmaceutical University
- Takatsuki-shi
- Japan
| |
Collapse
|
15
|
Naullage PM, Metya AK, Molinero V. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. J Chem Phys 2020; 153:174106. [DOI: 10.1063/5.0021631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Atanu K. Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
16
|
Cocrystals of Isoniazid with Polyphenols: Mechanochemical Synthesis and Molecular Structure. CRYSTALS 2020. [DOI: 10.3390/cryst10070569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isoniazid is used as anti-tuberculosis drug which possesses functional groups capable of forming hydrogen bonds. A series of cocrystals of isoniazid (INH) with polyphenolic coformers such as catechol (CAT), orcinol (ORC), 2-methylresorcinol (MER), pyrogallol (PYR), and phloroglucinol (PLG) were prepared by solvent-assisted grinding. Powder cocrystals were characterized by infrared (IR) spectroscopy and X-ray powder diffraction. The crystal structure of the cocrystals revealed the unexpected hydration of the INH-MER cocrystal and the preference of the (phenol) O–H∙∙∙N (pyridine) and (terminal) N-H∙∙∙O (phenol) heterosynthons in the stabilization of the structures. The supramolecular architecture of the cocrystals is affected by the conformation and the substitution pattern of the hydroxyl groups of the polyphenols.
Collapse
|
17
|
Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1911-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Pettersen A, Putra OD, Light ME, Namatame Y. A peculiar dehydration and solid–solid phase transition of the active pharmaceutical ingredient AZD9898 based on in situ single crystal-to-single crystal transformations. CrystEngComm 2020. [DOI: 10.1039/d0ce00276c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isostructural dehydration from form A hydrate to form B, and solid–solid phase transition from form B to C of AZD9898 were revealed by in situ single crystal-to-single crystal transformations.
Collapse
Affiliation(s)
- Anna Pettersen
- Early Product Development and Manufacturing
- Pharmaceutical Sciences
- BioPharmaceuticals R&D
- AstraZeneca Gothenburg
- Mölndal SE-431 83
| | - Okky Dwichandra Putra
- New Modality and Parenteral Development
- Pharmaceutical Technology and Development
- AstraZeneca Gothenburg
- Mölndal SE-431 83
- Sweden
| | - Mark E. Light
- UK National Crystallography Service
- School of Chemistry
- Faculty of Engineering and Physical Sciences
- University of Southampton
- SO17 1BJ Southampton
| | | |
Collapse
|
19
|
Shi ZP, Ren GB, Qi MH, Li Z, Xu XY. Design, screening, and properties of novel solvates of azoxystrobin based on isomorphism. CrystEngComm 2020. [DOI: 10.1039/d0ce00204f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The molecular size of the solvent is important for the formation of isomorphic azoxystrobin solvates.
Collapse
Affiliation(s)
- Zhi-Ping Shi
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| | - Guo-Bin Ren
- State Key Laboratory of Bioreactor Engineering
- Engineering Research Centre of Pharmaceutical Process Chemistry
- Ministry of Education
- Laboratory of Pharmaceutical Crystal Engineering & Technology
- School of Pharmacy
| | - Ming-Hui Qi
- State Key Laboratory of Bioreactor Engineering
- Engineering Research Centre of Pharmaceutical Process Chemistry
- Ministry of Education
- Laboratory of Pharmaceutical Crystal Engineering & Technology
- School of Pharmacy
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| | - Xiao-Yong Xu
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| |
Collapse
|
20
|
Otukile KP, Kabanda MM. A DFT mechanistic and kinetic study on the reaction of phloroglucinol with •OH in different media: Hydrogen atom transfer versus oxidation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A theoretical study on the reaction of phloroglucinol with •OH has been performed with the aim of elucidating the geometric, energetic and kinetic properties of the reaction as well as identifying the preferred reaction pathway. Three reaction mechanisms have been considered, namely, direct hydrogen atom abstraction, addition–elimination mechanism in the absence and in the presence of a base catalyst and oxidation mechanism in the absence and in the presence of O2. The study has been performed using the DFT/M06[Formula: see text]2X, DFT/BHHLYP and DFT/MPW1K methods in conjunction with either the 6-31++G(d,p) or the 6-311++G(3df,2p) basis set. The energetic parameters are influenced by the type of function utilized and the media in which the calculation is done. The direct hydrogen abstraction mechanism provides the smallest branching ratio with respect to the •OH addition mechanisms. The PG + •OH reaction under atmospheric conditions saturated with O2 would predominantly form tetrahydroxybenzene; the predominant product within the biological system would largely depend on physiological conditions; under pH [Formula: see text] 7 and with oxygen dissolved within the biological system, the preferred product would be tetrahydroxybenzene; however, if the reaction takes place in some part of the biological system where the pH [Formula: see text] 7, the preferred product would be the phenoxyl radical.
