1
|
Brdlík P, Novák J, Borůvka M, Gomez-Caturla J, Lenfeld P. The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites. Polymers (Basel) 2024; 16:3102. [PMID: 39599193 PMCID: PMC11598645 DOI: 10.3390/polym16223102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
In the last few decades, a large number of natural additives have been analysed in connection with the improvement of the properties of poly(lactic acid) (PLA) bioplastic materials. This article comprehensively analyses the applicability of a highly stable and progressive multifunctional additive produced from renewable resources-biochar. The effect of biochar on the structural development and various thermo-mechanical properties was evaluated as a function of the biochar size and volume, addition of an impact modifier and in-mould annealing during injection moulding. In addition, the effect of accelerated ageing on the change in properties was also analysed. The evaluated results showed a significant influence of the particle size and biochar content on the properties of PLA biocomposites. However, the crucial aspect was the production process with a higher mould temperature and longer production time. Consequently, the effect of additives with adjusted processing worked synergistically on the performance of the resulting biocomposites. The accelerated ageing process did not induce any significant changes in the mechanical, impact and heat resistance behaviour of neat PLA. On the other hand, significant effects on the behaviour of the modified PLA biocomposites were observed. Impact-modified PLA achieved a toughness of 28 kJ/m2, an increase of 61% compared to neat PLA. Similar observations were made when submicron biochar was incorporated into the PLA matrix (a 22% increase with PLA/5B1). These increases were even more pronounced when injected into a 100 °C mould. Due to the synergistic effect, excellent impact toughness results of 95 kJ/m2 (a 428% increase) were achieved with PLA/IM/5B1. Moreover, these results persisted even after accelerated ageing.
Collapse
Affiliation(s)
- Pavel Brdlík
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (J.N.); (M.B.); (P.L.)
| | - Jan Novák
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (J.N.); (M.B.); (P.L.)
| | - Martin Borůvka
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (J.N.); (M.B.); (P.L.)
| | - Jaume Gomez-Caturla
- Institute of Materials Technology (ITM), Universitat Politecnica de Valencia (UPV), Plaza Ferrandiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Petr Lenfeld
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (J.N.); (M.B.); (P.L.)
| |
Collapse
|
2
|
Di Lorenzo ML. Crystallization of Poly(ethylene terephthalate): A Review. Polymers (Basel) 2024; 16:1975. [PMID: 39065291 PMCID: PMC11280767 DOI: 10.3390/polym16141975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) is a thermoplastic polyester with excellent thermal and mechanical properties, widely used in a variety of industrial fields. It is a semicrystalline polymer, and most of the industrial success of PET derives from its easily tunable crystallization kinetics, which allow users to produce the polymer with a high crystal fraction for applications that demand high thermomechanical resistance and barrier properties, or a fully amorphous polymer when high transparency of the product is needed. The main properties of the polymer are presented and discussed in this contribution, together with the literature data on the crystal structure and morphology of PET. This is followed by an in-depth analysis of its crystallization kinetics, including both primary crystal nucleation and crystal growth, as well as secondary crystallization. The effect of molar mass, catalyst residues, chain composition, and thermo-mechanical treatments on the crystallization kinetics, structure, and morphology of PET are also reviewed in this contribution.
