1
|
Wang M, Lu H, Li B, Yang S, Su W. Research on the dielectric properties of flexible β-CD/PVDF all-organic films. Carbohydr Polym 2025; 349:122968. [PMID: 39643410 DOI: 10.1016/j.carbpol.2024.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
All-organic dielectric polymers are currently a hot topic in the study of dielectric materials. However, it is still challenging to improve the dielectric constant, breakdown strength, and energy storage density of materials simultaneously. This study used PVDF as the matrix, and β-CD/PVDF all-organic composite dielectric films were prepared using a solution blending method. The research found that after the introduction of β-Cyclodextrin (β-CD), the β-phase content of the polymer and the crystallinity of the films were 40.9 % and 48.96 %, respectively, which are 1.1 and 1.4 times that of pure PVDF. Improved microstructure significantly enhanced the dielectric performance and energy density of the composite films with β-CD. The composite films with β-CD with dielectric constant (εr), breakdown strength (Eb), and energy density reaching 12.35, 401.7 MV/m, and 6.11 J/cm3, respectively, which are 1.38, 1.1, and 1.3 times that of pure PVDF. This method provides a new pathway for preparing all-organic dielectric films with high dielectric constant, high breakdown strength, and high energy density.
Collapse
Affiliation(s)
- Ming Wang
- College of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Hongwei Lu
- College of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China.
| | - Bengang Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shijia Yang
- College of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Weitao Su
- College of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
2
|
Triolo A, Lo Celso F, Fourmentin S, Russina O. Liquid Structure Scenario of the Archetypal Supramolecular Deep Eutectic Solvent: Heptakis(2,6-di- O-methyl)-β-cyclodextrin/levulinic Acid. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9103-9110. [PMID: 37351462 PMCID: PMC10283020 DOI: 10.1021/acssuschemeng.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Indexed: 06/24/2023]
Abstract
The concept of supramolecular solvents has been recently introduced, and the extended liquid-state window accessible for mixtures of functionalized cyclodextrins (CDs) with hydrogen bond (HB) donor species, e.g., levulinic acid, led to the debut of supramolecular deep eutectic solvents (SUPRA-DES). These solvents retain CD's inclusion ability and complement it with enhanced solvation effectiveness due to an extended HB network. However, so far, these promising features were not rationalized in terms of a microscopic description, thus hindering a more complete capitalization. This is the first joint experimental and computational study on the archetypal SUPRA-DES: heptakis(2,6-di-O-methyl)-β-CD/levulinic acid (1:27). We used X-ray scattering to probe CD's aggregation level and molecular dynamics simulation to determine the nature of interactions between SUPRA-DES components. We discover that CDs are homogeneously distributed in bulk and that HB interactions, together with the electrostatic ones, play a major role in determining mutual interaction between components. However, dispersive forces act in synergy with HB to accomplish a fundamental task in hindering hydrophobic interactions between neighbor CDs and maintaining the system homogeneity. The mechanism of mutual solvation of CD and levulinic acid is fully described, providing fundamental indications on how to extend the spectrum of SUPRA-DES combinations. Overall, this study provides the key to interpreting structural organization and solvation tunability in SUPRA-DES to extend the range of sustainable applications for these new, unique solvents.
