Holland DO, Johnson ME. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.
PLoS Comput Biol 2018. [PMID:
29518071 PMCID:
PMC5860782 DOI:
10.1371/journal.pcbi.1006022]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles.
Protein copy numbers are often found to be stoichiometrically balanced for subunits of multi-protein complexes. Imbalance is believed to be deleterious because it lowers complex yield (the dosage balance hypothesis) and increases the risk of misinteractions, but imbalance may also provide unexplored functional benefits. We show here that the benefits of stoichiometric balance can extend to larger networks of interacting proteins. We develop a method to quantify to what degree protein networks are balanced, and apply it to two networks. We find that the clathrin-mediated endocytosis system in yeast is statistically balanced, but not perfectly so, and explore the consequences of imbalance in the form of misinteractions and endocytic function. We also show that biological networks are more robust to misinteractions than random networks when balanced, but are more sensitive to misinteractions under imbalance. This suggests evolutionary pressure for proteins to be balanced and that any conserved imbalance should occur for functional reasons. We explore one such reason in the form of bottlenecking the endocytosis process. Our method can be generalized to other networks and used to identify out-of-balance proteins. Our results provide insight into how network design, expression level regulation, and cell fitness are intertwined.
Collapse