Collapse
Affiliation(s)
- Maria Laura Di Lorenzo
- National Research Council, Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
3
|
Strangis G, Labardi M, Gallone G, Milazzo M, Capaccioli S, Forli F, Cinelli P, Berrettini S, Seggiani M, Danti S, Parchi P. 3D Printed Piezoelectric BaTiO 3/Polyhydroxybutyrate Nanocomposite Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2024; 11:193. [PMID: 38391679 PMCID: PMC10886384 DOI: 10.3390/bioengineering11020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Bone defects are a significant health problem worldwide. Novel treatment approaches in the tissue engineering field rely on the use of biomaterial scaffolds to stimulate and guide the regeneration of damaged tissue that cannot repair or regrow spontaneously. This work aimed at developing and characterizing new piezoelectric scaffolds to provide electric bio-signals naturally present in bone and vascular tissues. Mixing and extrusion were used to obtain nanocomposites made of polyhydroxybutyrate (PHB) as a matrix and barium titanate (BaTiO3) nanoparticles as a filler, at BaTiO3/PHB compositions of 5/95, 10/90, 15/85 and 20/80 (w/w%). The morphological, thermal, mechanical and piezoelectric properties of the nanocomposites were studied. Scanning electron microscopy analysis showed good nanoparticle dispersion within the polymer matrix. Considerable increases in the Young's modulus, compressive strength and the piezoelectric coefficient d31 were observed with increasing BaTiO3 content, with d31 = 37 pm/V in 20/80 (w/w%) BaTiO3/PHB. 3D printing was used to produce porous cubic-shaped scaffolds using a 90° lay-down pattern, with pore size ranging in 0.60-0.77 mm and good mechanical stability. Biodegradation tests conducted for 8 weeks in saline solution at 37 °C showed low mass loss (∼4%) for 3D printed scaffolds. The results obtained in terms of piezoelectric, mechanical and chemical properties of the nanocomposite provide a new promising strategy for vascularized bone tissue engineering.
Collapse
Affiliation(s)
- Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Massimiliano Labardi
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Simone Capaccioli
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
- Department of Physics "Enrico Fermi", University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
- Institute for Chemical and Physical Processes (IPCF), National Research Council (CNR), Pisa Research Area, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Parchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Czerniecka-Kubicka A, Skotnicki M, Gonciarz W, Zarzyka I, Jadach B, Lovecká L, Maternia-Dudzik K, Kovářová M, Pyda M, Tutka P, Sedlařík V. The cytisine-enriched poly(3-hydroxybutyrate) fibers for sustained-release dosage form. Int J Biol Macromol 2023; 245:125544. [PMID: 37356682 DOI: 10.1016/j.ijbiomac.2023.125544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.
Collapse
Affiliation(s)
- Anna Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland; Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic.
| | - Marcin Skotnicki
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Iwona Zarzyka
- Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Lenka Lovecká
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| | - Karolina Maternia-Dudzik
- Department of Microbiology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland
| | - Miroslava Kovářová
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| | - Marek Pyda
- Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; Department of Biophysics, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Piotr Tutka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland; National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Vladimír Sedlařík
- Centre of Polymer Systems, Tomas Bata University in Zlin, trida Tomase Bati 5678, 760-01 Zlin, Czech Republic
| |
Collapse
|
5
|
Aliotta L, Gigante V, Lazzeri A. Analytical Modeling of Stress Relaxation and Evaluation of the Activation Volume Variation: Effect of Temperature and Plasticizer Content for Poly(3-hydroxybutyrate-3-hydroxyvalerate). ACS OMEGA 2022; 7:23662-23672. [PMID: 35847325 PMCID: PMC9280768 DOI: 10.1021/acsomega.2c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, stress-relaxation tests that have been carried out at different temperatures (quite below the heat deflection temperature) on a poly(3-hydroxybutyrate-3hydroxyvalerate) (PHB-HV) matrix containing different amounts of the acetyl tributyl citrate plasticizer (added at 5 and 10 wt %) are investigated. The analytical modeling of the stress relaxation behavior by the coupling of Eyring's approach and the Guiu and Pratt model is successful. The activation volume results achieved are very interesting; in fact, not only the dependence of the activation volume from temperature is confirmed (and it resulted in dependence from the α' relaxation temperature) but also, for the first time, the dependence of the activation volume from the plasticizer content is shown. In particular, the presence of a linear relationship between the activation volume and the plasticizer volume content is observed.