Collapse
Affiliation(s)
- Alessandro Triolo
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
| | - Fabrizio Lo Celso
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Physics and Chemistry, Università
di Palermo, Palermo 90133, Italy
| | - Sophie Fourmentin
- Unité
de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR
4492), Université du Littoral Côte
d’Opale (ULCO), 59140 Dunkerque, France
| | - Olga Russina
- Laboratorio
Liquidi Ionici, Istituto Struttura della
Materia-Consiglio Nazionale delle Ricerche (ISM-CNR), Rome 00133, Italy
- Department
of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
3
|
Zhao R, Bai X, Yang W, Fan K, Zhang H. Grafting (S)-2-Phenylpropionic Acid on Coordinatively Unsaturated Metal Centers of MIL-101(Al) Metal-Organic Frameworks for Improved Enantioseparation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8456. [PMID: 36499951 PMCID: PMC9740726 DOI: 10.3390/ma15238456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chiral metal-organic frameworks (cMOFs) are emerging chiral stationary phases for enantioseparation owing to their porosity and designability. However, a great number of cMOF materials show poor separation performance for chiral drugs in high-performance liquid chromatography (HPLC). The possible reasons might be the irregular shapes of MOFs and the low grafting degree of chiral ligands. Herein, MIL-101-Ppa@SiO2 was synthesized by a simple coordination post-synthetic modification method using (S)-(+)-2-Phenylpropionic acid and applied as the chiral stationary phase to separate chiral compounds by HPLC. NH2-MIL-101-Ppa@SiO2 prepared via covalent post-synthetic modification was used for comparison. The results showed that the chiral ligand density of MIL-101-Ppa@SiO2 was higher than that of NH2-MIL-101-Ppa@SiO2, and the MIL-101-Ppa@SiO2 column exhibited better chiral separation performance and structural stability. The binding affinities between MIL-101-Ppa@SiO2 and chiral compounds were simulated to prove the mechanism of the molecular interactions during HPLC. These results revealed that cMOFs prepared by coordination post-synthetic modification could increase the grafting degree and enhance the separation performance. This method can provide ideas for the synthesis of cMOFs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xueyan Bai
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kun Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Triolo A, Celso FL, Perez J, Russina O. Solubility and solvation features of native cyclodextrins in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 2022; 291:119622. [DOI: 10.1016/j.carbpol.2022.119622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
5
|
Li T, Guo R, Zong Q, Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr Polym 2022; 276:118644. [PMID: 34823758 DOI: 10.1016/j.carbpol.2021.118644] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The cyclodextrin (CD)-based supramolecular nanomedicines have attracted growing interest because of their superior characteristics, including desirable biocompatibility, low toxicity, unique molecular structure and easy functionalization. The smart structures of CD impart host-guest interaction for meeting the multifunctional needs of disease therapy. However, it faces challenges in formulation design and inclusion mechanism clarification of the functional supramolecular assemblies owing to the complicated structures and mechanisms. Fortunately, molecular docking helps the researchers to comprehend the interaction between the drug and the target molecule for achieving high-through screening from the database. In this review, we summarized the category and characteristics of molecular docking along with the properties and applications of CD. Significantly, we highlighted the application of molecular docking in elaborating molecular mechanisms and simulating complex structures at molecular levels. The issues and development of CD and molecular docking were also presented to provide beneficial reference and new insights for supramolecular nano-systems.
Collapse
Affiliation(s)
- Tiancheng Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qida Zong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Peng J, Zhang Y, Jiang Y, Zhang H. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References. J Chem Inf Model 2021; 61:2981-2997. [PMID: 34080414 DOI: 10.1021/acs.jcim.1c00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large diversity in the targeted hydration free energies (HFEs) during model parameterization of metal ions was reported in the literature with a difference by dozens of kcal/mol. Here, we developed a series of nonbonded dummy models of the Mg2+ ion targeting different HFE references in TIP3P water, followed by assessments of the designed models in the simulations of MgCl2 solution and biological systems. Together with the comparison of existing models, we conclude that the difference in the targeted HFEs has a limited influence on the model performance, while the usability of these models differs from case to case. The feasibility of reproducing more properties of Mg2+ such as diffusion constants and water exchange rates using a nonbonded dummy model is demonstrated. Underestimated activity derivative and osmotic coefficient of MgCl2 solutions in high concentration reveal a necessity for further optimization of ion-pair interactions. The developed dummy models are applicable to metal coordination with Asp, Glu, and His residues in metalloenzymes, and the performance in predicting monodentate or bidentate binding modes of Asp/Glu residues depends on the complexity of metal centers and the choice of protein force fields. When both the binding modes coexist, the nonbonded dummy models outperform point charge models, probably in need of considering polarization of metal-binding residues by, for instance, charge calibration in classical force fields. This work is valuable for the use and further development of magnesium ion models for simulations of metal-containing systems with good accuracy.
