1
|
Li Y, Li M, Spencer DM, Martens J, Berden G, Oomens J, Siu CK, Chu IK. Mechanistic examination of C α -C β tyrosyl bond cleavage: Spectroscopic investigation of the generation of α-glycyl radical cations from tyrosyl (glycyl/alanyl)tryptophan. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4630. [PMID: 32812311 DOI: 10.1002/jms.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, dissociative one-electron transfer dissociation of [CuII (dien)Y(G/A)W]•2+ [dien = diethylenetriamine; Y(G/A)W = tyrosyl (glycyl/alanyl)tryptophan] was used to generate the tripeptide radical cations [Y(G/A)W]•+ ; subsequent loss of the Tyr side chain formed [Gα • (G/A)W]+ . The π-centered species [YGWπ • ]+ generated the α-centered species [Gα • GW]+ through Cα -Cβ bond cleavage, as revealed using infrared multiple photon dissociation (IRMPD) measurements and density functional theory (DFT) calculations. Comparisons of experimental and theoretical IR spectra confirmed that both the charge and spin densities of [Y(G/A)Wπ • ]+ were delocalized initially at the tryptophan indolyl ring; subsequent formation of the final [Gα • (G/A)W]+ structure gave the highest spin density at the α-carbon atom of the N-terminal glycine residue, with a proton solvated by the first amide oxygen atom. The IRMPD mass spectra and action spectra of the [Gα • (G/A)W]+ species were all distinctly different from those of their isomeric [G(G/A)Wπ • ]+ species. The mechanism of formation of the captodative [Gα • (G/A)W]+ species-with the charge site separated from the radical site-from [Y(G/A)Wπ • ]+ has been elucidated. DFT calculations suggested that the Cα -Cβ bond cleavage of the tyrosine residue in the radical cationic [Y(G/A)Wπ • ]+ precursor involves (a) through-space electron transfer between the indolyl and phenolic groups; (b) formation of proton-bound dimers through Cα -Cβ cleavage of the tyrosine residue; and (c) a concerted proton rearrangement from the phenolic OH group to the carboxyl group and formation of the α-carbon-centered product [Gα • (G/A)W]+ through hydrogen bond cleavage. The barriers for the electron transfer (a), the Cα -Cβ cleavage (b), and the protonation rearrangement (c) were 12.8, 26.5, and 10.3 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Yinan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengzhu Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Daniel M Spencer
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2
|
Imaoka N, Houferak C, Murphy MP, Nguyen HTH, Dang A, Tureček F. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1768-1780. [PMID: 29340957 DOI: 10.1007/s13361-017-1871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Naruaki Imaoka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Camille Houferak
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Megan P Murphy
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Huong T H Nguyen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Andy Dang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
3
|
Nguyen HTH, Tureček F. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1333-1344. [PMID: 28155086 DOI: 10.1007/s13361-016-1586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO─NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second (B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Huong T H Nguyen
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
4
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Isomerization versus dissociation of phenylalanylglycyltryptophan radical cations. Phys Chem Chem Phys 2017. [PMID: 28631796 DOI: 10.1039/c7cp02355c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four isomers of the radical cation of tripeptide phenylalanylglycyltryptophan, in which the initial location of the radical center is well defined, have been isolated and their collision-induced dissociation (CID) spectra examined. These ions, the π-centered [FGWπ˙]+, α-carbon- [FGα˙W]+, N-centered [FGWN˙]+ and ζ-carbon- [Fζ˙GW]+ radical cations, were generated via collision-induced dissociation (CID) of transition metal-ligand-peptide complexes, side chain fragmentation of a π-centered radical cation, homolytic cleavage of a labile nitrogen-nitrogen single bond, and laser induced dissociation of an iodinated peptide, respectively. The π-centered and tryptophan N-centered peptide radical cations produced almost identical CID spectra, despite the different locations of their initial radical sites, which indicated that interconversion between the π-centered and tryptophan N-centered radical cations