Collapse
Affiliation(s)
- Laura Aliotta
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Vito Gigante
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| | - Andrea Lazzeri
- University
of Pisa, Department of Civil and Industrial Engineering, Via Diotisalvi, 2, Pisa 56122, Italy
- Interuniversity
National Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Florence 50121, Italy
| |
Collapse
|
6
|
Structural evolutions of the amorphous fraction of polyethylene terephthalate during the secondary crystallization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Rossi MM, Alfano S, Amanat N, Andreini F, Lorini L, Martinelli A, Petrangeli Papini M. A Polyhydroxybutyrate (PHB)-Biochar Reactor for the Adsorption and Biodegradation of Trichloroethylene: Design and Startup Phase. Bioengineering (Basel) 2022; 9:bioengineering9050192. [PMID: 35621470 PMCID: PMC9137886 DOI: 10.3390/bioengineering9050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, polyhydroxy butyrate (PHB) and biochar from pine wood (PWB) are used in a mini-pilot scale biological reactor (11.3 L of geometric volume) for trichloroethylene (TCE) removal (80 mgTCE/day and 6 L/day of flow rate). The PHB-biochar reactor was realized with two sequential reactive areas to simulate a multi-reactive permeable barrier. The PHB acts as an electron donor source in the first “fermentative” area. First, the thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses were performed. The PHB-powder and pellets have different purity (96% and 93% w/w) and thermal properties. These characteristics may affect the biodegradability of the biopolymer. In the second reactive zone, the PWB works as a Dehalococcoides support and adsorption material since its affinity for chlorinated compounds and the positive effect of the “coupled adsorption and biodegradation” process has been already verified. A specific dechlorinating enriched culture has been inoculated in the PWB zone to realize a coupled adsorption and biodegradation process. Organic acids were revealed since the beginning of the test, and during the monitoring period the reductive dichlorination anaerobic pathway was observed in the first zone; no chlorinated compounds were detected in the effluent thanks to the PWB adsorption capacity.
Collapse
Affiliation(s)
- Marta M. Rossi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
- Correspondence:
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Neda Amanat
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | | | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| |
Collapse
|
8
|
Righetti MC, Vannini M, Celli A, Cangialosi D, Marega C. Bio-based semi-crystalline PEF: Temperature dependence of the constrained amorphous interphase and amorphous chain mobility in relation to crystallization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Righetti MC, Cinelli P, Aliotta L, Bianchi E, Tricoli F, Seggiani M, Lazzeri A. Immiscible
PHB/PB
S
and
PHB/PBSA
blends: morphology, phase composition and modelling of elastic modulus. POLYM INT 2021. [DOI: 10.1002/pi.6282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maria Cristina Righetti
- CNR‐IPCF, National Research Council Institute for Chemical and Physical Processes Via Moruzzi 1 Pisa 56124 Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering University of Pisa Largo Lazzarino 1 Pisa 56122 Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering University of Pisa Largo Lazzarino 1 Pisa 56122 Italy
| | - Elisa Bianchi
- Department of Civil and Industrial Engineering University of Pisa Largo Lazzarino 1 Pisa 56122 Italy
| | - Fabio Tricoli
- CNR‐IPCF, National Research Council Institute for Chemical and Physical Processes Via Moruzzi 1 Pisa 56124 Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering University of Pisa Largo Lazzarino 1 Pisa 56122 Italy
| | - Andrea Lazzeri
- CNR‐IPCF, National Research Council Institute for Chemical and Physical Processes Via Moruzzi 1 Pisa 56124 Italy
- Department of Civil and Industrial Engineering University of Pisa Largo Lazzarino 1 Pisa 56122 Italy
