1
|
Cao W, Yuan Q, Zhang H, Zhou X, Kass SR, Wang XB. How generic is iodide-tagging photoelectron spectroscopy: An extended investigation on the Gly·X- (Gly = glycine, X = Cl or Br) complexes. J Chem Phys 2023; 159:034305. [PMID: 37466228 DOI: 10.1063/5.0159326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
We report a joint negative ion photoelectron spectroscopy (NIPES) and quantum chemical computational study on glycine-chloride/bromide complexes (denoted Gly·X-, X = Cl/Br) in close comparison to the previously studied Gly·I- cluster ion. Combining experimental NIPE spectra and theoretical calculations, various Gly·X- complexes were found to adopt the same types of low-lying isomers, albeit with different relative energies. Despite more congested spectral profiles for Gly·Cl- and Gly·Br-, spectral assignments were accomplished with the guidance of the knowledge learned from Gly·I-, where a larger spin-orbit splitting of iodine afforded well-resolved, recognizable spectral peaks. Three canonical plus one zwitterionic isomer for Gly·Cl- and four canonical conformers for Gly·Br- were experimentally identified and characterized in contrast to the five canonical ones observed for Gly·I- under similar experimental conditions. Taken together, this study investigates both genericity and variations in binding patterns for the complexes composed of glycine and various halides, demonstrating that iodide-tagging is an effective spectroscopic means to unravel diverse ion-molecule binding motifs for cluster anions with congested spectral bands by substituting the respective ion with iodide.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Department of Chemistry, Anhui University, Hefei 230601, China
| | - Hanhui Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Steven R Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
2
|
Lu L, Li RZ, Xu XY. Interaction of Cysteine with Li + and LiF in the Presence of (H 2O) n ( n = 0-6) Clusters. ACS OMEGA 2022; 7:18646-18659. [PMID: 35694486 PMCID: PMC9178773 DOI: 10.1021/acsomega.2c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The interaction between cysteine with Li+ and LiF in the microcosmic water environment was investigated to elucidate how ions interact with amino acids and the cation-anion correlation effect involved. The structures of Cys·Li+(H2O) n and Cys·LiF(H2O) n (n = 0-6) were characterized using ab initio calculations. Our studies show that the water preferentially interacts with Li+/LiF. In Cys·Li+(H2O)0-6, Li+ interacts with amino nitrogen, carbonyl oxygen, and hydrophobic sulfur of Cys to form a tridentate mode, whereas in Cys·LiF(H2O) n , Li+ and F- work in cooperation and interact with carbonyl oxygen and hydroxyl hydrogen of Cys to form a bidentate type. The neutral and zwitterionic forms are essentially isoenergetic when the water number reaches three in the presence of Li+, whereas this occurs at four water molecules in the presence of LiF. Further research revealed that the interaction between Li+/LiF and Cys was mainly electrostatic, followed by dispersion, and the weakest interaction occurs at the transition from the neutral form to zwitterionic form. Natural population analysis charge analyses show that for Cys·Li+(H2O) n , the positive charge is mostly concentrated on Li+ except for the system containing three water molecules. For Cys·LiF(H2O) n , the positive charge is centered on the LiF unit in the range n = 0-6, and at n = 5, electron transfer from Cys to water occurs. Our study shows that the contribution of anions in zwitterionic state stabilization should be addressed more generally along with cations.
Collapse
|
3
|
Botti G, Aieta C, Conte R. The complex vibrational spectrum of proline explained through the adiabatically switched semiclassical initial value representation. J Chem Phys 2022; 156:164303. [DOI: 10.1063/5.0089720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proline, a 17-atom amino acid with a closed-ring side chain, has a complex potential energy surface characterized by several minima. Its IR experimental spectrum, reported in the literature, is of difficult and controversial assignment. In particular, the experimental signal at 3559 cm−1 associated with the OH stretch is interesting because it is inconsistent with the global minimum, trans-proline conformer. This suggests the possibility that multiple conformers may contribute to the IR spectrum. The same conclusion is obtained by investigating the splitting of the CO stretch at 1766 and 1789 cm−1 and other, more complex spectroscopic features involving CH stretches and COH/CNH bendings. In this work, we perform full-dimensional, on-the-fly adiabatically switched semiclassical initial value representation simulations employing the ab initio dft-d3-B3LYP level of theory with aug-cc-pVDZ basis set. We reconstruct the experimental spectrum of proline in its main features by studying the vibrational features of trans-proline and cis1-proline, and provide a new assignment for the OH stretch of trans-proline.