Collapse
Affiliation(s)
- Jiarong Peng
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
7
|
|
8
|
Jeevan AK, Krishnan SB, Gopidas KR. Structural Deformation to
β
‐Cyclodextrin Due to Strong π‐Stacking in the Self‐Assembly of Inclusion Complex. ChemistrySelect 2020. [DOI: 10.1002/slct.202004488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athira K. Jeevan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Sumesh B. Krishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Karical R. Gopidas
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| |
Collapse
|
9
|
Roy N, Bomzan P, Nath Roy M. Probing Host-Guest inclusion complexes of Ambroxol Hydrochloride with α- & β-Cyclodextrins by physicochemical contrivance subsequently optimized by molecular modeling simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Triolo A, Lo Celso F, Russina O. Structural Features of β-Cyclodextrin Solvation in the Deep Eutectic Solvent, Reline. J Phys Chem B 2020; 124:2652-2660. [DOI: 10.1021/acs.jpcb.0c00876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alessandro Triolo
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
| | - Fabrizio Lo Celso
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
- Dipartimento di Fisica e Chimica ‘Emilio Segrè’, Università degli studi di Palermo, 90128 Palermo, Italy
| | - Olga Russina
- Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), 00133 Rome, Italy
- Department of Chemistry, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
11
|
Erdős M, Hartkamp R, Vlugt TJH, Moultos OA. Inclusion Complexation of Organic Micropollutants with β-Cyclodextrin. J Phys Chem B 2020; 124:1218-1228. [PMID: 31976678 PMCID: PMC7037149 DOI: 10.1021/acs.jpcb.9b10122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Recently, β-cyclodextrin
(βCD)-based polymers with
enhanced adsorption kinetics and high removal capacity of organic
micropollutants (OMPs) and uptake rates have been synthesized and
tested experimentally. Although the exact physical–chemical
mechanisms via which these polymers capture the various types of OMPs
are not yet fully understood, it is suggested that the inclusion complex
formation of OMPs with βCD is very important. In this study,
the inclusion complex formation of OMPs with βCD in an aqueous
solution is investigated by using the well-established attach–pull–release
method in force field-based molecular dynamics simulations. A representative
set of OMPs is selected based on the measured occurrences in surface
and ground waters and the directives published by the European Union.
To characterize the formation of the inclusion complex, the binding
free energies, enthalpies, and entropies are computed and compared
to experimental values. It is shown that computations using the q4md-CD/GAFF/Bind3P
force field combination yield binding free energies that are in reasonable
agreement with the experimental results for all OMPs studied. The
binding enthalpies are decomposed into the main contributing interaction
types. It is shown that, for all studied OMPs, the van der Waals interactions
are favorable for the inclusion complexion and the hydrogen bond formation
of the guest with the solvent and βCD plays a crucial role in
the binding mechanism. Our findings show that MD simulations can adequately
describe the inclusion complex formation of βCD with OMPs, which
is the first step toward understanding the underlying mechanisms via
which the βCD-based polymers capture OMPs.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Remco Hartkamp
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| |
Collapse
|
12
|
Adsorption behavior of β-cyclodextrin onto gold nanoparticles. J Mol Graph Model 2020; 94:107483. [DOI: 10.1016/j.jmgm.2019.107483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/28/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
|
13
|
Haynes A, Halpert P, Levine M. Colorimetric Detection of Aliphatic Alcohols in β-Cyclodextrin Solutions. ACS OMEGA 2019; 4:18361-18369. [PMID: 31720538 PMCID: PMC6844157 DOI: 10.1021/acsomega.9b02612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 05/20/2023]
Abstract
The sensitive, selective, and practical detection of aliphatic alcohols is a continuing technical challenge with significant impact in public health research and environmental remediation efforts. Reported herein is the use of a β-cyclodextrin derivative to promote proximity-induced interactions between aliphatic alcohol analytes and a brightly colored organic dye, which resulted in highly analyte-specific color changes that enabled accurate alcohol identification. Linear discriminant analysis of the color changes enabled 100% differentiation of the colorimetric signals obtained from methanol, ethanol, and isopropanol in combination with BODIPY and Rhodamine dyes. The resulting solution-state detection system has significant broad-based applicability because it uses only easily available materials to achieve such detection with moderate limits of detection obtained. Future research with this sensor system will focus on decreasing limits of detection as well as on optimizing the system for quantitative detection applications.
