1
|
Mustafa R, Diorio D, Harper M, Punihaole D. Revealing two distinct molecular binding modes in polyethyleneimine-DNA polyplexes using infrared spectroscopy. SOFT MATTER 2025; 21:4192-4200. [PMID: 40326406 PMCID: PMC12053835 DOI: 10.1039/d5sm00213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
In this study, we use infrared spectroscopy to investigate the molecular binding modes of DNA with linear and branched polyethylenimine (LPEI and BPEI). PEI-based polymers are widely studied as non-viral gene delivery vectors, but their low transfection efficiency limits their clinical success. One key factor affecting their performance is how they bind DNA as it directly impacts the packaging, protection, and release of the cargo in cells. While PEI-DNA binding has traditionally been viewed through the lens of electrostatics, computational models suggest additional binding mechanisms may be involved. Our findings reveal that LPEI and BPEI exhibit two distinct molecular binding modes, which influence DNA packaging into polyplexes. Identifying these binding modes provides critical insights into polymer complexation mechanisms to nucleic acids that can guide the rational design of more efficient and versatile PEI-based gene delivery systems.
Collapse
Affiliation(s)
- Rusul Mustafa
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - Danielle Diorio
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - Madeline Harper
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| | - David Punihaole
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Paris JL, Gaspar R, Coelho F, De Beule PAA, Silva BFB. Stability Criterion for the Assembly of Core-Shell Lipid-Polymer-Nucleic Acid Nanoparticles. ACS NANO 2023; 17:17587-17594. [PMID: 37581895 PMCID: PMC10510699 DOI: 10.1021/acsnano.3c07204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Hybrid core-shell lipid-polycation-nucleic acid nanoparticles (LPNPs) provide unique delivery strategies for nonviral gene therapeutics. Since LPNPs consist of multiple components, involving different pairwise interactions between them, they are challenging to characterize and understand. Here, we propose a method based on fluorescence cross-correlation spectroscopy to elucidate the association between the three LPNP components. Through this lens, we demonstrate that cationic lipid shells (liposomes) do not displace polycations or DNA from the polycation-DNA cores (polyplexes). Hence, polyplexes and liposomes must be oppositely charged to associate into LPNPs. Furthermore, we identify the liposome:polyplex number ratio (ρN), which was hitherto an intangible quantity, as the primary parameter predicting stable LPNPs. We establish that ρN ≥ 1 ensures that every polyplex is enveloped by a liposome, thus avoiding coexisting oppositely charged species prone to aggregation.
Collapse
Affiliation(s)
| | - Ricardo Gaspar
- International Iberian Nanotechnology
Laboratory, Braga, 4715-330, Portugal
| | - Filipe Coelho
- International Iberian Nanotechnology
Laboratory, Braga, 4715-330, Portugal
| | | | | |
Collapse
|
3
|
Coelho F, Botelho C, Paris JL, Marques EF, Silva BF. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Lü JM, Liang Z, Liu D, Zhan B, Yao Q, Chen C. Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids. Pharmaceuticals (Basel) 2021; 14:841. [PMID: 34577541 PMCID: PMC8470087 DOI: 10.3390/ph14090841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Bin Zhan
- National School of Tropical Medicine and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA;
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| |
Collapse
|
6
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Haladjova E, Chrysostomou V, Petrova M, Ugrinova I, Pispas S, Rangelov S. Physicochemical Properties and Biological Performance of Polymethacrylate Based Gene Delivery Vector Systems: Influence of Amino Functionalities. Macromol Biosci 2020; 21:e2000352. [PMID: 33283423 DOI: 10.1002/mabi.202000352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Physicochemical characteristics and biological performance of polyplexes based on two identical copolymers bearing tertiary amino or quaternary ammonium groups are evaluated and compared. Poly(2-(dimethylamino)ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) block copolymer (PDMAEMA-b-POEGMA) is synthesized by reversible addition fragmentation chain transfer polymerization. The tertiary amines of PDMAEMA are converted to quaternary ammonium groups by quaternization with methyl iodide. The two copolymers spontaneously formed well-defined polyplexes with DNA. The size, zeta potential, molar mass, aggregation number, and morphology of the polyplex particles are determined. The parent PDMAEMA-b-POEGMA exhibits larger buffering capacity, whereas the corresponding quaternized copolymer (QPDMAEMA-b-POEGMA) displays stronger binding affinity to DNA, yielding invariably larger in size and molar mass particles bearing greater number of DNA molecules per particle. Experiments revealed that QPDMAEMA-b-POEGMA is more effective in transfecting pEGFP-N1 than the parent copolymer, attributed to the larger size, molar mass, and DNA cargo, as well as to the effective cellular traffic, which dominated over the enhanced ability for endo-lysosomal escape of PDMAEMA-b-POEGMA.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.103A, Sofia, 1113, Bulgaria