Collapse
Affiliation(s)
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Italy
| |
Collapse
|
4
|
Botti G, Ceotto M, Conte R. On-the-fly adiabatically switched semiclassical initial value representation molecular dynamics for vibrational spectroscopy of biomolecules. J Chem Phys 2021; 155:234102. [PMID: 34937370 DOI: 10.1063/5.0075220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Semiclassical (SC) vibrational spectroscopy is a technique capable of reproducing quantum effects (such as zero-point energies, quantum resonances, and anharmonic overtones) from classical dynamics runs even in the case of very large dimensional systems. In a previous study [Conte et al. J. Chem. Phys. 151, 214107 (2019)], a preliminary sampling based on adiabatic switching has been shown to be able to improve the precision and accuracy of semiclassical results for challenging model potentials and small molecular systems. In this paper, we investigate the possibility to extend the technique to larger (bio)molecular systems whose dynamics must be integrated by means of ab initio "on-the-fly" calculations. After some preliminary tests on small molecules, we obtain the vibrational frequencies of glycine improving on pre-existing SC calculations. Finally, the new approach is applied to 17-atom proline, an amino acid characterized by a strong intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Giacomo Botti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, Traboulsi H, Pasricha R, Jagannathan R, Mokhtari-Soulimane N, Gándara F, Trabolsi A. In vivo oral insulin delivery via covalent organic frameworks. Chem Sci 2021; 12:6037-6047. [PMID: 33995999 PMCID: PMC8098678 DOI: 10.1039/d0sc05328g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nawel Kaddour
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Gobinda Das
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sneha Ann Thomas
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Fadia Bekhti-Sari
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | - Jamie Whelan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
- School of Chemistry, University of Bristol Cantocks Close Bristol BS8 1TS UK
| | - Mostafa Khair
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Ali Trabolsi
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
6
|
Cao W, Zhang H, Yuan Q, Zhou X, Kass SR, Wang XB. Observation of Conformational Simplification upon N-Methylation on Amino Acid Iodide Clusters. J Phys Chem Lett 2021; 12:2780-2787. [PMID: 33710892 DOI: 10.1021/acs.jpclett.1c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Letter reports a counterintuitive observation that methylation of the glycine-iodide cluster leads to fewer conformations and spectroscopic simplicity. Cryogenic "iodide-tagging" negative ion photoelectron spectroscopy (NIPES) is used to probe specific binding sites of three N-methylated glycine derivatives, i.e., N-methylglycine (sarcosine), N,N-dimethylglycine, and N,N,N-trimethylglycine (glycine betaine). NIPES reveals a progressive spectral simplification of the iodide clusters with increasing methylation due to fewer contributing structures. Low energy conformers and tautomers of each cluster are computationally identified, and those observed in the experiments are assigned based on excellent agreement between the NIPE spectra and theoretical simulations. Zwitterionic cluster structures are found to be less stable than their canonical forms and do not contribute to the observed spectra. This work demonstrates the power of iodide-tagging NIPES in probing conformations of amino acid-iodide clusters and provides a molecular level understanding on the effect of methyl substitution on amino acid binding sites.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hanhui Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Steven R Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Adsorption and isomerization of amino acids within zeolites: Impacts of acidity, amine functionalization, pore topology and sidechains. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Zhang H, Cao W, Yuan Q, Zhou X, Valiev M, Kass SR, Wang XB. Cryogenic "Iodide-Tagging" Photoelectron Spectroscopy: A Sensitive Probe for Specific Binding Sites of Amino Acids. J Phys Chem Lett 2020; 11:4346-4352. [PMID: 32401519 DOI: 10.1021/acs.jpclett.0c01099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work showcases cryogenic and temperature-dependent "iodide-tagging" photoelectron spectroscopy to probe specific binding sites of amino acids using the glycine-iodide complex (Gly·I-) as a case study. Multiple Gly·I- isomers were generated from ambient electrospray ionization and kinetically isolated in a cryogenic ion trap. These structures were characterized with temperature-dependent "iodide-tagging" negative ion photoelectron spectroscopy (NIPES), where iodide was used as the "messenger" to interpret electronic energetics and structural information of various Gly·I- isomers. Accompanied by theoretical computations and Franck-Condon simulations, a total of five cluster structures have been identified along with their various binding motifs. This work demonstrates that "iodide-tagging" NIPES is a powerful general means for probing specific binding interactions in biological molecules of interest.