Collapse
Affiliation(s)
- Kgalaletso P. Otukile
- Department of Chemistry, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X2046, Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X 2046, Mmabatho 2735, South Africa
| | - Mwadham M. Kabanda
- Department of Chemistry, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X2046, Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agriculture Sciences, North–West University, Private Bag X 2046, Mmabatho 2735, South Africa
| |
Collapse
|
21
|
Putra OD, Pettersen A, Nilsson Lill SO, Umeda D, Yonemochi E, Nugraha YP, Uekusa H. Capturing a new hydrate polymorph of amodiaquine dihydrochloride dihydrate via heterogeneous crystallisation. CrystEngComm 2019. [DOI: 10.1039/c8ce01720d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new polymorph of amodiaquine dihydrochloride dihydrate was obtained via heterogenous crystallization. This new polymorph showed difference in two-dimensional sheet structure compare to previously known polymorph.
Collapse
Affiliation(s)
- Okky Dwichandra Putra
- Pharmaceutical Development
- AstraZeneca Gothenburg
- Mölndal SE-431 83
- Sweden
- Department of Chemistry
| | - Anna Pettersen
- Early Product Development
- Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca Gothenburg
- Mölndal SE-431 83
| | - Sten O. Nilsson Lill
- Early Product Development
- Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca Gothenburg
- Mölndal SE-431 83
| | - Daiki Umeda
- School of Pharmacy and Pharmaceutical Sciences
- Hoshi University
- Tokyo 142-8501
- Japan
| | - Etsuo Yonemochi
- School of Pharmacy and Pharmaceutical Sciences
- Hoshi University
- Tokyo 142-8501
- Japan
| | | | - Hidehiro Uekusa
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo
- Japan
| |
Collapse
|
22
|
Mechanochemical Synthesis and Crystal Structure of the Lidocaine-Phloroglucinol Hydrate 1:1:1 Complex. CRYSTALS 2018. [DOI: 10.3390/cryst8030130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Curtis F, Li X, Rose T, Vázquez-Mayagoitia Á, Bhattacharya S, Ghiringhelli LM, Marom N. GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction. J Chem Theory Comput 2018; 14:2246-2264. [PMID: 29481740 DOI: 10.1021/acs.jctc.7b01152] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.
Collapse
Affiliation(s)
- Farren Curtis
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Xiayue Li
- Google , Mountain View , California 94030 , United States.,Department of Materials Science and Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Timothy Rose
- Department of Materials Science and Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Álvaro Vázquez-Mayagoitia
- Argonne Leadership Computing Facility , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Saswata Bhattacharya
- Department of Physics , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Luca M Ghiringhelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 , Berlin , Germany
| | - Noa Marom
- Department of Physics , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States.,Department of Materials Science and Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
24
|
Braun DE, Lampl M, Wurst K, Kahlenberg V, Griesser UJ, Schottenberger H. Computational and analytical approaches for investigating hydrates: the neat and hydrated solid-state forms of 3-(3-methylimidazolium-1-yl)propanoate. CrystEngComm 2018. [DOI: 10.1039/c8ce01565a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interconversion pathways and stability ranges of OOCEMIM solid-state forms have been elucidated.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Martin Lampl
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography
- University of Innsbruck
- 6020 Innsbruck
- Austria
| | | | - Herwig Schottenberger
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
25
|
Braun DE, Kahlenberg V, Griesser UJ. Experimental and Computational Hydrate Screening: Cytosine, 5-Flucytosine and Their Solid Solution. CRYSTAL GROWTH & DESIGN 2017; 17:4347-4364. [PMID: 30344452 PMCID: PMC6193535 DOI: 10.1021/acs.cgd.7b00664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The structural, temperature- and moisture dependent stability features of cytosine and 5-flucytosine monohydrates, two pharmaceutically important compounds, were rationalized using complementary experimental and computational approaches. Moisture sorption/desorption, water activity, thermal analysis and calorimetry were applied to determine the stability ranges of hydrate ↔ anhydrate systems, while X-ray diffraction, IR spectroscopy and crystal structure prediction provided the molecular level understanding. At 25 °C, the critical water activity for the cytosine hydrate ↔ anhydrate system is ~0.43 and for 5-flucytosine ~0.41. In 5-flucytosine the water molecules are arranged in open channels, therefore the kinetic desorption data, dehydration < 40% relative humidity (RH), conform with the thermodynamic data, whereas for the cytosine isolated site hydrate dehydration was observed at RH < 15%. Peritectic dissociation temperatures of the hydrates were measured to be 97 °C and 84.2 °C for cytosine and 5-flucytosine, respectively, and the monohydrate to anhydrate transition enthalpies to be around 10 kJ mol-1. Computed crystal energy landscapes not only revealed that the substitution of C5 (H or F) controls the packing and properties of cytosine/5-flucytosine solid forms, but also have enabled the finding of a monohydrate solid solution of the two substances which shows increased thermal- and moisture-dependent stability compared to 5-flucytosine monohydrate.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Micheletti G, Boga C, Forlani L, Del Vecchio E, Zanna N, Mazzanti A, Monari M. Hydroxy- and Methoxybenzene Derivatives with Benzenediazonium Salts ― Chemical Behavior and Tautomeric Problems. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriele Micheletti