| |
Collapse
|
10
|
Righetti MC, Di Lorenzo ML, Cinelli P, Gazzano M. Temperature dependence of the rigid amorphous fraction of poly(butylene succinate). RSC Adv 2021; 11:25731-25737. [PMID: 35478875 PMCID: PMC9036998 DOI: 10.1039/d1ra03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
In this contribution the temperature evolution of the constrained or rigid amorphous fraction (RAF) of biodegradable and biocompatible poly(butylene succinate) (PBS) was quantified, after detailed thermodynamic characterization by differential scanning calorimetry and X-ray diffraction analysis. At the glass transition temperature, around -40 °C, the rigid amorphous fraction in PBS is about 0.25. It decreases with increasing temperature and becomes zero in proximity of 25 °C. Thus, at room temperature and at the human body temperature, all the amorphous fraction is mobile. This information is important for the development of PBS products for various applications, including biomedical applications, since physical properties of the rigid amorphous fraction, for example mechanical and permeability properties, are different from those of the mobile amorphous fraction.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- CNR-IPCF, National Research Council - Institute for Chemical and Physical Processes Via Moruzzi 1 56124 Pisa Italy
| | - Maria Laura Di Lorenzo
- CNR-IPCB, National Research Council - Institute of Polymers, Composites and Biomaterials Via Campi Flegrei 24 80078 Pozzuoli Italy
| | - Patrizia Cinelli
- University of Pisa, Department of Civil and Industrial Engineering Largo Lazzarino 2 56122 Pisa Italy
| | - Massimo Gazzano
- CNR-ISOF, National Research Council - Institute of Organic Synthesis and Photoreactivity Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
11
|
Wang W, Fenni SE, Ma Z, Righetti MC, Cangialosi D, Di Lorenzo ML, Cavallo D. Glass transition and aging of the rigid amorphous fraction in polymorphic poly(butene-1). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Vannini M, Marchese P, Sisti L, Saccani A, Mu T, Sun H, Celli A. Integrated Efforts for the Valorization of Sweet Potato By-Products within a Circular Economy Concept: Biocomposites for Packaging Applications Close the Loop. Polymers (Basel) 2021; 13:polym13071048. [PMID: 33801582 PMCID: PMC8037434 DOI: 10.3390/polym13071048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
With the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment. The composites are semicrystalline materials, characterized by thermal stability up to 260 °C. For the composites containing up to 10 wt % of residue, the tensile strength remains over 30 MPa and the strain stays over 3.2%. A homogeneous dispersion of the sweet potato waste into the bio-polymeric matrix was achieved but, despite the presence of hydrogen bond interactions between the components, a poor interfacial adhesion was detected. Considering the significant percentage of sweet potato waste used, the biocomposites obtained show a low economic and environmental impact, resulting in an interesting bio-alternative to the materials commonly used in the packaging industry. Thus, according to the principles of a circular economy, the preparation of the biocomposites closes the loop of the complete valorization of sweet potato products and by-products.
Collapse
Affiliation(s)
- Micaela Vannini
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.M.); (L.S.); (A.S.); (A.C.)
- Correspondence: ; Tel.: +39-(0)-51-209-0359
| | - Paola Marchese
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.M.); (L.S.); (A.S.); (A.C.)
| | - Laura Sisti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.M.); (L.S.); (A.S.); (A.C.)
| | - Andrea Saccani
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.M.); (L.S.); (A.S.); (A.C.)
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; (T.M.); (H.S.)
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; (T.M.); (H.S.)
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (P.M.); (L.S.); (A.S.); (A.C.)