Collapse
Affiliation(s)
- Hanhui Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Marat Valiev
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Steven R Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
An ab iniio study on the micro-solvation of amino acids: On the number of water molecules necessary to stabilize the zwitter ion. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abtouche S, Issad-Elkebich M, Brahimi M, Assfeld X. Complexation of Ca2+ cation by the lateral chain of Paclitaxel (N-Benzoyl-ß-phenylisoserine): A theoretical study. COMPUT THEOR CHEM 2018; 1146:1-9. [DOI: 10.1016/j.comptc.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Smith ZM, Steinmetz V, Martens J, Oomens J, Poutsma JC. Infrared Multiple Photon Dissociation Spectroscopy of Cationized Canavanine: Side-Chain Substitution Influences Gas-Phase Zwitterion Formation †. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 429:158-173. [PMID: 29962900 PMCID: PMC6020040 DOI: 10.1016/j.ijms.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Infrared multiple photon dissociation spectroscopy was performed on protonated and cationized canavanine (Cav), a non-protein amino acid oxy-analog of arginine. Infrared spectra in the XH stretching region (3000 - 4000 cm-1) were obtained at the Centre Laser Infrarouge d'Orsay (CLIO) facility. Comparison of the experimental infrared spectra with scaled harmonic frequencies at the B3LYP/6-31+G(d,p) level of theory indicates that canavanine is in a canonical neutral form in CavH+, CavLi+, and CavNa+; therefore, these cations are charge-solvated structures. The infrared spectrum of CavK+ is consistent with a mixture of Cav in canonical and zwitterionic forms leading to both charge-solvated and salt-bridged cationic structures. The Cav moiety in CavCs+ is shown to be zwitterionic, forming a salt-bridged structure for the cation. Infrared spectra in the fingerprint region (1000 - 2000 cm-1) obtained at the FELIX Laboratory in Nijmegen, Netherlands support these assignments. These results show that that a single oxygen atom substitution in the side chain reduces the stability of the zwitterion compared to that of the protein amino acid arginine (Arg), which has been shown previously to adopt a zwitterionic structure in ArgNa+ and ArgK+. This difference can be explained in part due to the decreased basicity of Cav (PA = 1001 kJ/mol) as compared to arginine (PA = 1051 kJ/mol), but not entirely, as lysine, which has nearly the same proton affinity as Cav, (~993 kJ/mol) forms only canonical structures with Na+, K+, and Cs+. A major difference between the zwitterionic forms of ArgM+ and CavM+ is that the protonation site is on the side chain for Arg and on the N-terminus for Cav. This results in systematically weaker salt bridges in the Cav zwitterions. In addition, the presence of another hydrogen-bonding acceptor atom in the side chain contributes to the stability of the canonical structures for the smaller alkali cations.