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., Athens, 11635, Greece
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.21, Sofia, 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.21, Sofia, 1113, Bulgaria
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., Athens, 11635, Greece
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev st. bl.103A, Sofia, 1113, Bulgaria
| |
Collapse
|
8
|
Sahoo S, Bera S, Dhara D. Histidine-Based Reduction-Sensitive Star-Polymer Inclusion Complex as a Potential DNA Carrier: Biophysical Studies Using Time-Resolved Fluorescence as an Important Tool. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11262-11273. [PMID: 32865419 DOI: 10.1021/acs.langmuir.0c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An ideal DNA carrier is one that is capable of effectively condensing DNA into complexes of optimum size and shape, preventing premature decomplexation in the bloodstream and efficiently releasing the DNA into affected cells. In this context, we have developed a novel β-cyclodextrin (β-CD)-based four-arm star-shaped polymer inclusion complex (IC) with arms made of a poly(l-histidine)-based cationic polymer. The polymer was well characterized by gel permeation chromatography, NMR, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We have also investigated its DNA complexation and release properties. Bisadamantane containing a disulfide bond was synthesized that linked two such poly(l-histidine)-containing β-CD units via guest-host interactions to prepare the presented IC. Besides using the conventional steady-state fluorescence spectroscopy, the ability of this IC to condense DNA to form polyplexes and their release behavior have been established by using the time-resolved fluorescence spectroscopy technique. Thiazole orange (TO) was used for the first time as a DNA-intercalating dye in the time-resolved fluorescence spectroscopic study. The superior DNA-condensing ability of the IC as compared to that of the precursor two-arm β-CD and linear poly(l-histidine) of a comparable molecular weight, as confirmed by dynamic light scattering, zeta potential, atomic force microscopy, and gel electrophoresis studies, could be attributed to a higher charge density. The IC-DNA polyplexes were found to be stable in a medium similar to an extracellular fluid but could efficiently release DNA in the presence of 10 mM glutathione, a concentration prevalent in the intracellular fluid of cancer cells. Hence, here, we have successfully demonstrated the synthesis of a novel biocompatible star-shaped IC with the potential to carry and release DNA in cancer cells and also established the feasibility of using the time-resolved fluorescence spectroscopic technique to study the complexation behavior of the polycation and DNA using TO as a DNA-intercalating dye.
Collapse
Affiliation(s)
- Satyagopal Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sharmita Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
9
|
He J, Xu S, Mixson AJ. The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics 2020; 12:E774. [PMID: 32823960 PMCID: PMC7465012 DOI: 10.3390/pharmaceutics12080774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Histidines incorporated into carriers of nucleic acids may enhance the extracellular stability of the nanoparticle, yet aid in the intracellular disruption of the nanoparticle, enabling the release of the nucleic acid. Moreover, protonation of histidines in the endosomes may result in endosomal swelling with subsequent lysis. These properties of histidine are based on its five-member imidazole ring in which the two nitrogen atoms may form hydrogen bonds or act as a base in acidic environments. A wide variety of carriers have integrated histidines or histidine-rich domains, which include peptides, polyethylenimine, polysaccharides, platform delivery systems, viral phages, mesoporous silica particles, and liposomes. Histidine-rich carriers have played key roles in our understanding of the stability of nanocarriers and the escape of the nucleic acids from endosomes. These carriers show great promise and offer marked potential in delivering plasmids, siRNA, and mRNA to their intracellular targets.
