1
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
2
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|
3
|
Ghosh A, Ostrander JS, Zanni MT. Watching Proteins Wiggle: Mapping Structures with Two-Dimensional Infrared Spectroscopy. Chem Rev 2017; 117:10726-10759. [PMID: 28060489 PMCID: PMC5500453 DOI: 10.1021/acs.chemrev.6b00582] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exhibit structural fluctuations over decades of time scales. From the picosecond side chain motions to aggregates that form over the course of minutes, characterizing protein structure over these vast lengths of time is important to understanding their function. In the past 15 years, two-dimensional infrared spectroscopy (2D IR) has been established as a versatile tool that can uniquely probe proteins structures on many time scales. In this review, we present some of the basic principles behind 2D IR and show how they have, and can, impact the field of protein biophysics. We highlight experiments in which 2D IR spectroscopy has provided structural and dynamical data that would be difficult to obtain with more standard structural biology techniques. We also highlight technological developments in 2D IR that continue to expand the scope of scientific problems that can be accessed in the biomedical sciences.
Collapse
Affiliation(s)
| | - Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Zhang TO, Alperstein AM, Zanni MT. Amyloid β-Sheet Secondary Structure Identified in UV-Induced Cataracts of Porcine Lenses using 2D IR Spectroscopy. J Mol Biol 2017; 429:1705-1721. [PMID: 28454743 PMCID: PMC5493149 DOI: 10.1016/j.jmb.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
Abstract
Cataracts are formed by the aggregation of crystallin proteins in the eye lens. Many in vitro studies have established that crystallin proteins precipitate into aggregates that contain amyloid fibers when denatured, but there is little evidence that ex vivo cataracts contain amyloid. In this study, we collect two-dimensional infrared (2D IR) spectra on tissue slices of porcine eye lenses. As shown in control experiments on in vitro αB- and γD-crystallin, 2D IR spectroscopy can identify the highly ordered β-sheets typical of amyloid secondary structure even if the fibers themselves are too short to be resolved with TEM. In ex vivo experiments of acid-treated tissues, characteristic 2D IR features are observed and fibers >50nm in length are resolved by transmission electron microscopy (TEM), consistent with amyloid fibers. In UV-irradiated lens tissues, fibers are not observed with TEM, but highly ordered β-sheets of amyloid secondary structure is identified from the 2D IR spectra. The characteristic 2D IR features of amyloid β-sheet secondary structure are created by as few as four or five strands and so identify amyloid secondary structure even if the aggregates themselves are too small to be resolved with TEM. We discuss these findings in the context of the chaperone system of the lens, which we hypothesize sequesters small aggregates, thereby preventing long fibers from forming. This study expands the scope of heterodyned 2D IR spectroscopy to tissues. The results provide a link between in vitro and ex vivo studies and support the hypothesis that cataracts are an amyloid disease.
Collapse
Affiliation(s)
- Tianqi O Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
5
|
Chang CK, Wang SSS, Lo CH, Hsiao HC, Wu JW. Investigation of the early stages of human γD-crystallin aggregation process. J Biomol Struct Dyn 2016; 35:1042-1054. [PMID: 27025196 DOI: 10.1080/07391102.2016.1170632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cataract, a major cause of visual impairment worldwide, is a common disease of the eye lens related to protein aggregation. Several factors including the exposure of ultraviolet irradiation and possibly acidic condition may induce the unfolding and subsequent aggregation of the crystallin proteins leading to crystalline lens opacification. Human γD-crystallin (HγDC), a 173 residue monomeric protein, abundant in the nucleus of the human eye lens, has been shown to aggregate and form amyloid fibrils under acidic conditions and that this aggregation route is thought to be a potential initiation pathway for the onset of age-related nuclear cataract. However, the underlying mechanism of fibril formation remains elusive. This report is aimed at examining the structural changes and possible amyloid fibril formation pathway of HγDC using molecular dynamics and molecular docking simulations. Our findings demonstrated that incubation of HγDC under the acidic condition redistributes the protein surface charges and affects the protein interaction with its surrounding solvent environment. This brings about a twist motion in the overall tertiary structure that gives rise to newly formed anti-parallel β-strands in the C-terminal flexible loop regions. The change in protein structural conformation also involves an alteration in specific salt-bridge interactions. Altogether, these findings revealed a plausible mechanism for amyloid fibril formation of HγDC that is important to the early stages of HγDC aggregation involved in cataractogenesis.