Collapse
Affiliation(s)
- Zachary M Smith
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique, CNRS UMR 8000, Université Paris Sud, Université Paris Saclay, CNRS, Orsay France
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials FELIX Laboratory, Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials FELIX Laboratory, Nijmegen, The Netherlands
- Van't Hoff Institute for Molecular Sciences University of Amsterdam, Amsterdam, The Netherlands
| | - John C Poutsma
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795
| |
Collapse
|
12
|
Corinti D, Gregori B, Guidoni L, Scuderi D, McMahon TB, Chiavarino B, Fornarini S, Crestoni ME. Complexation of halide ions to tyrosine: role of non-covalent interactions evidenced by IRMPD spectroscopy. Phys Chem Chem Phys 2018; 20:4429-4441. [PMID: 29372198 DOI: 10.1039/c7cp06657k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding motifs in the halide adducts with tyrosine ([Tyr + X]-, X = Cl, Br, I) have been investigated and compared with the analogues with 3-nitrotyrosine (nitroTyr), a biomarker of protein nitration, in a solvent-free environment by mass-selected infrared multiple photon dissociation (IRMPD) spectroscopy over two IR frequency ranges, namely 950-1950 and 2800-3700 cm-1. Extensive quantum chemical calculations at B3LYP, B3LYP-D3 and MP2 levels of theory have been performed using the 6-311++G(d,p) basis set to determine the geometry, relative energy and vibrational properties of likely isomers and interpret the measured spectra. A diagnostic carbonyl stretching band at ∼1720 cm-1 from the intact carboxylic group characterizes the IRMPD spectra of both [Tyr + X]- and [nitroTyr + X]-, revealing that the canonical isomers (maintaining intact amino and carboxylic functions) are the prevalent structures. The spectroscopic evidence reveals the presence of multiple non-covalent forms. The halide complexes of tyrosine conform to a mixture of plane and phenol isomers. The contribution of phenol-bound isomers is sensitive to anion size, increasing from chloride to iodide, consistent with the decreasing basicity of the halide, with relative amounts depending on the relative energies of the respective structures. The stability of the most favorable phenol isomer with respect to the reference plane geometry is in fact 1.3, -2.1, -6.8 kJ mol-1, for X = Cl, Br, I, respectively. The change in π-acidity by ring nitration also stabilizes anion-π interactions yielding ring isomers for [nitroTyr + X]-, where the anion is placed above the face of the aromatic ring.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cooper RJ, O'Brien JT, Chang TM, Williams ER. Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops. Chem Sci 2017; 8:5201-5213. [PMID: 28970907 PMCID: PMC5618692 DOI: 10.1039/c7sc00481h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 11/23/2022] Open
Abstract
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory.
The effects of ion charge, polarity and size on the surface morphology of size-selected aqueous nanodrops containing a single ion and up to 550 water molecules are investigated with infrared photodissociation (IRPD) spectroscopy and theory. IRPD spectra of M(H2O)n where M = La3+, Ca2+, Na+, Li+, I–, SO42– and supporting molecular dynamics simulations indicate that strong interactions between multiply charged ions and water molecules can disrupt optimal hydrogen bonding (H-bonding) at the nanodrop surface. The IRPD spectra also reveal that “free” OH stretching frequencies of surface-bound water molecules are highly sensitive to the ion's identity and the OH bond's local H-bond environment. The measured frequency shifts are qualitatively reproduced by a computationally inexpensive point-charge model that shows the frequency shifts are consistent with a Stark shift from the ion's electric field. For multiply charged cations, pronounced Stark shifting is observed for clusters containing ∼100 or fewer water molecules. This is attributed to ion-induced solvent patterning that extends to the nanodrop surface, and serves as a spectroscopic signature for a cation's ability to influence the H-bond network of water located remotely from the ion. The Stark shifts measured for the larger nanodrops are extrapolated to infinite dilution to obtain the free OH stretching frequency of a surface-bound water molecule at the bulk air–water interface (3696.5–3701.0 cm–1), well within the relatively wide range of values obtained from SFG measurements. These cluster measurements also indicate that surface curvature effects can influence the free OH stretching frequency, and that even nanodrops without an ion have a surface potential that depends on cluster size.
Collapse
Affiliation(s)
- Richard J Cooper
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Jeremy T O'Brien
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Terrence M Chang
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| | - Evan R Williams
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA . ; Tel: +1 510 643 7161
| |
Collapse
|
14
|
Paciotti R, Corinti D, De Petris A, Ciavardini A, Piccirillo S, Coletti C, Re N, Maitre P, Bellina B, Barran P, Chiavarino B, Elisa Crestoni M, Fornarini S. Cisplatin and transplatin interaction with methionine: bonding motifs assayed by vibrational spectroscopy in the isolated ionic complexes. Phys Chem Chem Phys 2017; 19:26697-26707. [DOI: 10.1039/c7cp05203k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IRMPD spectroscopy discloses N- versus S-platination.