| |
Collapse
|
13
|
Barbosa J, Perin GB, Felisberti MI. Plasticization of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with an Oligomeric Polyester: Miscibility and Effect of the Microstructure and Plasticizer Distribution on Thermal and Mechanical Properties. ACS OMEGA 2021; 6:3278-3290. [PMID: 33553946 PMCID: PMC7860244 DOI: 10.1021/acsomega.0c05765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In the last few decades, many efforts have been made to make poly(3-hydroxybutyrate) (PHB) and its copolymers more suitable for industrial production and large-scale use. Plasticization, especially using biodegradable oligomeric plasticizers, has been one of the strategies for this purpose. However, PHB and its copolymers generally present low miscibility with plasticizers. An understanding of the plasticizer distribution between the mobile and rigid amorphous phases and how this influences thermal, mechanical, and morphological properties remains a challenge. Herein, formulations of poly(hydroxybutyrate-co-valerate) (PHBV) plasticized with an oligomeric polyester based on lactic acid, adipic acid, and 1,2-propanediol (PLAP) were prepared by melt extrusion. The effects of the PLAP content on the processability, miscibility, and microstructure of the semicrystalline PHBV and on the thermal, morphological, and mechanical properties of the formulations were investigated. The compositions of the mobile and rigid amorphous phases of the PHBV/PLAP formulations were easily estimated by combining dynamic mechanical data and the Fox equation, which showed a heterogeneous distribution of PLAP in these two phases. An increase in the PLAP mass fraction in the formulations led to progressive changes in the composition of the amorphous phases, an increase of both crystalline lamellae and interlamellar layer thickness, and a decrease in the melting and glass transition temperatures as well as the PHBV stiffness. The Flory-Huggins interaction parameter varied with the formulation composition in the range of -0.299 to -0.081. The critical PLAP mass fraction of 0.37 obtained from thermodynamic data is close to the value estimated from dynamic mechanical analysis (DMA) data and the Fox equation. The mechanical properties showed a close relationship with the distribution of PLAP in the rigid and mobile amorphous phases as well as with the microstructure of the crystalline phase of PHBV in the formulations.
Collapse
|
14
|
Czerniecka-Kubicka A, Neilsen G, Dickson MS, Woodfield BF, Janus-Kubiak M, Kubisz L, Zarzyka I, Zielecki W, Skotnicki M, Hojan-Jezierska D, Pyda M. Vibrational heat capacity of silver carp collagen. Int J Biol Macromol 2020; 163:833-841. [PMID: 32653378 DOI: 10.1016/j.ijbiomac.2020.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
Abstract
The study of the experimental and calculated heat capacity, Cp of fish collagen (silver carp) with contents of several additive components was presented. The experimental low-temperature heat capacity was measured in the temperature range of 1.85 to 302.8 K using a Quantum Design Physical Property Measurement System (PPMS) and the higher temperature Cp from 223.15 K to 382.15 K by Differential Scanning Calorimetry (DSC) method. For an interpretation of the experimental, low-temperature data, the vibrational heat capacity of the pure silver carp collagen was calculated based on the contribution of a sum of the vibrational heat capacity of 4248 amino acids. The vibrational heat capacity for each amino acids was taken from Advanced Thermal Analysis System (ATHAS) Data Bank for individual poly (amino acid) residues based on their group and skeletal vibrational spectra. Comparing of the experimental heat capacity of the collagen with additive components and the calculated vibrational heat capacity of the pure silver carp collagen shows that the differences range from around 10% at 100 K to 14% at 300 K temperature. Such thermal analysis can provide information about the contribution to Cp of unknown components or impurities in the investigated system.
Collapse
Affiliation(s)
- A Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszow, Poland.
| | - G Neilsen
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602, Provo, USA
| | - M S Dickson
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602, Provo, USA
| | - B F Woodfield
- Department of Chemistry and Biochemistry, Brigham Young University, UT 84602, Provo, USA
| | - M Janus-Kubiak
- Department of Biophysics, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - L Kubisz
- Department of Biophysics, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - I Zarzyka
- Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - W Zielecki
- Department of Manufacturing Processes and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - M Skotnicki
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - D Hojan-Jezierska
- Department of Hearing Healthcare Profession Chair of Biophysic, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - M Pyda
- Department of Biophysics, Poznan University of Medical Sciences, 60-780 Poznan, Poland; Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| |
Collapse
|
15
|
Gigante V, Cinelli P, Righetti MC, Sandroni M, Polacco G, Seggiani M, Lazzeri A. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoates-Bran Biocomposites. Polymers (Basel) 2020; 12:polym12112615. [PMID: 33172020 PMCID: PMC7694654 DOI: 10.3390/polym12112615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
In this work, processability and mechanical performances of bio-composites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) containing 5, 10, and 15 wt % of bran fibers, untreated and treated with natural carnauba and bee waxes were evaluated. Wheat bran, the main byproduct of flour milling, was used as filler to reduce the final cost of the PHBV-based composites and, in the same time, to find a potential valorization to this agro-food by-product, widely available at low cost. The results showed that the wheat bran powder did not act as reinforcement, but as filler for PHBV, due to an unfavorable aspect ratio of the particles and poor adhesion with the polymeric matrix, with consequent moderate loss in mechanical properties (tensile strength and elongation at break). The surface treatment of the wheat bran particles with waxes, and in particular with beeswax, was found to improve the mechanical performance in terms of tensile properties and impact resistance of the composites, enhancing the adhesion between the PHBV-based polymeric matrix and the bran fibers, as confirmed by predictive analytic models and dynamic mechanical analysis results.