Collapse
Affiliation(s)
- Anna Haynes
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Priva Halpert
- Stella
K. Abraham High School for Girls, 291 Meadowview Ave, Hewlett, New York 11557, United States
| | - Mindy Levine
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
14
|
Kfoury M, Geagea C, Ruellan S, Greige-Gerges H, Fourmentin S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem 2019; 278:163-169. [DOI: 10.1016/j.foodchem.2018.11.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
|
15
|
Zhang H, Yin C, Jiang Y, van der Spoel D. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. J Chem Inf Model 2018; 58:1037-1052. [DOI: 10.1021/acs.jcim.8b00026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, Beijing 100029, China
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| |
Collapse
|
16
|
Khuntawee W, Karttunen M, Wong-Ekkabut J. A molecular dynamics study of conformations of beta-cyclodextrin and its eight derivatives in four different solvents. Phys Chem Chem Phys 2018; 19:24219-24229. [PMID: 28848954 DOI: 10.1039/c7cp04009a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the atomic level interactions and the resulting structural characteristics is required for developing beta-cyclodextrin (βCD) derivatives for pharmaceutical and other applications. The effect of four different solvents on the structures of the native βCD and its hydrophilic (methylated βCD; MEβCD and hydroxypropyl βCD; HPβCD) and hydrophobic derivatives (ethylated βCD; ETβCD) was explored using molecular dynamics (MD) simulations and solvation free energy calculations. The native βCD, 2-MEβCD, 6-MEβCD, 2,6-DMβCD, 2,3,6-TMβCD, 6-HPβCD, 2,6-HPβCD and 2,6-ETβCD in non-polar solvents (cyclohexane; CHX and octane; OCT) were stably formed in a symmetric cyclic cavity shape through their intramolecular hydrogen bonds. In contrast, βCDs in polar solvents (methanol; MeOH and water; WAT) exhibited large structural changes and fluctuations leading to significant deformations of their cavities. Hydrogen bonding with polar solvents was found to be one of the major contributors to this behavior: solvent-βCD hydrogen bonding strongly competes with intramolecular bonding leading to significant changes in the structural stability of βCDs. An exception to this is the hydrophobic 2,6-ETβCD which retained its spherical cavity in all solvents. Based on this, it is proposed that the 2,6-ETβCD can act as a sustained release drug carrier.
