1
|
Zhao C, Li Z, Ji L, Wang H, Ouyang G, Liu M. Aggregate-state-dependent photochromism and circularly polarized luminescence of a chiral biquinoline amphiphile. Chem Commun (Camb) 2024; 60:6047-6050. [PMID: 38775836 DOI: 10.1039/d4cc01810a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The photophysical and chiroptical properties of a chiral biquinoline amphiphile were found to be closely related to its aggregate states. Photochromism through photo-induced radical and circularly polarized luminescence were realized in its gel state and thin film state, respectively.
Collapse
Affiliation(s)
- Chenyang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lukang Ji
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Osella S, Granucci G, Persico M, Knippenberg S. Dual photoisomerization mechanism of azobenzene embedded in a lipid membrane. J Mater Chem B 2023; 11:2518-2529. [PMID: 36852914 DOI: 10.1039/d2tb02767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The photoisomerization of chromophores embedded in biological environments is of high importance for biomedical applications, but it is still challenging to define the photoisomerization mechanism both experimentally and computationally. We present here a computational study of the azobenzene molecule embedded in a DPPC lipid membrane, and assess the photoisomerization mechanism by means of the quantum mechanics/molecular mechanics surface hopping (QM/MM-SH) method. We observe that while the trans-to-cis isomerization is a slow process governed by a torsional mechanism due to the strong interaction with the environment, the cis-to-trans mechanism is completed in sub-ps time scale and is governed by a pedal-like mechanism in which both weaker interactions with the environment and a different geometry of the potential energy surface play a key role.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland. .,Materials and Process Simulation Center (MSC), California Institute of Technology, MC 139-74, Pasadena, CA, 91125, USA
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, v. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefan Knippenberg
- Hasselt University, Theory Lab, Agoralaan Building D, 3590 Diepenbeek, Belgium.,Université Libre de Bruxelles, Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), 50 Avenue F. Roosevelt, C.P. 160/09, B-1050 Brussels, Belgium.
| |
Collapse
|
3
|
Osella S, Knippenberg S. Triggering On/Off States of Photoswitchable Probes in Biological Environments. J Am Chem Soc 2017; 139:4418-4428. [DOI: 10.1021/jacs.6b13024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Silvio Osella
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Stefan Knippenberg
- Division of Theoretical Chemistry
and Biology, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| |
Collapse
|