Collapse
Affiliation(s)
- Vito Gigante
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Patrizia Cinelli
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
- Correspondence: (P.C.); (M.S.)
| | - Maria Cristina Righetti
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Marco Sandroni
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Giovanni Polacco
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Maurizia Seggiani
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- Correspondence: (P.C.); (M.S.)
| | - Andrea Lazzeri
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
16
|
Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
18
|
Righetti MC, Aliotta L, Mallegni N, Gazzano M, Passaglia E, Cinelli P, Lazzeri A. Constrained Amorphous Interphase and Mechanical Properties of Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate). Front Chem 2019; 7:790. [PMID: 31803723 PMCID: PMC6877667 DOI: 10.3389/fchem.2019.00790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
In the present study, for the first time the evolution of tensile mechanical properties of different poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers (PHBV8 and PHBV12, with 8 mol% and 12 mol% of HV co-units, respectively) as a function of the storage time at room temperature has been investigated in parallel with the quantification of the crystalline, mobile amorphous, and rigid amorphous fractions. A comparison with the evolution of the crystalline and amorphous fractions in the homopolymer poly(3-hydroxybutyrate) (PHB) was also performed. For all the samples, the crystallinity was found to slightly increase during storage. In parallel, the mobile amorphous fraction (MAF) decreased markedly, with the result that a relevant increase in the rigid amorphous fraction (RAF) was detected. The RAF content in the copolymers was lower than that of PHB. For all the samples, the RAF formation during aging was ascribed to the growth of secondary crystals in geometrically restricted areas. It was demonstrated that the storage at T room leads in PHB, PHBV8, and PHBV12 to a progressive increase in the total solid fraction (crystal phase + rigid amorphous fraction) and to a simultaneous physical aging of the rigid amorphous fraction. The two different processes cannot be separated and distinguished, so that only the resulting effect on the mechanical properties was considered. The experimental elastic modulus of both PHBV8 and PHBV12 was found to increase regularly with the total solid fraction, as well as the tensile strength. Conversely, the elongation at break turned out to be an increasing function of the mobile amorphous fraction. The elastic moduli of the crystalline, mobile amorphous, and rigid amorphous fractions of PHBV8 and PHBV12 were estimated by means of a three-phase modified Takayanagi's model, to take into account also the contribution of the rigid amorphous fraction. The calculated values were found in agreement with theoretical expectations.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Massimo Gazzano
- CNR-ISOF, National Research Council-Institute of Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Elisa Passaglia
- CNR-ICCOM, National Research Council-Institute for the Chemistry of OrganoMetallic Compounds, Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Andrea Lazzeri
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy.,Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 2019; 124:102-110. [DOI: 10.1016/j.ijbiomac.2018.11.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
|
20
|
Righetti MC, Cinelli P, Mallegni N, Stäbler A, Lazzeri A. Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Potato Pulp Powder. Polymers (Basel) 2019; 11:polym11020308. [PMID: 30960292 PMCID: PMC6419162 DOI: 10.3390/polym11020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/25/2022] Open
Abstract
The thermal and mechanical properties of biocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) containing 5 wt % of valerate units, with 20 wt % of potato pulp powder were investigated in order (i) to obtain information on possible miscibility/compatibility between the biopolymers and the potato pulp, and (ii) to quantify how the addition of this filler modifies the properties of the polymeric material. The potato pulp powder utilized is a residue of processing for the production and extraction of starch. The final aim of this study is the preparation of PHBV based materials with reduced cost, thanks to biomass valorization, in agreement with the circular economy policy, as result of the incorporation of agricultural organic waste. The results showed that the potato pulp powder does not act as reinforcement, but rather as filler for the PHBV polymeric matrix. A moderate loss in mechanical properties is detected (decrease in elastic modulus, tensile strength and elongation at break), which regardless still meets the technical requirements indicated for rigid packaging production. In order to improve the mechanical response of the PHBV/potato pulp powder biocomposites, surface treatment of the potato pulp powder with bio-based and petroleum-based waxes was investigated. Good enhancement of the mechanical properties was achieved with the natural carnauba and bee waxes.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Patrizia Cinelli
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy.