Collapse
|
15
|
Corinti D, De Petris A, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. Cisplatin Primary Complex with l-Histidine Target Revealed by IR Multiple Photon Dissociation (IRMPD) Spectroscopy. Chemphyschem 2016; 18:318-325. [PMID: 27935248 DOI: 10.1002/cphc.201601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/07/2016] [Indexed: 11/08/2022]
Abstract
The primary complex obtained from cisplatin and l-histidine in water has been detected and isolated by electrospray ionization. The so-obtained cis-[PtCl(NH3 )2 (histidine)]+ complex has been characterized in detail by high-resolution mass spectrometry (MS), tandem MS, IR multiple photon dissociation (IRMPD) spectroscopy, and by quantum chemical calculations. The structural features revealed by IRMPD spectroscopy indicate that platinum binds to the imidazole group, which presents tautomeric forms. Thus, depending on the position of the amino acid pendant on the imidazole ring, isomeric complexes are formed that are remarkably different with respect to the ease with which they undergo fragmentation when activated either by energetic collisions or by multiple IR photon absorption. It is shown here how IRMPD kinetics can allow their relative proportions to be estimated.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Alberto De Petris
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Maria E Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
16
|
Jami-Alahmadi Y, Linford BD, Fridgen TD. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M+ and (ProLeu)M+ (M = Alkali Metal). J Phys Chem B 2016; 120:13039-13046. [DOI: 10.1021/acs.jpcb.6b09588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yasaman Jami-Alahmadi
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Bryan D. Linford
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Travis D. Fridgen
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| |
Collapse
|
17
|
Jami-Alahmadi Y, Fridgen TD. Structures and unimolecular chemistry of M(Pro2-H)+(M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn) by IRMPD spectroscopy, SORI-CID, and theoretical studies. Phys Chem Chem Phys 2016; 18:2023-33. [DOI: 10.1039/c5cp05188f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
M(Pro2-H)+complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy.
Collapse
|
18
|
Yao G, Zhang J, Huang Q. Conformational and vibrational analyses of meta-tyrosine: An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:111-123. [PMID: 26125991 DOI: 10.1016/j.saa.2015.06.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
M-tyrosine is one kind of positional isomer of tyrosine which is widely applied in agrichemical, medicinal chemistry, and food science. However, the structural and vibrational features of m-tyrosine have not been reported or systematically investigated. In this work, potential energy surface (PES) calculations were used for searching and determining the stable zwitterionic conformers of m-tyrosine, and the Raman spectra of m-tyrosine and deuterated m-tyrosine were measured and interpreted based on theoretical computation. For the spectral simulation, several DFT-based quantum chemistry (QC) methods were employed, and the M06-2X functional with SMD solvent model was found to be best in reproducing the Raman spectra and geometrical property. As such, this study has not only presented a detailed study of m-tyrosine's vibrational property which is lack in the literature, but also may shed some light on the optimal choice of QC methods for calculation of conformations and vibrational properties of zwitterionic amino acids.
Collapse
Affiliation(s)
- Guohua Yao
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China
| | - Jingjing Zhang
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China
| | - Qing Huang
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China; University of Science & Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
19
|
Alahmadi YJ, Gholami A, Fridgen TD. The protonated and sodiated dimers of proline studied by IRMPD spectroscopy in the N-H and O-H stretching region and computational methods. Phys Chem Chem Phys 2015; 16:26855-63. [PMID: 25375752 DOI: 10.1039/c4cp03104k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IRMPD spectroscopy and computational chemistry techniques have been used to determine that the proton- and sodium-bound dimers of proline exist as a mixture of a number of different structures. Simulated annealing computations were found to be helpful in determining the unique structures of the protonated and sodiated dimers, augmenting chemical intuition. The experimental and computational results are consistent with the proton-bound dimer of N-protonated proline bound to zwitterionic proline. There was no spectroscopic evidence in the 3200-3800 cm(-1) region for a canonical structure which is predicted to have a weak N-H stretch at about 3440 cm(-1). A well resolved band at 1733 cm(-1) from a previous spectroscopic study (DOI: 10.1021/ja068715a ) was reassigned from a high energy canonical isomer to the C=O stretch of a lower energy zwitterionic structure. This band is a free carboxylate C=O stretch where protonated proline is hydrogen bonded to the other carboxylate oxygen which is also involved in an intramolecular hydrogen bond. Fifteen structures of the sodium bound proline dimer were computed to be within 10 kJ mol(-1) of Gibbs energy and eight structures were within 5 kJ mol(-1). None of these structures can be ruled out based on the experimental IRMPD spectrum. They all have an N-H stretching band predicted in a position that agrees with the experimental spectrum. However, only structures where one of the proline monomers is in the canonical form and having a free O-H bond can produce the band at ∼3600 cm(-1).