is facile. By contrast, the α-carbon-glycyl radical [FGα˙W]+, and ζ-phenyl radical [Fζ˙GW]+, featured different dissociation product ions, suggesting that the interconversions among α-carbon, π-centered (or tryptophan N-centered) and ζ-carbon-radical cations have higher barriers than those to dissociation. Density functional theory calculations have been used to perform systematic mechanistic investigations on the interconversions between these isomers and to study selected fragmentation pathways for these isomeric peptide radical cations. The results showed that the energy barrier for interconversion between [FGWπ˙]+ and [FGWN˙]+ is only 31.1 kcal mol-1, much lower than the barriers to their dissociation (40.3 kcal mol-1). For the [FGWπ˙]+, [FGα˙W]+, and [Fζ˙GW]+, the barriers to interconversion are higher than those to dissociation, suggesting that interconversions among these isomers are not competitive with dissociations. The [z3 - H]˙+ ions isolated from [FGα˙W]+ and [Fζ˙GW]+ show distinctly different fragmentation patterns, indicating that the structures of these ions are different and this result is supported by the DFT calculations.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
5
|
Nguyen HTH, Andrikopoulos PC, Bím D, Rulíšek L, Dang A, Tureček F. Radical Reactions Affecting Polar Groups in Threonine Peptide Ions. J Phys Chem B 2017; 121:6557-6569. [DOI: 10.1021/acs.jpcb.7b04661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huong T. H. Nguyen
- Department
of Chemistry, University of Washington, Bagley Hall, Box
351700, Seattle, Washington 98195-1700, United States
| | - Prokopis C. Andrikopoulos
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 2, 16610 Prague, Czech Republic
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 2, 16610 Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám 2, 16610 Prague, Czech Republic
| | - Andy Dang
- Department
of Chemistry, University of Washington, Bagley Hall, Box
351700, Seattle, Washington 98195-1700, United States
| | - František Tureček
- Department
of Chemistry, University of Washington, Bagley Hall, Box
351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
6
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
7
|
Viglino E, Lai CK, Mu X, Chu IK, Tureček F. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1454-1467. [PMID: 27278824 DOI: 10.1007/s13361-016-1425-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Emilie Viglino
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA
| | - Cheuk Kuen Lai
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoyan Mu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 981915-1700, USA.
| |
Collapse
|
8
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn - H]˙⁺ ions; the structures of the [b₂ - H - 17]˙⁺ and [c1 - 17]⁺ ions. Phys Chem Chem Phys 2016; 18:11168-75. [PMID: 27048940 DOI: 10.1039/c6cp00405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide radical cations that contain an aromatic amino acid residue cleave to give [zn - H]˙⁺ ions with [b2 - H - 17]˙⁺ and [c1 - 17](+) ions, the dominant products in the dissociation of [zn - H]˙⁺, also present in lower abundance in the CID spectra. Isotopic labeling in the aromatic ring of [Yπ˙GG](+) establishes that in the formation of [b2 - H - 17]˙⁺ ions a hydrogen from the δ-position of the Y residue is lost, indicating that nucleophilic substitution on the aromatic ring has occurred. A preliminary DFT investigation of nine plausible structures for the [c1 - 17](+) ion derived from [Y(π)˙GG](+) shows that two structures resulting from attack on the aromatic ring by oxygen and nitrogen atoms from the peptide backbone have significantly better energies than other isomers. A detailed study of [Y(π)˙GG](+) using two density functionals, B3LYP and M06-2X, with a 6-31++G(d,p) basis set gives a higher barrier for attack on the aromatic ring of the [zn - H]˙⁺ ion by nitrogen than by the carbonyl oxygen. However, subsequent rearrangements involving proton transfers are much higher in energy for the oxygen-substituted isomer leading to the conclusion that the [c1 - 17](+) ions are the products of nucleophilic attack by nitrogen, protonated 2,7-dihydroxyquinoline ions. The [b2 - H - 17]˙⁺ ions are formed by loss of glycine from the same intermediates involved in the formation of the [c1 - 17](+) ions.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Cheuk-Kuen Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Tang WK, Leong CP, Hao Q, Siu CK. Theoretical examination of competitive β-radical-induced cleavages of N–Cα and Cα–C bonds of peptides. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective cleavages of N–Cα and Cα–C bonds of β-radical tautomers of amino acid residues in radical peptides have been examined theoretically by means of the density functional theory at the M06-2X/6-311++G(d,p) level. The majority of the bond cleavages are homolytic via β-scission. Their energy barriers depend largely on the ability of the radical being stabilized in the transition structures and the availability of a mobile proton in the vicinity of the β-radical center. The N–Cα bond is less favorably cleaved than the Cα–C bond (except Ser and Thr) for systems without a mobile proton. It is because, firstly, the homolytic cleavage is less favorable for the more polar N–Cα bond than for the less polar Cα–C bond. Secondly, a less stable σ-radical localized on the amide nitrogen atom of the incipient N-terminal fragment is formed for the former, while a more stable radical delocalized in a π*(CO)-like orbital of the incipient C-terminal fragment is formed for the latter. In the presence of a mobile proton N-terminal to the β-radical center, some degrees of heterolytic cleavage character, as preferred by the polar N–Cα bond, are observed. Consequently, its barrier is reduced. If the mobile proton is located at the C-terminal amide oxygen of the β-radical center, the Cα–C bond cleavage will be significantly suppressed. It is because the radical in the incipient C-terminal fragment becomes more localized as a σ-radical on the carbon atom of its protonated amide group. With basic amino acid residues, the Cα–C bond cleavage can be reactivated. Heterolytic cleavage of the polar N–Cα bond can be largely facilitated if a mobile proton N-terminal to the β-radical center is available and the radical in the incipient C-terminal fragment is sufficiently stabilized, for instance, by the aromatic side chain of Trp and Tyr. Therefore, cleavages of the N–Cα bond induced by the β-radical tautomer of Trp and Tyr are often preferred as compared with cleavages of the Cα–C bond in peptide radical cations containing mobile protons.
Collapse
Affiliation(s)
- Wai-Kit Tang
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chun-Ping Leong
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Qiang Hao
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| |
Collapse
|
10
|
Gilbert JD, Fisher CM, Bu J, Prentice BM, Redwine JG, McLuckey SA. Strategies for generating peptide radical cations via ion/ion reactions. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:418-26. [PMID: 25800024 PMCID: PMC4372815 DOI: 10.1002/jms.3548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 05/25/2023]
Abstract
Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey 560 Oval Drive Department of Chemistry Purdue University West Lafayette, IN 47907-2084, USA Phone: (765) 494-5270 Fax: (765) 494-0239
| |
Collapse
|
11
|
Mu X, Song T, Xu M, Lai CK, Siu CK, Laskin J, Chu IK. Discovery and mechanistic studies of facile N-terminal Cα-C bond cleavages in the dissociation of tyrosine-containing peptide radical cations. J Phys Chem B 2014; 118:4273-81. [PMID: 24678922 DOI: 10.1021/jp410525f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fascinating N-terminal Cα-C bond cleavages in a series of nonbasic tyrosine-containing peptide radical cations have been observed under low-energy collision-induced dissociation (CID), leading to the generation of rarely observed x-type radical fragments, with significant abundances. CID experiments of the radical cations of the alanyltyrosylglycine tripeptide and its analogues suggested that the N-terminal Cα-C bond cleavage, yielding its [x2 + H](•+) radical cation, does not involve an N-terminal α-carbon-centered radical. Theoretical examination of a prototypical radical cation of the alanyltyrosine dipeptide, using density functional theory calculations, suggested that direct N-terminal Cα-C bond cleavage could produce an ion-molecule complex formed between the incipient a1(+) and x1(•) fragments. Subsequent proton transfer from the iminium nitrogen atom in a1(+) to the acyl carbon atom in x1(•) results in the observable [x1 + H](•+). The barriers against this novel Cα-C bond cleavage and the competitive N-Cα bond cleavage, forming the complementary [c1 + 2H](+)/[z1 - H](•+) ion pair, are similar (ca. 16 kcal mol(-1)). Rice-Ramsperger-Kassel-Marcus modeling revealed that [x1 + H](•+) and [c1 + 2H](+) species are formed with comparable rates, in agreement with energy-resolved CID experiments for [AY](•+).