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Carla Boga
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Luciano Forlani
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Erminia Del Vecchio
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Nicola Zanna
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari”; ALMA MATER STUDIORUM - Università di Bologna; Viale del Risorgimento 4 40136 Bologna Italy
| | - Magda Monari
- Department of Chemistry “G. Ciamician”; ALMA MATER STUDIORUM - Università di Bologna; Via Selmi, 2 40125 Bologna Italy
| |
Collapse
|
27
|
Noro SI, Ochi R, Kubo K, Nakamura T. Reversible Structural Changes of Strong Hydrogen Bond-Supported Organic Networks Using Neutral 3,5-Pyridinedicarboxylic Acid N-oxide through Solvent Release/Uptake. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Braun DE, Griesser UJ. Why do Hydrates (Solvates) Form in Small Neutral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine. CRYSTAL GROWTH & DESIGN 2016; 16:6405-6418. [PMID: 28670205 PMCID: PMC5486441 DOI: 10.1021/acs.cgd.6b01078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Computational methods were used to generate and explore the crystal structure landscapes of the two alkaloids strychnine and brucine. The computed structures were analyzed and rationalized by correlating the modelling results to a rich pool of available experimental data. Despite their structural similarity, the two compounds show marked differences in the formation of solid forms. For strychnine only one anhydrous form is reported in the literature and two new solvates from 1,4-dioxane were detected in the course of this work. In contrast, 22 solid forms are so far known to exist for brucine, comprising two anhydrates, four hydrates (HyA - HyC and a 5.25-hydrate), twelve solvates (alcohols and acetone) and four heterosolvates (mixed solvates with water and alcohols). For strychnine it is hard to produce any solid form other than the stable anhydrate while the formation of specific solid state forms of brucine is governed by a complex interplay between temperature and relative humidity/water activity and it is rather a challenging to avoid hydrate formation. Differences in crystal packing and the high tendency for brucine to form hydrates are not intuitive from the molecular structure alone, as both molecules have hydrogen bond acceptor groups but lack hydrogen bond donor groups. Only the evaluation of the crystal energy landscapes, in particular the close-packed crystal structures and high-energy open frameworks containing voids of molecular (water) dimensions, allowed us to unravel the diverse solid state behavior of the two alkaloids at a molecular level. In this study we demonstrate that expanding the analysis of anhydrate crystal energy landscapes to higher energy structures and calculating the solvent-accessible volume can be used to estimate non-stoichiometric or channel hydrate (solvate) formation, without explicitly computing the hydrate/solvate crystal energy landscapes.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Braun DE, Griesser UJ. Stoichiometric and Non-Stoichiometric Hydrates of Brucine. CRYSTAL GROWTH & DESIGN 2016; 16:6111-6121. [PMID: 28670204 PMCID: PMC5486439 DOI: 10.1021/acs.cgd.6b01231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The complex interplay of temperature and water activity (aw) / relative humidity (RH) on the solid form stability and transformation pathways of three hydrates (HyA, HyB and HyC), an isostructural dehydrate (HyAdehy ), an anhydrate (AH) and amorphous brucine has been elucidated and the transformation enthalpies quantified. The dihydrate (HyA) shows a non-stoichimetric (de)hydration behavior at RH < 40% at 25 °C and the removal of the water molecules results in an isomorphic dehydrate structure. The metastable dehydration product converts to AH upon storage at driest conditions or to HyA if exposed to moisture. HyB is a stoichiometric tetrahydrate. The loss of the water molecules causes HyB to collapse to an amorphous phase. Amorphous brucine transforms to AH at RH < 40% RH and a mixture of hydrated phases at higher RH values. The third hyrdate (HyC) is only stable at RH ≥ 55% at 25 °C and contains 3.65 to 3.85 mole equivalent of water. Dehydration of HyC occurs in one step at RH < 55% at 25 °C or upon heating and AH is obtained. The AH is the thermodynamically most stable phase of brucine at RH < 40% at 25 °C. Depending on the conditions, temperature and aw, each of the three hydrates becomes the thermodynamically most stable form. This study demonstrates the importance of applying complimentary analytical techniques and appropriate approaches for understanding the stability ranges and transition behavior between the solid forms of compounds with multiple hydrates.