Collapse
|
20
|
Ozeryanskii VA, Gorbacheva AY, Pozharskii AF, Vlasenko MP, Tereznikov AY, Chernov'yants MS. The first proton sponge-based amino acids: synthesis, acid–base properties and some reactivity. Org Biomol Chem 2015; 13:8524-32. [DOI: 10.1039/c5ob01065a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first hybrid bases constructed from 1,8-bis(dimethylamino)naphthalene and glycine or alanine residues were synthesised and structurally characterised and unusual channels of their reactivity revealed.
Collapse
Affiliation(s)
- Valery A. Ozeryanskii
- Department of Organic Chemistry
- Southern Federal University
- 344090 Rostov-on-Don
- Russian Federation
| | - Anastasia Yu. Gorbacheva
- Department of Organic Chemistry
- Southern Federal University
- 344090 Rostov-on-Don
- Russian Federation
| | - Alexander F. Pozharskii
- Department of Organic Chemistry
- Southern Federal University
- 344090 Rostov-on-Don
- Russian Federation
| | - Marina P. Vlasenko
- Department of Organic Chemistry
- Southern Federal University
- 344090 Rostov-on-Don
- Russian Federation
| | - Alexander Yu. Tereznikov
- Department of Analytical Chemistry
- Southern Federal University
- 344090 Rostov-on-Don
- Russian Federation
| | | |
Collapse
|
21
|
Zwitterionic versus canonical amino acids over the various defects in zeolites: a two-layer ONIOM calculation. Sci Rep 2014; 4:6594. [PMID: 25307449 PMCID: PMC4194432 DOI: 10.1038/srep06594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/17/2014] [Indexed: 12/01/2022] Open
Abstract
Defects are often considered as the active sites for chemical reactions. Here a variety of defects in zeolites are used to stabilize zwitterionic glycine that is not self-stable in gas phase; in addition, effects of acidic strengths and zeolite channels on zwitterionic stabilization are demonstrated. Glycine zwitterions can be stabilized by all these defects and energetically prefer to canonical structures over Al and Ga Lewis acidic sites rather than Ti Lewis acidic site, silanol and titanol hydroxyls. For titanol (Ti-OH), glycine interacts with framework Ti and hydroxyl sites competitively, and the former with Lewis acidity predominates. The transformations from canonical to zwitterionic glycine are obviously more facile over Al and Ga Lewis acidic sites than over Ti Lewis acidic site, titanol and silanol hydroxyls. Charge transfers that generally increase with adsorption energies are found to largely decide the zwitterionic stabilization effects. Zeolite channels play a significant role during the stabilization process. In absence of zeolite channels, canonical structures predominate for all defects; glycine zwitterions remain stable over Al and Ga Lewis acidic sites and only with synergy of H-bonding interactions can exist over Ti Lewis acidic site, while automatically transform to canonical structures over silanol and titanol hydroxyls.
Collapse
|
22
|
Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model. J Mol Model 2014; 20:2396. [PMID: 25135067 DOI: 10.1007/s00894-014-2396-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.