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Norma Mallegni
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Andreas Stäbler
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße, 35, 85354 Freising, Germany.
| | - Andrea Lazzeri
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy.
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
21
|
Di Lorenzo ML, Righetti MC. Crystallization-induced formation of rigid amorphous fraction. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria Laura Di Lorenzo
- CNR-IPCB, National Research Council; Institute for Polymers, Composites and Biomaterials, c/o Comprensorio Olivetti; Pozzuoli Italy
| | - Maria Cristina Righetti
- CNR-IPCF, National Research Council; Institute for Chemical and Physical Processes; Pisa Italy
| |
Collapse
|
22
|
Vyazovkin S. "Nothing Can Hide Itself from Thy Heat": Understanding Polymers via Unconventional Applications of Thermal Analysis. Macromol Rapid Commun 2018; 40:e1800334. [PMID: 30033550 DOI: 10.1002/marc.201800334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Indexed: 11/06/2022]
Abstract
This article surveys some exciting possibilities and results offered by less common, yet essential applications of differential scanning calorimetry and thermogravimetric analysis (TGA). The applications are concerned with the most commonly studied processes of the glass transition, crystallization, melting, polymerization, and degradation. Issues related to the glass transition include the non-Arrhenius temperature dependence and fragility, kinetic complexity of physical aging, evaluation of cooperatively rearranging regions, and rigid amorphous fraction. Discussion of crystallization covers separation of heterogeneous and homogeneous nucleation, crystallization controlled by physical aging, and the use of isoconversional methods for determining the Hoffman-Lauritzen parameters. For melting, the role of reorganization and nucleation control is emphasized. For the thermal degradation and polymerization, advanced kinetic treatments as a way of obtaining mechanistic insights are discussed, and the possibility of studying both processes during continuous cooling is stressed. The possibility of using TGA for monitoring polycondensation is also highlighted.
Collapse
Affiliation(s)
- Sergey Vyazovkin
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL, 35294, USA
| |
Collapse
|
23
|
|
24
|
Righetti MC. Crystallization of Polymers Investigated by Temperature-Modulated DSC. MATERIALS 2017; 10:ma10040442. [PMID: 28772807 PMCID: PMC5506965 DOI: 10.3390/ma10040442] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/04/2022]
Abstract
The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation.