Collapse
|
30
|
Braun DE, Oberacher H, Arnhard K, Orlova M, Griesser UJ. 4-Aminoquinaldine monohydrate polymorphism: Prediction and impurity aided discovery of a difficult to access stable form. CrystEngComm 2016; 18:4053-4067. [PMID: 28649176 PMCID: PMC5482396 DOI: 10.1039/c5ce01758k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Crystal structure prediction studies indicated the existence of an unknown high density monohydrate structure (Hy1B°) as global energy minimum for 4-aminoquinaldine (4-AQ). We thus performed an interdisciplinary experimental and computational study elucidating the crystal structures, solid form inter-relationships, kinetic and thermodynamic stabilities of the stable anhydrate (AH I°), the kinetic monohydrate (Hy1A ) and this novel monohydrate polymorph (Hy1B°) of 4-AQ. The crystal structure of Hy1B° was determined by combining laboratory powder X-ray diffraction data and ab initio calculations. Dehydration studies with differential scanning calorimetry and solubility measurements confirmed the result of the lattice energy calculations, which identified Hy1B° as the thermodynamically most stable hydrate form. At 25 °C the equilibrium of the 4-AQ hydrate/anhydrate system was observed at an aw (water activity) of 0.14. The finding of Hy1B° was complicated by the fact that the metastable but kinetically stable Hy1A shows a higher nucleation and growth rate. The presence of an impurity in an available 4-AQ sample facilitated the nucleation of Hy1B°, whose crystallisation is favored under hydrothermal conditions. The value of combining experimental with theoretical studies in hydrate screening and characterisation, as well as the reasons for hydrate formation in 4-AQ, are discussed.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstr. 44, 6020 Innsbruck, Austria
| | - Kathrin Arnhard
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstr. 44, 6020 Innsbruck, Austria
| | - Maria Orlova
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Braun DE, Gelbrich T, Wurst K, Griesser UJ. Computational and Experimental Characterization of Five Crystal Forms of Thymine: Packing Polymorphism, Polytypism/Disorder and Stoichiometric 0.8-Hydrate. CRYSTAL GROWTH & DESIGN 2016; 16:3480-3496. [PMID: 28663717 PMCID: PMC5486440 DOI: 10.1021/acs.cgd.6b00459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
New polymorphs of thymine emerged in an experimental search for solid forms, which was guided by the computationally generated crystal energy landscape. Three of the four anhydrates (AH) are homeoenergetic (A° - C) and their packing modes differ only in the location of oxygen and hydrogen atoms. AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Anhydrates AHs A° and B are ordered phases, whereas AH C shows disorder (X-ray diffuse scattering). Analysis of the crystal energy landscape for alternative AH C hydrogen bonded ribbon motifs identified a number of different packing modes, whose 3D structures were calculated to deviate by less than 0.24 kJ mol-1 in lattice energy. These structures provide models for stacking faults. The three anhydrates A° - C show strong similarity in their powder X-ray diffraction, thermoanalytical and spectroscopic (IR and Raman) characteristics. The already known anhydrate AH A° was identified as the thermodynamically most stable form at ambient conditions; AH B and AH C are metastable but show high kinetic stability. The hydrate of thymine is stable only at water activities (aw) > 0.95 at temperatures ≤ 25 °C. It was found to be a stoichiometric hydrate despite being a channel hydrate with an unusual water:thymine ratio of 0.8:1. Depending on the dehydration conditions, either AH C or AH D is obtained. The hydrate is the only known precursor to AH D. This study highlights the value and complementarity of simultaneous explorations of computationally and experimentally generated solid form landscapes of a small molecule anhydrate ↔ hydrate system.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Thomas Gelbrich
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
32
|
Braun DE, Nartowski K, Khimyak Y, Morris KR, Byrn SR, Griesser UJ. Structural Properties, Order-Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms. Mol Pharm 2016; 13:1012-29. [PMID: 26741914 PMCID: PMC4783786 DOI: 10.1021/acs.molpharmaceut.5b00856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Karol
P. Nartowski
- School
of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Yaroslav
Z. Khimyak
- School
of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Kenneth R. Morris
- Lachman
Institute for Pharmaceutical Analysis, Arnold & Marie Schwartz