Collapse
|
23
|
Pathak AK. Stabilizing the zwitter-ionic form of amino acids in the gas phase: An ab initio study on the minimum number of solvents and ions. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Chang TM, Chakrabarty S, Williams ER. Hydration of gaseous m-aminobenzoic acid: ionic vs neutral hydrogen bonding and water bridges. J Am Chem Soc 2014; 136:10440-9. [PMID: 24971758 DOI: 10.1021/ja5045874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydration of a protonated amine and a neutral carboxylic acid were investigated for protonated m-aminobenzoic acid (MABAH(+)) with up to 15 water molecules attached using infrared photodissociation spectroscopy, laser-induced dissociation kinetics, and computational chemistry. A free COO-H stretch in the spectra of MABAH(+)·(H2O)1-5 indicates that water does not bind to the carboxylic acid H atom. This band is absent in the spectrum of MABAH(+) with six or more water molecules attached, and there is a hydrogen-bonded (HB) COO-H stretch indicating that water hydrogen bonds to the carboxylic acid H atom for these larger clusters. Photodissociation kinetic data for MABAH(+)·(H2O)6 indicate that greater than 74 ± 13% of the ion population consists of the HB COO-H isomer, consistent with this isomer being ≥0.5 kJ mol(-1) lower in energy than isomers where the carboxylic acid H atom does not donate a hydrogen bond. Calculations at the B3LYP/6-31+G** and MP2/6-31+G**//B3LYP/6-31+G** levels of theory indicate that this energy difference is 3-5 kJ mol(-1), in agreement with the experimental results. Lower effective ion heating rates, either by attenuation of the laser power or irradiation of the ions at a lower frequency, result in more time for interconversion between the free and HB COO-H isomers. These data suggest that the barrier to dissociation for the free COO-H isomer is less than that for the HB COO-H isomer but greater than the barrier for interconversion between the two isomers. These results show the competition between hydration of a primary protonated amine vs that of a neutral carboxylic acid and the effect of water bridging between the two functional groups, which provide valuable insight into the hydration of protonated amino acids and establish rigorous benchmarks for theoretical modeling of water-biomolecule interactions.
Collapse
Affiliation(s)
- Terrence M Chang
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | |
Collapse
|
25
|
Kuroha M, Gotoh H, Miran MS, Yasuda T, Watanabe M, Sakakibara K. Proton-conductivity-enhancing Ionic Liquid Consisting of Guanidine and Excess Trifluoromethanesulfonic Acid. CHEM LETT 2014. [DOI: 10.1246/cl.131177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michiaki Kuroha
- Department of Advanced Materials Chemistry, Yokohama National University
| | - Hiroaki Gotoh
- Department of Advanced Materials Chemistry, Yokohama National University
| | | | - Tomohiro Yasuda
- Department of Advanced Materials Chemistry, Yokohama National University
| | - Masayoshi Watanabe
- Department of Advanced Materials Chemistry, Yokohama National University
| | | |
Collapse
|
26
|
Braga CB, Ducati LC, Tormena CF, Rittner R. Conformational analysis and intramolecular interactions of L-proline methyl ester and its N-acetylated derivative through spectroscopic and theoretical studies. J Phys Chem A 2014; 118:1748-58. [PMID: 24533966 DOI: 10.1021/jp5007632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reports a detailed study regarding the conformational preferences of L-proline methyl ester (ProOMe) and its N-acetylated derivative (AcProOMe) to elucidate the effects that rule their behaviors, through nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies combined with theoretical calculations. These compounds do not present a zwitterionic form in solution, simulating properly amino acid residues in biological media, in a way closer than amino acids in the gas phase. Experimental (3)JHH coupling constants and infrared data showed excellent agreement with theoretical calculations, indicating no variations in conformer populations on changing solvents. Natural bond orbital (NBO) results showed that hyperconjugative interactions are responsible for the higher stability of the most populated conformer of ProOMe, whereas for AcProOMe both hyperconjugative and steric effects rule its conformational equilibrium.
Collapse
Affiliation(s)
- Carolyne B Braga
- Physical Organic Chemistry Laboratory, Chemistry Institute, University of Campinas , 13083-970 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Dunbar RC. Spectroscopy of Metal-Ion Complexes with Peptide-Related Ligands. Top Curr Chem (Cham) 2014; 364:183-223. [DOI: 10.1007/128_2014_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Burt M, Wilson K, Marta R, Hasan M, Scott Hopkins W, McMahon T. Assessing the impact of anion–π effects on phenylalanine ion structures using IRMPD spectroscopy. Phys Chem Chem Phys 2014; 16:24223-34. [DOI: 10.1039/c4cp03776f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas-phase structures of two halide-bound phenylalanine anions (PheX−, X = Cl− or Br−) and five fluorinated derivatives have been identified using infrared multiple photon dissociation (IRMPD) spectroscopy.