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Lai CK, Mu X, Hao Q, Hopkinson AC, Chu IK. Formation, isomerization, and dissociation of ε- and α-carbon-centered tyrosylglycylglycine radical cations. Phys Chem Chem Phys 2014; 16:24235-43. [DOI: 10.1039/c4cp03119a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CID spectra of [Yε˙GG]+ and [YGGα˙]+ are identical, showing that interconversion occurs prior to dissociation. For [Yε˙GG]+, [Yπ˙GG]+ and [YGα˙G]+, the dissociation products are all distinctly different, indicating that dissociation occurs more readily than isomerization.
Collapse
Affiliation(s)
- Cheuk-Kuen Lai
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Xiaoyan Mu
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Qiang Hao
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto, Canada
| | - Ivan K. Chu
- Department of Chemistry
- The University of Hong Kong
- Hong Kong, China
| |
Collapse
|
13
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
14
|
Lau JKC, Lo S, Zhao J, Siu KWM, Hopkinson AC. Fragmentation chemistry of [Met-Gly]•+, [Gly-Met]•+, and [Met-Met]•+ radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:543-553. [PMID: 23440718 DOI: 10.1007/s13361-013-0581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Radical cations [Met-Gly](•+), [Gly-Met](•+), and [Met-Met](•+) have been generated through collision-induced dissociation (CID) of [Cu(II)(CH3CN)2(peptide)](•2+) complexes. Their fragmentation patterns and dissociation mechanisms have been studied both experimentally and theoretically using density functional theory at the UB3LYP/6-311++G(d,p) level. The captodative structure, in which the radical is located at the α-carbon of the N-terminal residue and the proton is on the amide oxygen, is the lowest energy structure on each potential energy surface. The canonical structure, with the charge and spin both located on the sulfur, and the distonic ion with the proton on the terminal amino group, and the radical on the α-carbon of the C-terminal residue have similar energies. Interconversion between the canonical structures and the captodative isomers is facile and occurs prior to fragmentation. However, isomerization to produce the distonic structure is energetically less favorable and cannot compete with dissociation except in the case of [Gly-Met](•+). Charge-driven dissociations result in formation of [b(n) - H](•+) and a(1) ions. Radical-driven dissociation leads to the loss of the side chain of methionine as CH3-S-CH=CH2 producing α-glycyl radicals from both [Gly-Met](•+) and [Met-Met](•+). For [Met-Met](•+), loss of the side chain occurs at the C-terminal as shown by both labeling experiments and computations. The product, the distonic ion of [Met-Gly](•+), NH3 (+)CH(CH2CH2SCH3)CONHCH(•)COOH dissociates by loss of CH3S(•). The isomeric distonic ion NH3 (+)CH2CONHC(•)(CH2CH2SCH3)COOH is accessible directly from the canonical [Gly-Met](•+) ion. A fragmentation pathway that characterizes this ion (and the distonic ion of [Met-Met](•+)) is homolytic fission of the Cβ-Cγ bond to lose CH3SCH2(•).
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
15
|
Kong RPW, Quan Q, Hao Q, Lai CK, Siu CK, Chu IK. Formation and dissociation of phosphorylated peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2094-2101. [PMID: 22968907 PMCID: PMC3514703 DOI: 10.1007/s13361-012-0479-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [Cu(II)(terpy)(p)M](·2+) and [Co(III)(salen)(p)M](·+) [(p)M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N'-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ((p)M(·+)) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H(3)PO(4)](·+) species through phosphate ester bond cleavage. The CID spectra of the (p)M(·+) species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H(3)PO(4) loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H(3)PO(4) from a prototypical model--N-acetylphosphorylserine methylamide--revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.
Collapse
Affiliation(s)
- Ricky P. W. Kong
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Quan Quan
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Qiang Hao
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Cheuk-Kuen Lai
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|