Collapse
Affiliation(s)
- Wasinee Khuntawee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | | | | |
Collapse
|
17
|
Senac C, Desgranges S, Contino-Pépin C, Urbach W, Fuchs PFJ, Taulier N. Effect of Dimethyl Sulfoxide on the Binding of 1-Adamantane Carboxylic Acid to β- and γ-Cyclodextrins. ACS OMEGA 2018; 3:1014-1021. [PMID: 31457945 PMCID: PMC6641370 DOI: 10.1021/acsomega.7b01212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Most therapeutic targets are proteins whose binding sites are hydrophobic cavities. For this reason, the majority of drugs under development are hydrophobic molecules exhibiting low solubility in water. To tackle this issue, a few percent of cosolvent, such as dimethyl sulfoxide (DMSO), is usually employed to increase drug solubility during the drug screening process. However, the few published studies dealing with the effect of adding DMSO showed that the affinity of hydrophobic ligands is systematically underestimated. To better understand the effect of DMSO, there is a need of studying its effect on a large range of systems. In this work, we used β- and γ-cyclodextrins (made of 6 and 7 α-d-glucopyranoside units, respectively) as models of hydrophobic cavities to investigate the effect of the addition 5% DMSO on the affinity of 1-adamantane carboxylic acid (ADA) to these cyclodextrins. The two systems differ by the size of the cyclodextrin cavity. The evaluation of binding constants was performed using ultrasound velocimetry, nuclear magnetic resonance spectroscopy, and molecular simulations. All techniques show that the presence of 5% DMSO does not significantly modify the affinity of ADA for γ-cyclodextrin, while the affinity is dramatically reduced for β-cyclodextrin. The bias induced by the presence of DMSO is thus more important when the ligand volume better fits the cyclodextrin cavity. Our work also suggests that free energy calculations provide a sound alternative to experimental techniques when dealing with poorly water-soluble drugs.
Collapse
Affiliation(s)
- Caroline Senac
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
| | - Stéphane Desgranges
- Equipe
Chimie Bioorganique et Systémes Amphiphiles, Institut des Biomolécules
Max Mousseron, UMR 5247, Université
d’Avignon et des Pays de Vaucluse, 84911 Avignon, France
- Faculty
of Medecine, Radiology, University of Geneva, 1205 Geneva, Switzerland
| | - Christiane Contino-Pépin
- Equipe
Chimie Bioorganique et Systémes Amphiphiles, Institut des Biomolécules
Max Mousseron, UMR 5247, Université
d’Avignon et des Pays de Vaucluse, 84911 Avignon, France
| | - Wladimir Urbach
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
- Laboratoire
de Physique Statistique, Departement de Physique de l’ENS, PSL Research University, Université Paris Diderot, Sorbonne
Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Patrick F. J. Fuchs
- Université
Paris Diderot, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ. Paris 06, École Normale Supérieure,
PSL Research University, CNRS, Laboratoire
des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France
| | - Nicolas Taulier
- Sorbonne
Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
- E-mail:
| |
Collapse
|
18
|
Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J Phys Chem B 2018; 122:1608-1626. [PMID: 29287148 DOI: 10.1021/acs.jpcb.7b11808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulations of native α-, β-, and γ-cyclodextrin in aqueous solution have been conducted with the goal to investigate the performance of the CHARMM36 force field, the AMBER-compatible q4md-CD force field, and five variants of the GROMOS force field. The properties analyzed are structural parameters derived from X-ray diffraction and NMR experiments as well as hydrogen bonds and hydration patterns, including hydration free enthalpies. Recent revisions of the torsional-angle parameters for carbohydrate systems within the GROMOS family of force fields lead to a significant improvement of the agreement between simulated and experimental NMR data. Therefore, we recommend using the variant 53A6GLYC instead of 53A6 and 56A6CARBO_R or 2016H66 instead of 56A6CARBO to simulate cyclodextrins in solution. The CHARMM36 and q4md-CD force fields show a similar performance as the three recommended GROMOS parameter sets. A significant difference is the more flexible nature of the cyclodextrins modeled with the CHARMM36 and q4md-CD force fields compared to the three recommended GROMOS parameter sets.