College of Pharmacy and Health Sciences, Long Island University—Brooklyn Campus, 75 DeKalb Avenue, Brooklyn, New York 11201, United States
| | - Stephen R. Byrn
- Department
of Industrial and Physical Pharmacy, Purdue
University, 575 Stadium
Mall Drive, West Lafayette, Indiana 47906, United
States
| | - Ulrich J. Griesser
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Izutsu KI, Koide T, Takata N, Ikeda Y, Ono M, Inoue M, Fukami T, Yonemochi E. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem Pharm Bull (Tokyo) 2016; 64:1421-1430. [DOI: 10.1248/cpb.c16-00233] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences
| | | | - Yukihiro Ikeda
- Analytical Development Laboratories, CMC Center, Takeda Pharmaceutical Co., Ltd
| | - Makoto Ono
- Analytical & Quality Evaluation Research Laboratories, Daiichi-Sankyo Co., Ltd
| | - Motoki Inoue
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Etsuo Yonemochi
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
34
|
Braun DE, Koztecki LH, McMahon JA, Price SL, Reutzel-Edens SM. Navigating the Waters of Unconventional Crystalline Hydrates. Mol Pharm 2015; 12:3069-88. [PMID: 26075319 PMCID: PMC4525282 DOI: 10.1021/acs.molpharmaceut.5b00357] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Elucidating the crystal structures,
transformations, and thermodynamics
of the two zwitterionic hydrates (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic
acid (DB7) rationalizes the complex interplay of temperature, water
activity, and pH on the solid form stability and transformation pathways
to three neutral anhydrate polymorphs (Forms I, II°, and III).
HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it
to collapse to an amorphous phase, frequently concomitantly nucleating
the stable anhydrate Forms I and II°. Hy2 is a stoichiometric
dihydrate and the only known precursor to Form III, a high energy
disordered anhydrate, with the level of disorder depending on the
drying conditions. X-ray crystallography, solid state NMR, and H/D
exchange experiments on highly crystalline phase pure samples obtained
by exquisite control over crystallization, filtration, and drying
conditions, along with computational modeling, provided a molecular
level understanding of this system. The slow rates of many transformations
and sensitivity of equilibria to exact conditions, arising from its
varying static and dynamic disorder and water mobility in different
phases, meant that characterizing DB7 hydration in terms of simplified
hydrate classifications was inappropriate for developing this pharmaceutical.
Collapse
Affiliation(s)
- Doris E Braun
- †Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Lien H Koztecki
- §Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | - Sarah L Price
- ‡Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | | |
Collapse
|
35
|
Braun DE, Gelbrich T, Kahlenberg V, Griesser UJ. Solid state forms of 4-aminoquinaldine - From void structures with and without solvent inclusion to close packing. CrystEngComm 2015; 17:2504-2516. [PMID: 26726294 PMCID: PMC4693969 DOI: 10.1039/c5ce00118h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymorphs of 4-aminoquinaldine (4-AQ) have been predicted in silico and experimentally identified and characterised. The two metastable forms, AH (anhydrate) II and AH III, crystallise in the trigonal space group [Formula: see text] and are less densely packed than the thermodynamically most stable phase AH I° (P21/c ). AH II can crystallise and exist both, as a solvent inclusion compound and as an unsolvated phase. The third polymorph, AH III, is exclusively obtained by desolvation of a carbon tetrachloride solvate. Theoretical calculations correctly estimated the experimental 0K stability order, confirmed that AH II can exist without solvents, gave access to the AH III structure, and identified that there exists a subtle balance between close packing and number of hydrogen bonding interactions in the solid state of anhydrous 4-AQ. Furthermore, the prevalence of void space and solvent inclusion in [Formula: see text] structures is discussed.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Thomas Gelbrich
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Yamada S, Katsuki A, Nojiri Y, Tokugawa Y. Vapochromism associated with the changes in the molecular arrangement of organic crystals. CrystEngComm 2015. [DOI: 10.1039/c4ce01314j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of yellow anhydrate organic crystals to water vapor gave red hydrate crystals with significant changes in the molecular arrangement.