Collapse
Affiliation(s)
- Chih-Kai Chang
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Steven S-S Wang
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Chun-Hsien Lo
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Hsiang-Chun Hsiao
- a Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan
| | - Josephine W Wu
- b Department of Optometry, Central Taiwan University of Science and Technology , Taichung 40601 , Taiwan
| |
Collapse
|
6
|
Fang B, Wang T, Chen X, Jin T, Zhang R, Zhuang W. Modeling Vibrational Spectra of Ester Carbonyl Stretch in Water and DMSO Based on Molecular Dynamics Simulation. J Phys Chem B 2015; 119:12390-6. [PMID: 26335032 DOI: 10.1021/acs.jpcb.5b06541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of molecular dynamics simulation, we model the ester carbonyl stretch FTIR signals of methyl acetate in D2O and DMSO. An ab initio map is constructed at the B3LYP/6-311++G** level to relate the carbonyl stretch frequency to the external electric field. Using this map, fluctuating Hamiltonian of the carbonyl stretch is constructed from the MD simulation trajectory. The IR spectra calculated based on this Hamiltonian are found to be in good agreement with the experiment. For methyl acetate in D2O, hydrogen bonding on alkoxy oxygen causes a blue shift of frequency, while that on carbonyl oxygen causes a red shift. Two peaks observed in FTIR signals originate from the balance of these two effects. Furthermore, in both D2O and DMSO solutions, correlations are found between the instantaneous electric field on C═O and the frequencies. Broader line width of the signal in D2O suggests a more inhomogeneous electric field distribution due to the complicated hydrogen-bonding environment.
Collapse
Affiliation(s)
- Bin Fang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Tianjun Wang
- Department of Chemistry, ShanghaiTech University , 19 Yueyang Road, Shanghai 200031, China
| | - Xian Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University , 2699 Qianjin Street, ChangChun 130012, China
| | - Tan Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Ruiting Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, Liaoning, China
| |
Collapse
|
7
|
Błasiak B, Cho M. Vibrational solvatochromism. II. A first-principle theory of solvation-induced vibrational frequency shift based on effective fragment potential method. J Chem Phys 2015; 140:164107. [PMID: 24784253 DOI: 10.1063/1.4872040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrational solvatochromism is a solvation-induced effect on fundamental vibrational frequencies of molecules in solutions. Here we present a detailed first-principle coarse-grained theory of vibrational solvatochromism, which is an extension of our previous work [B. Błasiak, H. Lee, and M. Cho, J. Chem. Phys. 139(4), 044111 (2013)] by taking into account electrostatic, exchange-repulsion, polarization, and charge-transfer interactions. By applying our theory to the model N-methylacetamide-water clusters, solute-solvent interaction-induced effects on amide I vibrational frequency are fully elucidated at Hartree-Fock level. Although the electrostatic interaction between distributed multipole moments of solute and solvent molecules plays the dominant role, the contributions from exchange repulsion and induced dipole-electric field interactions are found to be of comparable importance in short distance range, whereas the charge-transfer effect is negligible. The overall frequency shifts calculated by taking into account the contributions of electrostatics, exchange-repulsion, and polarization terms are in quantitative agreement with ab initio results obtained at the Hartree-Fock level of theory.
Collapse
Affiliation(s)
- Bartosz Błasiak
- Department of Chemistry, Korea University, Seoul 136-701, South Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
8
|
Abstract
Infrared spectroscopy has played an instrumental role in the study of a wide variety of biological questions. However, in many cases, it is impossible or difficult to rely on the intrinsic vibrational modes of biological molecules of interest, such as proteins, to reveal structural and environmental information in a site-specific manner. To overcome this limitation, investigators have dedicated many recent efforts to the development and application of various extrinsic vibrational probes that can be incorporated into biological molecules and used to site-specifically interrogate their structural or environmental properties. In this review, we highlight recent advancements in this rapidly growing research area.
Collapse
|
9
|
Moran SD, Zhang TO, Zanni MT. An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human γD-crystallin. Protein Sci 2014; 23:321-31. [PMID: 24415662 DOI: 10.1002/pro.2422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/11/2022]
Abstract
The eye lens protein γD-crystallin contributes to cataract formation in the lens. In vitro experiments show that γD-crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV-B photodamage results in its C-terminal domain forming the β-sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet-like aggregates that contain cross-linked oligomers of the protein, according to transmission electron microscopy and SDS-PAGE. We use two-dimensional infrared spectroscopy to show that these aggregates have an amyloid-like secondary structure with extended β-sheets, and use isotope dilution experiments to show that each protein contributes approximately one β-strand to each β-sheet in the aggregates. Using segmental (13) C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N-terminal and C-terminal domains contribute to β-sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N-terminal domain into the fiber structure to intermolecular cross linking.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | | | | |
Collapse
|
10
|
Moran SD, Zhang TO, Decatur SM, Zanni MT. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013; 52:6169-81. [PMID: 23957864 DOI: 10.1021/bi4008353] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV-B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, WI, United States 53706
| | | | | | | |
Collapse
|