Collapse
Affiliation(s)
- Michael Burt
- Department of Chemistry
- University of Waterloo
- Waterloo, Canada
| | - Kathleen Wilson
- Department of Chemistry
- University of Waterloo
- Waterloo, Canada
| | - Rick Marta
- Department of Chemistry
- University of Waterloo
- Waterloo, Canada
| | - Moaraj Hasan
- Department of Chemistry
- University of Waterloo
- Waterloo, Canada
| | | | - Terry McMahon
- Department of Chemistry
- University of Waterloo
- Waterloo, Canada
| |
Collapse
|
29
|
Freeman F, Adesina IT, La JL, Lee JY, Poplawski AA. Conformers of cysteine and cysteine sulfenic acid and mechanisms of the reaction of cysteine sulfenic acid with 5,5-dimethyl-1,3-cyclohexanedione (dimedone). J Phys Chem B 2013; 117:16000-12. [PMID: 24274619 DOI: 10.1021/jp409022m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Equilibrium and molecular structures, relative energies of conformers of gaseous cysteine (Cys, C, Cys-SH) and gaseous cysteine sulfenic acid (Cys-SOH), and the mechanisms of the reaction of Cys-SOH with 3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one, the enol tautomer of 5,5-dimethyl-1,3-cyclohexadione (dimedone), have been studied using BD(T), CCSD(T), and QCISD(T) with the cc-pVTZ basis set and using MP2 and the density functionals B3LYP, B3PW91, PBE1PBE, PBEh1PBE, M062X, CAM-B3LYP, and WB97XD with the 6-311+G(d,p) basis set. The structures of the six lowest energy conformers of gaseous Cys-SOH are compared with the six lowest energy conformers of gaseous cysteine (Cys-SH). The relative stability of the six lowest energy conformers of Cys-SH and Cys-SOH are influenced by the interplay among many factors including dispersive effects, electronic effects, electrostatic interactions, hydrogen bonds, inductive effects, and noncovalent interactions. The mechanism of the addition of the lowest energy conformer of cysteine sulfenic acid (Cys-SOH) to dimedone may proceed through a six-membered ring transition state structure and through cyclic hydrogen-bonded transition state structures with one water molecule (8-membered ring), with two water molecules (10-membered ring), and with three water molecules (12-membered ring). Inclusion of one and two water molecules in the transition state structures lowers the activation barrier, whereas inclusion of a third water molecule raises the activation barrier.
Collapse
Affiliation(s)
- Fillmore Freeman
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | | | | | | | | |
Collapse
|
30
|
Walker M, Harvey AJA, Sen A, Dessent CEH. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 2013; 117:12590-600. [PMID: 24147965 DOI: 10.1021/jp408166m] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a comparative assessment of the performance of the M06 suite of density functionals (M06, M06-2X, and M06-HF) against an MP2 benchmark for calculating the relative energies and geometric structures of the Cl(-)·arginine and Br(-)·arginine halide ion-amino acid clusters. Additional results are presented for the popular B3LYP density functional. The Cl(-)·arginine and Br(-)·arginine complexes are important prototypes for the phenomenon of anion-induced zwitterion formation. Results are presented for the canonical (noncharge separated) and zwitterionic (charge separated) tautomers of the clusters, as well as the numerous conformational isomers of the clusters. We find that all of the M06 functions perform well in terms of predicting the general trends in the conformer relative energies and identifying the global minimum conformer. This is in contrast to the B3LYP functional, which performed significantly less well for the canonical tautomers of the clusters where dispersion interactions contribute more significantly to the conformer energetics. We find that the M06 functional gave the lowest mean unsigned error for the relative energies of the canonical conformers (2.10 and 2.36 kJ/mol for Br(-)·arginine and Cl(-)·arginine), while M06-2X gave the lowest mean unsigned error for the zwitterionic conformers (0.85 and 1.23 kJ/mol for Br(-)·arginine and Cl(-)·arginine), thus providing insight into the types of physical systems where each of these functionals should perform best.
Collapse
Affiliation(s)
- Martin Walker
- Department of Chemistry, University of York , Heslington, York YO10 5DD, U.K
| | | | | | | |
Collapse
|
31
|
Walker M, Sen A, Harvey AJ, Dessent CE. Complexation of anions to gas-phase amino acids: Conformation is critical in determining if the global minimum is canonical or zwitterionic. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|