Collapse
Affiliation(s)
- Shinji Yamada
- Department of chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo 112-8610, Japan
| | - Ayaka Katsuki
- Department of chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo 112-8610, Japan
| | - Yuka Nojiri
- Department of chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo 112-8610, Japan
| | - Yoko Tokugawa
- Department of chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo 112-8610, Japan
| |
Collapse
|
37
|
|
38
|
Braun DE, Orlova M, Griesser U. Creatine: Polymorphs Predicted and Found. CRYSTAL GROWTH & DESIGN 2014; 14:4895-4900. [PMID: 26722225 PMCID: PMC4693963 DOI: 10.1021/cg501159c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrate and anhydrate crystal structure prediction (CSP) of creatine (CTN), a heavily used, badly water soluble, zwitterionic compound, has enabled the finding and characterization of its anhydrate polymorphs, including the thermodynamic room temperature form. Crystal structures of the novel forms were determined by combining laboratory powder X-ray diffraction data and ab initio generated structures. The computational method not only revealed all experimental forms but predicted the correct stability order, which was experimentally confirmed by measurements of the heat of hydration.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy and Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
- Tel: +43(0)512 507 58653; E-mail:
| | - Maria Orlova
- Institute of Pharmacy and Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich
J. Griesser
- Institute of Pharmacy and Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Braun DE, Gelbrich T, Kahlenberg V, Griesser UJ. Insights into hydrate formation and stability of morphinanes from a combination of experimental and computational approaches. Mol Pharm 2014; 11:3145-63. [PMID: 25036525 PMCID: PMC4685752 DOI: 10.1021/mp500334z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Morphine, codeine, and ethylmorphine
are important drug compounds
whose free bases and hydrochloride salts form stable hydrates. These
compounds were used to systematically investigate the influence of
the type of functional groups, the role of water molecules, and the
Cl– counterion on molecular aggregation and solid
state properties. Five new crystal structures have been determined.
Additionally, structure models for anhydrous ethylmorphine and morphine
hydrochloride dihydrate, two phases existing only in a very limited
humidity range, are proposed on the basis of computational dehydration
modeling. These match the experimental powder X-ray diffraction patterns
and the structural information derived from infrared spectroscopy.
All 12 structurally characterized morphinane forms (including structures
from the Cambridge Structural Database) crystallize in the orthorhombic
space group P212121. Hydrate formation results in higher dimensional hydrogen bond networks.
The salt structures of the different compounds exhibit only little
structural variation. Anhydrous polymorphs were detected for all compounds
except ethylmorphine (one anhydrate) and its hydrochloride salt (no
anhydrate). Morphine HCl forms a trihydrate and dihydrate. Differential
scanning and isothermal calorimetry were employed to estimate the
heat of the hydrate ↔ anhydrate phase transformations, indicating
an enthalpic stabilization of the respective hydrate of 5.7 to 25.6
kJ mol–1 relative to the most stable anhydrate.
These results are in qualitative agreement with static 0 K lattice
energy calculations for all systems except morphine hydrochloride,
showing the need for further improvements in quantitative thermodynamic
prediction of hydrates having water···water interactions.
Thus, the combination of a variety of experimental techniques, covering
temperature- and moisture-dependent stability, and computational modeling
allowed us to generate sufficient kinetic, thermodynamic and structural
information to understand the principles of hydrate formation of the
model compounds. This approach also led to the detection of several
new crystal forms of the investigated morphinanes.
Collapse
Affiliation(s)
- Doris E Braun
- Institute of Pharmacy, University of Innsbruck , Innrain 52c, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
40
|
Zencirci N, Griesser UJ, Gelbrich T, Kahlenberg V, Jetti RKR, Apperley DC, Harris RK. New solvates of an old drug compound (phenobarbital): structure and stability. J Phys Chem B 2014; 118:3267-80. [PMID: 24571055 DOI: 10.1021/jp409201v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solvent formation of phenobarbital, an important drug compound with an unusually complex polymorphic behavior, was studied in detail. Monosolvates with acetonitrile, nitromethane, dichloromethane, and 1,4-dioxane were produced and characterized by single-crystal and powder X-ray diffraction, thermoanalytical methods, FT-IR, Raman, and solid-state NMR spectroscopy. Thermal desolvation of these compounds yields mainly mixtures of polymorphs III, II, and I. At a low relative humidity (25 °C) the solvates transform to polymorph III, and at higher relative humidity the monohydrate and the metastable polymorphs IV and VI can be present as additional desolvation products. These results highlight the potential complexity of desolvation reactions and illustrate that a tight control of ambient conditions is a prerequisite for the production of phase-pure raw materials of drug compounds. Transformation in aqueous media results in the monohydrate. Below room temperature, the 1,4-dioxane monosolvate undergoes a reversible single-crystal-to-single-crystal phase transition due to the ordering/disordering of 50% of its solvent molecules. Dipolar-dephasing NMR experiments show that the solvent molecules are relatively mobile. Deuterium NMR spectra reinforce that conclusion for the dioxane solvent molecules. The crystal structure of an elusive 1,4-dioxane hemisolvate was also determined. This study clearly indicates the existence of "transient solvates" of phenobarbital. The formation of unstable phases of this kind must be considered in order to better understand how different solvents affect the crystallization of specific polymorphs.