Collapse
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Catharina Kleist
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
19
|
Tang Z, Chang CEA. Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. J Chem Theory Comput 2018; 14:303-318. [PMID: 29149564 PMCID: PMC5920803 DOI: 10.1021/acs.jctc.7b00899] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the fine balance between changes of entropy and enthalpy and the competition between a guest and water molecules in molecular binding is crucial in fundamental studies and practical applications. Experiments provide measurements. However, illustrating the binding/unbinding processes gives a complete picture of molecular recognition not directly available from experiments, and computational methods bridge the gaps. Here, we investigated guest association/dissociation with β-cyclodextrin (β-CD) by using microsecond-time-scale molecular dynamics (MD) simulations, postanalysis and numerical calculations. We computed association and dissociation rate constants, enthalpy, and solvent and solute entropy of binding. All the computed values of kon, koff, ΔH, ΔS, and ΔG using GAFF-CD and q4MD-CD force fields for β-CD could be compared with experimental data directly and agreed reasonably with experiment findings. In addition, our study further interprets experiments. Both force fields resulted in similar computed ΔG from independently computed kinetics rates, ΔG = -RT ln(kon·C0/koff), and thermodynamics properties, ΔG = ΔH - TΔS. The water entropy calculations show that the entropy gain of desolvating water molecules are a major driving force, and both force fields have the same strength of nonpolar attractions between solutes and β-CD as well. Water molecules play a crucial role in guest binding to β-CD. However, collective water/β-CD motions could contribute to different computed kon and ΔH values by different force fields, mainly because the parameters of β-CD provide different motions of β-CD, hydrogen-bond networks of water molecules in the cavity of free β-CD, and strength of desolvation penalty. As a result, q4MD-CD suggests that guest binding is mostly driven by enthalpy, while GAFF-CD shows that gaining entropy is the major driving force of binding. The study deepens our understanding of ligand-receptor recognition and suggests strategies for force field parametrization for accurately modeling molecular systems.
Collapse
Affiliation(s)
- Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5040034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously developed a highly efficient fluorescence-based toxicant-detection method that operates in complex environments to detect aromatic toxicants and toxicant metabolites with high sensitivity and selectivity. This method relies on the ability of γ-cyclodextrin to act as a supramolecular scaffold, and uses a variety of non-covalent interactions between the cyclodextrin, toxicant, and fluorophore to enable efficient detection. Reported herein is an investigation of the effect of various experimental parameters, including host concentration, temperature, pH, salt, and solvent, on the observed energy-transfer efficiencies. These results advance our understanding of γ-cyclodextrin-based association complexes and provide crucial information for the development of fluorescence-based sensors using such complexation and the resultant fluorescence-based detection.
Collapse
|
21
|
Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0763-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Bani-Yaseen AD. Computational molecular perspectives on the interaction of propranolol with β-cyclodextrin in solution: Towards the drug-receptor mechanism of interaction. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Ashwin BCMA, Vinothini A, Stalin T, Muthu Mareeswaran P. Synthesis of a Safranin T -p-Sulfonatocalix[4]arene Complex by Means of Supramolecular Complexation. ChemistrySelect 2017. [DOI: 10.1002/slct.201601939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Arumugam Vinothini
- Department of Industrial Chemistry; Alagappa University; Karaikudi, Tamilnadu India
| | - Thambusamy Stalin
- Department of Industrial Chemistry; Alagappa University; Karaikudi, Tamilnadu India
| | | |
Collapse
|
24
|
Affiliation(s)
- Dana J. DiScenza
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
25
|
Minea B, Marangoci N, Peptanariu D, Rosca I, Nastasa V, Corciova A, Varganici C, Nicolescu A, Fifere A, Neamtu A, Mares M, Barboiu M, Pinteala M. Inclusion complexes of propiconazole nitrate with substituted β-cyclodextrins: the synthesis and in silico and in vitro assessment of their antifungal properties. NEW J CHEM 2016. [DOI: 10.1039/c5nj01811k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inclusion complexes with sulfobutylether-β-cyclodextrin, β-cyclodextrin sulphated sodium salt and monochlorotriazinyl-β-cyclodextrin were characterized and assessed for antifungal activity and cytotoxicity.