Collapse
Affiliation(s)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA; (J.H.); (S.X.)
| |
Collapse
|
10
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
11
|
Munsell EV, Fang B, Sullivan MO. Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjug Chem 2018; 29:3691-3704. [PMID: 30350573 DOI: 10.1021/acs.bioconjchem.8b00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone-inspired polymer assemblies (polyplexes) can regulate gene expression and subcellular transport in plasmids by harnessing the cellular machinery normally used for histone proteins. When grafted to polyplexes, histone tails promote nuclear accumulation, trigger plasmid DNA (pDNA) release, and enhance transcription. Herein, we developed multifunctional gold nanoparticles (AuNPs) decorated by histone motifs as histone-inspired scaffolds with improved pDNA binding, easy bioimaging, and increased potential for gene delivery and chromatin analysis applications. We hypothesized that polycationic AuNPs coupled to histone motifs would mimic the native presentation of these sequences on the histone octamer and thereby create structures with the capacity to both engage native histone effectors and condense pDNA into nucleosome-inspired nanostructures. AuNPs bearing ∼2 nm cores were prepared based on the well-established Brust-Schiffrin two-phase method involving tetrachloroaurate reduction in the presence of 1-pentanethiol. Solid phase peptide synthesis was employed to generate thiolated polycationic ligands and histone tail motifs, and the AuNPs and peptide ligands were combined in a two-step Murray place exchange reaction at various ratios to produce a collection of polycationic AuNPs modified with varying amounts of histone tails. Electron microscopy and thermal analyses demonstrated that these modified AuNPs exhibited tunable biochemical and biophysical properties that closely mimicked the properties of native histones. The histone-mimetic nanoscaffolds efficiently and sequence-specifically engaged histone effectors responsible for activating transcription. In addition, the nanoscaffolds condensed pDNA into complexes with high stability in the presence of physiological concentrations of heparin, a common extracellular polyanion. These combined properties of histone engagement and high stability led to a ∼6-fold enhancement in transfection efficiency as compared with typical polymeric transfection reagents, with the increased transfection efficiency correlated to the presence and amount of histone tails displayed on the surface of the nanoscaffolds. These findings demonstrate the utility of employing a biomimetic materials design approach to develop more effective and stable delivery vehicles for gene transfer and chromatin analysis applications.
Collapse
Affiliation(s)
- Erik V Munsell
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Bing Fang
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering , University of Delaware , 150 Academy Street , Newark , Delaware 19716 , United States
| |
Collapse
|
12
|
Yeh HP, Del Valle AC, Syu MC, Qian Y, Chang YC, Huang YF. A New Photosensitized Oxidation-Responsive Nanoplatform for Controlled Drug Release and Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21160-21172. [PMID: 29863836 DOI: 10.1021/acsami.8b05205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abnormal biochemical alteration such as unbalanced reactive oxygen species (ROS) levels has been considered as a potential disease-specific trigger to deliver therapeutics to target sites. However, in view of their minute variations in concentration, short lifetimes, and limited ranges of action, in situ generation of ROS with specific manipulations should be more effective for ROS-responsive drug delivery. Here we present a new delivery nanoplatform for photodynamic therapy (PDT) with on-demand drug release regulated by light irradiation. Rose bengal (RB) molecules, which exhibit a high yield of ROS generation, were encapsulated in a mixture of chitosan (CTS), poly(vinyl alcohol) (PVA), and branched polyethylenimine ( bPEI) with hydrophobic iron oxide nanoparticles through an oil-in-water emulsion method. The as-prepared magnetic nanoclusters (MNCs) with a tripolymer coating displayed high water dispersibility, efficient cellular uptake, and the cationic groups of CTS and bPEI were effective for RB loading through electrostatic interaction. The encapsulation efficiency of RB in MNCs could be further improved by increasing the amount of short bPEI chains. During the photodynamic process, controlled release of the host molecules (i.e., RB) or guest molecules (i.e., paclitaxel) from the bPEI-based nanoplatform was achieved simultaneously through a photooxidation action sensitized by RB. This approach promises specific payload release and highly effective PDT or PDT combined therapy in various cancer cell lines including breast (MCF-7 and multidrug resistant MCF-7 subline), SKOV-3 ovarian, and Tramp-C1 prostate. In in vivo xenograft studies, the nanoengineered light-switchable carrier also greatly augments its PDT efficacy against multidrug resistant MCF-7/MDR tumor as compared with free drugs. All the above findings suggest that the substantial effects of enhanced drug distribution for efficient cancer therapy was achieved with this smart nanocarrier capable of on demand drug release and delivery, thus exerting its therapeutic activity to a greater extent.