Collapse
Affiliation(s)
- Neslihan Zencirci
- Institute of Pharmacy, University of Innsbruck , Innrain 52, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Braun DE, Bhardwaj RM, Arlin JB, Florence AJ, Kahlenberg V, Griesser UJ, Tocher DA, Price SL. Absorbing a Little Water: The Structural, Thermodynamic, and Kinetic Relationship between Pyrogallol and Its Tetarto-Hydrate. CRYSTAL GROWTH & DESIGN 2013; 13:4071-4083. [PMID: 24027438 PMCID: PMC3767201 DOI: 10.1021/cg4009015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/22/2013] [Indexed: 05/11/2023]
Abstract
The anhydrate and the stoichiometric tetarto-hydrate of pyrogallol (0.25 mol water per mol pyrogallol) are both storage stable at ambient conditions, provided that they are phase pure, with the system being at equilibrium at aw (water activity) = 0.15 at 25 °C. Structures have been derived from single crystal and powder X-ray diffraction data for the anhydrate and hydrate, respectively. It is notable that the tetarto-hydrate forms a tetragonal structure with water in channels, a framework that although stabilized by water, is found as a higher energy structure on a computationally generated crystal energy landscape, which has the anhydrate crystal structure as the most stable form. Thus, a combination of slurry experiments, X-ray diffraction, spectroscopy, moisture (de)sorption, and thermo-analytical methods with the computationally generated crystal energy landscape and lattice energy calculations provides a consistent picture of the finely balanced hydration behavior of pyrogallol. In addition, two monotropically related dimethyl sulfoxide monosolvates were found in the accompanying solid form screen.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck,
Austria
- Department
of Chemistry, University College London, 20 Gordon
Street, London WC1H 0AJ, U.K
| | - Rajni M. Bhardwaj
- Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Jean-Baptiste Arlin
- Institut Charles
Sadron (UPR22-CNRS), 23 rue du Loess, BP 84047, 67034
Strassbourg, Cedex, France
| | - Alastair J. Florence
- Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Volker Kahlenberg
- Institute of Mineralogy and
Petrography, University of Innsbruck, Innrain
52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck,
Austria
| | - Derek A. Tocher
- Department
of Chemistry, University College London, 20 Gordon
Street, London WC1H 0AJ, U.K
| | - Sarah L. Price
- Department
of Chemistry, University College London, 20 Gordon
Street, London WC1H 0AJ, U.K
| |
Collapse
|
42
|
Price SL. Why don't we find more polymorphs? ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2013; 69:313-28. [PMID: 23873056 DOI: 10.1107/s2052519213018861] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/08/2013] [Indexed: 05/11/2023]
Abstract
Crystal structure prediction (CSP) studies are not limited to being a search for the most thermodynamically stable crystal structure, but play a valuable role in understanding polymorphism, as shown by interdisciplinary studies where the crystal energy landscape has been explored experimentally and computationally. CSP usually produces more thermodynamically plausible crystal structures than known polymorphs. This article illustrates some reasons why: because (i) of approximations in the calculations, particularly the neglect of thermal effects (see §1.1); (ii) of the molecular rearrangement during nucleation and growth (see §1.2); (iii) the solid-state structures observed show dynamic or static disorder, stacking faults, other defects or are not crystalline and so represent more than one calculated structure (see §1.3); (iv) the structures are metastable relative to other molecular compositions (see §1.4); (v) the right crystallization experiment has not yet been performed (see §1.5) or (vi) cannot be performed (see §1.6) and the possibility (vii) that the polymorphs are not detected or structurally characterized (see §1.7). Thus, we can only aspire to a general predictive theory for polymorphism, as this appears to require a quantitative understanding of the kinetic factors involved in all possible multi-component crystallizations. For a specific molecule, analysis of the crystal energy landscape shows the potential complexity of its crystallization behaviour.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England.
| |
Collapse
|
43
|
Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL. Complex Polymorphic System of Gallic Acid-Five Monohydrates, Three Anhydrates, and over 20 Solvates. CRYSTAL GROWTH & DESIGN 2013; 13:19-23. [PMID: 23378823 PMCID: PMC3557919 DOI: 10.1021/cg301506x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/16/2012] [Indexed: 05/25/2023]
Abstract
We report the structure of the fifth monohydrate of gallic acid and two additional anhydrate polymorphs and evidence of at least 22 other solvates formed, many containing water and another solvent. This unprecedented number of monohydrate polymorphs and diversity of solid forms is consistent with the anhydrate and monohydrate crystal energy landscapes, showing both a wide range of packing motifs and also some structures differing only in proton positions. By aiding the solution of structures from powder X-ray diffraction data and guiding the screening, the computational studies help explain the complex polymorphism of gallic acid. This is industrially relevant, as the three anhydrates are stable at ambient conditions but hydration/dehydration behavior is very dependent on relative humidity and phase purity.