Collapse
Affiliation(s)
- Maria Cristina Righetti
- National Research Council of Italy-Institute for Chemical and Physical Processes (CNR-IPCF), Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
25
|
Meyers KP, Decker JJ, Olson BG, Lin J, Jamieson AM, Nazarenko S. Probing the confining effect of clay particles on an amorphous intercalated dendritic polyester. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Amorphous Fractions of Poly(lactic acid). SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2016_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Di Lorenzo ML, Androsch R, Stolte I, Righetti MC. The Three-Phase Structure of Random Butene-1/Ethylene Copolymers. INT POLYM PROC 2016. [DOI: 10.3139/217.3248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The three-phase arrangement of random copolymers of butene-1 with ethylene was investigated and compared with isotactic poly(butene-1) homopolymer (iPB-1). In all the analyzed compositions, isothermal crystallization leads to a three-phase structure, made of one crystal phase and two amorphous fractions that differ in mobility: the mobile amorphous fraction (MAF), made of the polymer chains that relax at the glass transition, and a rigid amorphous fraction (RAF) made of the amorphous segments coupled with the crystal phase. Copolymerization with ethylene leads to a drop in crystal fraction and to a sizable increase of both the RAF, and of the specific RAF, i.e. of the RAF normalized to crystallinity. Analysis of crystal growth rate allowed quantifying the fold surface free energy, which increases of about 50 to 100% in the copolymers, compared to iPB-1 homopolymer. In the butene-1/ethylene random copolymers, ethylene units are mostly excluded from the crystals and accumulate at the crystal/amorphous interphase, thus affecting the rigid amorphous area. The varied composition and higher mobility of the rigid amorphous fraction of the copolymers affects also the Form II to Form I transformation of poly(butene-1) crystals, which occurs with enhanced kinetics in the copolymers, compared to iPB-1 homopolymer.
Collapse
Affiliation(s)
- M. L. Di Lorenzo
- Consiglio Nazionale delle Ricerche , Istituto per i Polimeri, Compositi e Biomateriali, Comprensorio Olivetti, Pozzuoli (NA) , Italy
| | - R. Androsch
- Center of Engineering Sciences , Martin Luther University Halle-Wittenberg, Halle/Saale , Germany
| | - I. Stolte
- Center of Engineering Sciences , Martin Luther University Halle-Wittenberg, Halle/Saale , Germany
| | - M. C. Righetti
- Consiglio Nazionale delle Ricerche , Istituto per i Processi Chimico-Fisici, INSTM, UdR Pisa, Pisa , Italy
| |
Collapse
|
28
|
Righetti MC, Prevosto D, Tombari E. Time and Temperature Evolution of the Rigid Amorphous Fraction and Differently Constrained Amorphous Fractions in PLLA. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Cristina Righetti
- Consiglio Nazionale delle Ricerche-Istituto per i Processi Chimico-Fisici (CNR-IPCF); Via G. Moruzzi 1 56124 Pisa Italy
| | - Daniele Prevosto
- Consiglio Nazionale delle Ricerche-Istituto per i Processi Chimico-Fisici (CNR-IPCF); Via G. Moruzzi 1 56124 Pisa Italy
| | - Elpidio Tombari
- Consiglio Nazionale delle Ricerche-Istituto per i Processi Chimico-Fisici (CNR-IPCF); Via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
29
|
Esposito A, Delpouve N, Causin V, Dhotel A, Delbreilh L, Dargent E. From a Three-Phase Model to a Continuous Description of Molecular Mobility in Semicrystalline Poly(hydroxybutyrate-co-hydroxyvalerate). Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00384] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Valerio Causin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | | | | | - Eric Dargent
- LECAP, Normandie Université-UNIROUEN, Rouen 76000, France
| |
Collapse
|
30
|
|
31
|
Tognana S, Salgueiro W. Influence of the rigid amorphous fraction and segregation during crystallization in PHB/DGEBA blends. Polym J 2015. [DOI: 10.1038/pj.2015.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Dhar P, Bhardwaj U, Kumar A, Katiyar V. Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24127] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Prodyut Dhar
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| | - Umesh Bhardwaj
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| | - Amit Kumar
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| | - Vimal Katiyar
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| |
Collapse
|
33
|
Di Lorenzo ML, Androsch R, Righetti MC. The irreversible Form II to Form I transformation in random butene-1/ethylene copolymers. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Di Lorenzo ML, Androsch R, Stolte I. Tailoring the rigid amorphous fraction of isotactic polybutene-1 by ethylene chain defects. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.09.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
|
36
|
Righetti MC, Laus M, Di Lorenzo ML. Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3198-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|