Collapse
Affiliation(s)
- Huan-Pu Yeh
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| | - Andrea C Del Valle
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| | - Ming-Chen Syu
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| | - Yu Qian
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| | - Yu-Cheng Chang
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan ROC
| |
Collapse
|
13
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
14
|
Lisitsyna ES, Ketola TM, Morin-Picardat E, Liang H, Hanzlíková M, Urtti A, Yliperttula M, Vuorimaa-Laukkanen E. Time-Resolved Fluorescence Spectroscopy Reveals Fine Structure and Dynamics of Poly(l-lysine) and Polyethylenimine Based DNA Polyplexes. J Phys Chem B 2017; 121:10782-10792. [DOI: 10.1021/acs.jpcb.7b08394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina S. Lisitsyna
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Tiia-Maaria Ketola
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Emmanuelle Morin-Picardat
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Huamin Liang
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Martina Hanzlíková
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Arto Urtti
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O.
Box 1627, FI-70211 Kuopio, Finland
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of
Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo, 5, 35131 Padova, Italy
| | - Elina Vuorimaa-Laukkanen
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| |
Collapse
|
15
|
Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach. Int J Mol Sci 2017. [PMID: 28629130 PMCID: PMC5486112 DOI: 10.3390/ijms18061291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.
Collapse
|
16
|
Difference in the core-shell dynamics of polyethyleneimine and poly( l -lysine) DNA polyplexes. Eur J Pharm Sci 2017; 103:122-127. [DOI: 10.1016/j.ejps.2017.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
|
17
|
Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci 2017; 103:5-18. [PMID: 28263915 DOI: 10.1016/j.ejps.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
This review is a comprehensive analysis of the progress made so far on the delivery of polynucleotide-based therapeutics to the eye, using synthetic nanocarriers. Attention has been addressed to the capacity of different nanocarriers for the specific delivery of polynucleotides to both, the anterior and posterior segments of the eye, with emphasis on their ability to (i) improve the transport of polynucleotides across the different eye barriers; (ii) promote their intracellular penetration into the target cells; (iii) protect them against degradation and, (iv) deliver them in a long-term fashion way. Overall, the conclusion is that despite the advantages that nanotechnology may offer to the area of ocular polynucleotide-based therapies (especially AS-ODN and siRNA delivery), the knowledge disclosed so far is still limited. This fact underlines the necessity of more fundamental and product-oriented research for making the way of the said nanotherapies towards clinical translation.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Covadonga Pañeda
- Sylentis, R&D Department, c/Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Shahbazi MA, Almeida PV, Correia A, Herranz-Blanco B, Shrestha N, Mäkilä E, Salonen J, Hirvonen J, Santos HA. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. J Control Release 2017; 249:111-122. [PMID: 28159519 DOI: 10.1016/j.jconrel.2017.01.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Bioresponsive cytosolic nanobased multidelivery has been emerging as an enormously challenging novel concept due to the intrinsic protective barriers of the cells and hardly controllable performances of nanomaterials. Here, we present a new paradigm to advance nano-in-nano integration technology amenable to create multifunctional nanovehicles showing considerable promise to overcome restrictions of intracellular delivery, solve impediments of endosomal localization and aid effectual tracking of nanoparticles. A redox responsive intercalator chemistry comprised of cystine and 9-aminoacridine is designed as a cross-linker to cap carboxylated porous silicon nanoparticles with DNA. These intelligent nanocarriers are then encapsulated within novel one-pot electrostatically complexed nano-networks made of a zwitterionic amino acid (cysteine), an anionic bioadhesive polymer (poly(methyl vinyl ether-alt-maleic acid)) and a cationic endosomolytic polymer (polyethyleneimine). This combined nanocomposite is successfully tested for the co-delivery of hydrophobic (sorafenib) or hydrophilic (calcein) molecules loaded within the porous core, and an imaging agent covalently integrated into the polyplex shell by click chemistry. High loading capacity, low cyto- and hemo-toxicity, glutathione responsive on-command drug release, and superior cytosolic delivery are shown as achievable key features of the proposed formulation. Overall, formulating drug molecules, DNA and imaging agents, without any interference, in a physico-chemically optimized carrier may open a path towards broad applicability of these cost-effective multivalent nanocomposites for treating different diseases.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Patrick Vingadas Almeida
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Barbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Neha Shrestha
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland; Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| |
Collapse
|
19
|
Utsuno K, Kono H, Tanaka E, Jouna N, Kojima Y, Uludağ H. Low Molecular Weight Branched PEI Binding to Linear DNA. Chem Pharm Bull (Tokyo) 2017; 64:1484-1491. [PMID: 27725501 DOI: 10.1248/cpb.c16-00454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyethylenimine (PEI) is one of the most versatile non-viral vectors used in gene therapy, especially for delivering plasmid DNA to human cells. However, a good understanding of PEI binding to DNA, the fundamental basis for the functioning of PEI as a vector, has been missing in the literature. In this study, PEI (branched, 600 Da) binding to DNA was examined by isothermal titration calorimetry (ITC), quartz crystal microbalance (QCM) and a complementary set of analysis tools. We demonstrated that a separation between the binding heat and the condensation heat is needed and that the excluded site model should be used for PEI binding stage in the ITC analysis. The equilibrium constant for PEI binding to DNA was determined to be 2.5×105 M-1 from the ITC analysis, and as 2.3×105 M-1 from the QCM analysis. Additionally, we suggested that the 600 Da branched PEI binds to the major groove of DNA and the rearrangement of PEI on DNA may be difficult to occur because of the small dissociation rate. The binding analysis presented here can be employed to improve our understanding of the functioning of PEI and PEI-like non-viral vectors.