Collapse
Affiliation(s)
- Doris E. Braun
- Department of Chemistry, University College London, 20 Gordon Street, London
WC1H 0AJ, U.K
- Institute
of Pharmacy, University of Innsbruck, Innrain
52c, 6020 Innsbruck,
Austria
| | - Rajni M. Bhardwaj
- Strathclyde Institute
of Pharmacy
and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K
| | - Alastair J. Florence
- Strathclyde Institute
of Pharmacy
and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, U.K
| | - Derek A. Tocher
- Department of Chemistry, University College London, 20 Gordon Street, London
WC1H 0AJ, U.K
| | - Sarah L. Price
- Department of Chemistry, University College London, 20 Gordon Street, London
WC1H 0AJ, U.K
| |
Collapse
|
44
|
Soto VH, Alvarez M, Meijide F, Trillo JV, Antelo A, Jover A, Galantini L, Tato JV. Ice-like encapsulated water by two cholic acid moieties. Steroids 2012; 77:1228-32. [PMID: 22824290 DOI: 10.1016/j.steroids.2012.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/24/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Starting from the structure of ice (in which each water molecule is surrounded by other four water molecules forming a tetrahedron with a value of 4.51Å for the edge O-O distance), and the knowledge that this value also corresponds to the O7-O12 distance of the skeleton of cholic acid, it is hypothesized that two steroid cholic acid moieties, with an appropriate steroid-steroid distance and a belly-to-belly orientation, could encapsulate a single water molecule between them. To check this hypothesis two succinyl derivatives of cholic acid (a monomer and the related head-head dimer in which the succinyl group is the linking bridge) were designed. The expected "ice-like" structure is found in the crystal of the dimer. There is a hydrogen bond synergy between those participating in the "ice-like" structure, and those in which the bridge is involved with the O7-H hydroxy group and the side chain of the steroid.
Collapse
Affiliation(s)
- Victor H Soto
- Department of Chemistry, University of Costa Rica, San José, Costa Rica
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Raijada D, Bond AD, Larsen FH, Cornett C, Qu H, Rantanen J. Exploring the Solid-Form Landscape of Pharmaceutical Hydrates: Transformation Pathways of the Sodium Naproxen Anhydrate-Hydrate System. Pharm Res 2012; 30:280-9. [DOI: 10.1007/s11095-012-0872-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
46
|
Galland N, Kone S, Le Questel JY. Mapping of the interaction sites of galanthamine: a quantitative analysis through pairwise potentials and quantum chemistry. J Comput Aided Mol Des 2012; 26:1111-26. [PMID: 22972560 DOI: 10.1007/s10822-012-9602-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
A quantitative analysis of the interaction sites of the anti-Alzheimer drug galanthamine with molecular probes (water and benzene molecules) representative of its surroundings in the binding site of acetylcholinesterase (AChE) has been realized through pairwise potentials calculations and quantum chemistry. This strategy allows a full and accurate exploration of the galanthamine potential energy surface of interaction. Significantly different results are obtained according to the distances of approaches between the various molecular fragments and the conformation of the galanthamine N-methyl substituent. The geometry of the most relevant complexes has then been fully optimized through MPWB1K/6-31 + G(d,p) calculations, final energies being recomputed at the LMP2/aug-cc-pVTZ(-f) level of theory. Unexpectedly, galanthamine is found to interact mainly from its hydrogen-bond donor groups. Among those, CH groups in the vicinity of the ammonium group are prominent. The trends obtained provide rationales to the predilection of the equatorial orientation of the galanthamine N-methyl substituent for binding to AChE. The analysis of the interaction energies pointed out the independence between the various interaction sites and the rigid character of galanthamine. The comparison between the cluster calculations and the crystallographic observations in galanthamine-AChE co-crystals allows the validation of the theoretical methodology. In particular, the positions of several water molecules appearing as strongly conserved in galanthamine-AChE co-crystals are predicted by the calculations. Moreover, the experimental position and orientation of lateral chains of functionally important aminoacid residues are in close agreement with the ones predicted theoretically. Our study provides relevant information for a rational drug design of galanthamine based AChE inhibitors.
Collapse
Affiliation(s)
- Nicolas Galland
- UMR CNRS 6230, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UFR Sciences & Techniques, Université de Nantes, NANTES Cedex, France
| | | | | |
Collapse
|