Collapse
|
26
|
Zhang H, Tan T, Hetényi C, Lv Y, van der Spoel D. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:7163-7173. [PMID: 24719673 PMCID: PMC3977494 DOI: 10.1021/jp412041d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Dimerization of cyclodextrin (CD) molecules is an elementary step in the construction of CD-based nanostructured materials. Cooperative binding of CD cavities to guest molecules facilitates the dimerization process and, consequently, the overall stability and assembly of CD nanostructures. In the present study, all three dimerization modes (head-to-head, head-to-tail, and tail-to-tail) of β-CD molecules and their binding to three isoflavone drug analogues (puerarin, daidzin, and daidzein) were investigated in explicit water surrounding using molecular dynamics simulations. Total and individual contributions from the binding partners and solvent environment to the thermodynamics of these binding reactions are quantified in detail using free energy calculations. Cooperative drug binding to two CD cavities gives an enhanced binding strength for daidzin and daidzein, whereas for puerarin no obvious enhancement is observed. Head-to-head dimerization yields the most stable complexes for inclusion of the tested isoflavones (templates) and may be a promising building block for construction of template-stabilized CD nanostructures. Compared to the case of CD monomers, the desolvation of CD dimers and entropy changes upon complexation prove to be influential factors of cooperative binding. Our results shed light on key points of the design of CD-based supramolecular assemblies. We also show that structure-based calculation of binding thermodynamics can quantify stabilization caused by cooperative effects in building blocks of nanostructured materials.
Collapse
Affiliation(s)
- Haiyang Zhang
- Beijing
Key Laboratory of Bioprocess, Department of Biochemical Engineering, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Tianwei Tan
- Beijing
Key Laboratory of Bioprocess, Department of Biochemical Engineering, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Csaba Hetényi
- Molecular
Biophysics Research Group, Hungarian Academy
of Sciences, Pázmány sétány
1/C, H-1117 Budapest, Hungary
| | - Yongqin Lv
- Beijing
Key Laboratory of Bioprocess, Department of Biochemical Engineering, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| |
Collapse
|
27
|
Zhou W, Li W, Xie Y, Wang L, Pan K, Tian G, Li M, Wang G, Qu Y, Fu H. Fabrication of noncovalently functionalized brick-like β-cyclodextrins/graphene composite dispersions with favorable stability. RSC Adv 2014. [DOI: 10.1039/c3ra45666h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Zhang H, Tan T, Hetényi C, van der Spoel D. Quantification of Solvent Contribution to the Stability of Noncovalent Complexes. J Chem Theory Comput 2013; 9:4542-51. [DOI: 10.1021/ct400404q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haiyang Zhang
- Beijing Key Laboratory
of Bioprocess, Department of Biochemical Engineering, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
- Science for Life
Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan
3, Box 596, SE-751 24 Uppsala, Sweden
| | - Tianwei Tan
- Beijing Key Laboratory
of Bioprocess, Department of Biochemical Engineering, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Csaba Hetényi
- Molecular Biophysics
Research Group, Hungarian Academy of Sciences, Pázmány sétány 1/C, H-1117 Budapest, Hungary
| | - David van der Spoel
- Science for Life
Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan
3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
29
|
Jana M, Bandyopadhyay S. Molecular Dynamics Study of β-Cyclodextrin–Phenylalanine (1:1) Inclusion Complex in Aqueous Medium. J Phys Chem B 2013; 117:9280-7. [DOI: 10.1021/jp404348u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Madhurima Jana
- Molecular Simulation Laboratory,
Department of Chemistry, National Institute of Technology, Rourkela-769008, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory,
Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India
| |
Collapse
|
30
|
Zhang H, Tan T, Feng W, van der Spoel D. Molecular Recognition in Different Environments: β-Cyclodextrin Dimer Formation in Organic Solvents. J Phys Chem B 2012; 116:12684-93. [DOI: 10.1021/jp308416p] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Haiyang Zhang
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
- Department of Cell and Molecular
Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Tianwei Tan
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Wei Feng
- Department of Biochemical Engineering,
Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - David van der Spoel
- Department of Cell and Molecular
Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|