Collapse
Affiliation(s)
- Kuniharu Utsuno
- Department of Science & Engineering for Materials, National Institute of Technology, Tomakomai College
| | | | | | | | | | | |
Collapse
|
20
|
Kanber E, Yamada H, Loretz B, Lepeltier E, Lehr CM. Design of Polyamine-Grafted Starches for Nucleotide Analogue Delivery: In Vitro Evaluation of the Anticancer Activity. Bioconjug Chem 2016; 27:2431-2440. [PMID: 27633934 DOI: 10.1021/acs.bioconjchem.6b00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleotide analogues are a therapeutic class that is very promising and currently used in clinics, notably against viral infectious diseases and cancer. However, their therapeutic potential is often restricted by a poor stability in vivo, the induction of severe side effects, and limited passive intracellular diffusion due to their hydrophilicity. Polysaccharide-based polymers (e.g., starch) have considerable advantages, including a lack of toxicity and the absence of antigenicity. The aim of this study was to develop new cationic starches able to form complexes with nucleotide analogues, thus protecting them and increasing their cell uptake. At the same time, the material should demonstrate good biocompatibility and low cytotoxicity. Different polyamines, (TREN, TEPA, and spermine) were grafted to starch to evaluate the impact of side-chain properties. The resulting cationic starch derivatives were characterized (e.g., degree of modification) and compared in their ability to form polyplexes with ATP as a model nucleotide. Among the tested candidates, the formulation of starch-TEPA and ATP with an N/P ratio of 2 led to nanoparticles with a size of 429 nm, a PdI of 0.054, and a ζ potential of -9 mV. MTT and LDH assays on A549 cell line showed low toxicity for this polymer. Confocal microscopy study proved that the cell internalization was an incubation-time- and energy-dependent process. Most important, starch-TEPA complexed with ddGTP showed significant biological activity on A549 cancer cells compared to that of plain ddGTP at the same concentration.
Collapse
Affiliation(s)
- Erdem Kanber
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , 66123 Saarbrücken, Germany
| | - Hiroe Yamada
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , 66123 Saarbrücken, Germany
| | - Elise Lepeltier
- INSERM U1066 Micro & Nanomed Biomimetique , 4 rue Larrey, 49933 Angers, France
| | - Claus-Michael Lehr
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) , 66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University , 66123 Saarbrücken, Germany
| |
Collapse
|
21
|
Dey D, Maiti C, Sahoo S, Dhara D. Comparative study of calf-thymus DNA complexation by low generation PAMAM dendrimers and linear cationic PEGylated block copolymers by time-resolved fluorescence spectroscopy. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater 2016; 37:120-30. [PMID: 27019146 DOI: 10.1016/j.actbio.2016.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Non-viral, biomaterial-mediated gene delivery has the potential to treat many diseases, but is limited by low efficacy. Elucidating the bottlenecks of plasmid mass transfer can enable an improved understanding of biomaterial structure-function relationships, leading to next-generation rationally designed non-viral gene delivery vectors. As proof of principle, we transfected human primary glioblastoma cells using a poly(beta-amino ester) complexed with eGFP plasmid DNA. The polyplexes transfected 70.6±0.6% of the cells with 101±3% viability. The amount of DNA within the cytoplasm, nuclear envelope, and nuclei was assessed at multiple time points using fluorescent dye conjugated plasmid up to 24h post-transfection using a quantitative multi-well plate-based flow cytometry assay. Conversion to plasmid counts and degradation kinetics were accounted for via quantitative PCR (plasmid degradation rate constants were determined to be 0.62h(-1) and 0.084h(-1) for fast and slow phases respectively). Quantitative cellular uptake, nuclear association, and nuclear uptake rate constants were determined by using a four-compartment first order mass-action model. The rate limiting step for these poly(beta-amino ester)/DNA polyplex nanoparticles was determined to be cellular uptake (7.5×10(-4)h(-1)) and only 0.1% of the added dose was taken up by the human brain cancer cells, whereas 12% of internalized DNA successfully entered the nucleus (the rate of nuclear internalization of nuclear associated plasmid was 1.1h(-1)). We describe an efficient new method for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles using flow cytometry to improve understanding and design of polymeric gene delivery nanoparticles. STATEMENT OF SIGNIFICANCE In this work, a quantitative high throughput flow cytometry-based assay and computational modeling approach was developed for assessing cellular and nuclear uptake rates of non-viral gene delivery nanoparticles. This method is significant as it can be used to elucidate structure-function relationships of gene delivery nanoparticles and improve their efficiency. This method was applied to a particular type of biodegradable polymer, a poly(beta-amino ester), that transfected human brain cancer cells with high efficacy and without cytotoxicity. A four-compartment first order mass-action kinetics model was found to model the experimental transport data well without requiring external fitting parameters. Quantitative rate constants were identified for the intracellular transport, including DNA degradation rate from polyplexes, cellular uptake rate, and nuclear uptake rate, with cellular uptake identified as the rate-limiting step.
Collapse
|
23
|
Levine RM, Dinh CV, Harris MA, Kokkoli E. Targeting HPV-infected cervical cancer cells with PEGylated liposomes encapsulating siRNA and the role of siRNA complexation with polyethylenimine. Bioeng Transl Med 2016; 1:168-180. [PMID: 29313012 PMCID: PMC5675078 DOI: 10.1002/btm2.10022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The greatest obstacle to clinical application of cancer gene therapy is lack of effective delivery tools. Gene delivery vehicles must protect against degradation, avoid immunogenic effects and prevent off target delivery which can cause harmful side effects. PEGylated liposomes have greatly improved tumor localization of small molecule drugs and are a promising tool for nucleic acid delivery as the polyethylene glycol (PEG) coating protects against immune recognition and blood clearance. In this study, small interfering RNA (siRNA) was fully encapsulated within PEGylated liposomes by complexing the siRNA with a cationic polymer, polyethyleneimine (PEI), before encapsulation. Formation methods and material compositions were then investigated for their effects on encapsulation. This technology was translated for protective delivery of siRNA designed for human papillomavirus (HPV) viral gene silencing and cervical cancer treatment. PEGylated liposomes encapsulating siRNA were functionalized with the AG86 targeting peptide-amphiphile which binds to the α6β4 integrin, a cervical cancer biomarker. It was found that both targeting and polymer complexation before encapsulation were critical components to effective transfection.
Collapse
Affiliation(s)
- Rachel M. Levine
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Christina V. Dinh
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Michael A. Harris
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| | - Efrosini Kokkoli
- Dept. of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMN55455
| |
Collapse
|
24
|
Bishop CJ, Liu AL, Lee DS, Murdock RJ, Green JJ. Layer-by-layer inorganic/polymeric nanoparticles for kinetically controlled multigene delivery. J Biomed Mater Res A 2015; 104:707-713. [PMID: 26519869 DOI: 10.1002/jbm.a.35610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/30/2023]
Abstract
Nonviral gene delivery methods represent a potential safe and effective approach for treating myriad diseases. For many gene therapy applications, delivering multiple exogenous genes and controlling the time profile that these genes are expressed would be advantageous. Polymeric nonviral gene carriers are versatile and can be readily tailored for particular therapeutic applications, have the ability to carry multiple large genes within each particle, and can be more easily manufactured than viruses used for gene delivery. A layer-by-layer (LbL) theranostic-enabling nanoparticle was developed to incorporate two plasmid types which have differing expression time profiles. Temporally controlling the expression of exogenous DNA enables superior control over the microenvironment and could lead to better control over differentiation pathways and cell fate. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 707-713, 2016.
Collapse
Affiliation(s)
- Corey J Bishop
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Translational Tissue Engineering Center, Baltimore, Maryland, 21231
| | - Allen L Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Translational Tissue Engineering Center, Baltimore, Maryland, 21231
| | - David S Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Translational Tissue Engineering Center, Baltimore, Maryland, 21231
| | - Richard J Murdock
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Translational Tissue Engineering Center, Baltimore, Maryland, 21231
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Translational Tissue Engineering Center, Baltimore, Maryland, 21231.,Departments of Ophthalmology, Oncology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21231
| |
Collapse
|
25
|
Bishop CJ, Kozielski KL, Green JJ. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J Control Release 2015; 219:488-499. [PMID: 26433125 DOI: 10.1016/j.jconrel.2015.09.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022]
Abstract
Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.
Collapse
Affiliation(s)
- Corey J Bishop
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for Nanobiotechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
26
|
Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, Reda MM, Lee R, Mihelic SA, Beckman BL, Hu Z, Gray JW, Yantasee W. Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted SiRNA Delivery to HER2+ Breast Cancer. ADVANCED FUNCTIONAL MATERIALS 2015; 25:2646-2659. [PMID: 26097445 PMCID: PMC4469082 DOI: 10.1002/adfm.201404629] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. We now describe a new nanoparticle construct that has been engineered for efficient delivery of siRNA to tumors. The construct is comprised of a 47-nm mesoporous silica nanoparticle (MSNP) core coated with a cross-linked PEI-PEG copolymer, carrying siRNA against the HER2 oncogene, and coupled to the anti-HER2 monoclonal antibody (trastuzumab). The construct has been engineered to increase siRNA blood half-life, enhance tumor-specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti-HER2-nanoparticles produced apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2-) cells. One dose of the siHER2-nanoparticles reduced HER2 protein levels by 60% in trastuzumab-resistant HCC1954 xenografts. Multiple doses administered intravenously over 3 weeks significantly inhibited tumor growth (p < 0.004). The siHER2-nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch-to-batch reproducibility and the production methods are suitable for large-scale production. These results suggest that this siHER2-nanoparticle is ready for clinical evaluation.
Collapse
Affiliation(s)
- Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Jingga Morry
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - David J. Castro
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
- PDX Pharmaceuticals 24 Independence Ave, Lake Oswego, OR 97035
| | - Shaun M. Goodyear
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Thanapon Sangvanich
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Moataz M. Reda
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Richard Lee
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Samuel A. Mihelic
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Brandon L. Beckman
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Zhi Hu
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University 3303 SW Bond Ave, Portland, OR 97239
- PDX Pharmaceuticals 24 Independence Ave, Lake Oswego, OR 97035
| |
Collapse
|
27
|
Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater 2015; 11:393-403. [PMID: 25246314 DOI: 10.1016/j.actbio.2014.09.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/20/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
Gold nanoparticles have utility for in vitro, ex vivo and in vivo imaging applications as well as for serving as a scaffold for therapeutic delivery and theranostic applications. Starting with gold nanoparticles as a core, layer-by-layer degradable polymer coatings enable the simultaneous co-delivery of DNA and short interfering RNA (siRNA). To engineer release kinetics, polymers which degrade through two different mechanisms can be utilized to construct hybrid inorganic/polymeric particles. During fabrication of the nanoparticles, the zeta potential reverses upon the addition of each oppositely charged polyelectrolyte layer and the final nanoparticle size reaches approximately 200nm in diameter. When the hybrid gold/polymer/nucleic acid nanoparticles are added to human primary brain cancer cells in vitro, they are internalizable by cells and reach the cytoplasm and nucleus as visualized by transmission electron microscopy and observed through exogenous gene expression. This nanoparticle delivery leads to both exogenous DNA expression and siRNA-mediated knockdown, with the knockdown efficacy superior to that of Lipofectamine® 2000, a commercially available transfection reagent. These gold/polymer/nucleic acid hybrid nanoparticles are an enabling theranostic platform technology capable of delivering combinations of genetic therapies to human cells.
Collapse
|
28
|
D'Andrea C, Pezzoli D, Malloggi C, Candeo A, Capelli G, Bassi A, Volonterio A, Taroni P, Candiani G. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA. Photochem Photobiol Sci 2014; 13:1680-9. [PMID: 25308511 DOI: 10.1039/c4pp00242c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency.
Collapse
Affiliation(s)
- Cosimo D'Andrea
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|