1
|
Alotaibi T, Alotaibi M, Alhawiti F, Aldosari N, Alsunaid M, Aldawas L, Qahtan TF, Ismael AK. Tuning the Electronic Properties of Cu mAg n Bimetallic Clusters for Enhanced CO 2 Activation. Int J Mol Sci 2024; 25:12053. [PMID: 39596122 PMCID: PMC11593714 DOI: 10.3390/ijms252212053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The urgent demand for efficient CO2 reduction technologies has driven enormous studies into the enhancement of advanced catalysts. Here, we investigate the electronic properties and CO2 adsorption properties of CumAgn bimetallic clusters, particularly Cu4Ag1, Cu1Ag4, Cu3Ag2, and Cu2Ag3, using generalized gradient approximation (GGA)/density functional theory (DFT). Our results show that the atomic arrangement within these clusters drastically affects their stability, charge transfer, and catalytic performance. The Cu4Ag1 bimetallic cluster emerges as the most stable structure, revealing superior charge transfer and effective chemisorption of CO2, which promotes effective activation of the CO2 molecule. In contrast, the Cu1Ag4 bimetallic cluster, in spite of comparable adsorption energy, indicates insignificant charge transfer, resulting in less pronounced CO2 activation. The Cu3Ag2 and Cu2Ag3 bimetallic clusters also display high adsorption energies with remarkable charge transfer mechanisms, emphasizing the crucial role of metal composition in tuning catalytic characteristics. This thorough examination provides constructive insights into the design of bimetallic clusters for boosted CO2 reduction. These findings could pave the way for the development of cost-effective and efficient catalysts for industrial CO2 reduction, contributing to global efforts in carbon management and climate change mitigation.
Collapse
Affiliation(s)
- Turki Alotaibi
- Physics Department, College of Science, Jouf University, Sakakah 11942, Saudi Arabia;
| | - Moteb Alotaibi
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.A.); (M.A.); (L.A.); (T.F.Q.)
| | - Fatimah Alhawiti
- Department of Physics, University College of Taraba, Taif University, Taraba 21944, Saudi Arabia;
| | - Nawir Aldosari
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.A.); (M.A.); (L.A.); (T.F.Q.)
| | - Majd Alsunaid
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.A.); (M.A.); (L.A.); (T.F.Q.)
| | - Lama Aldawas
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.A.); (M.A.); (L.A.); (T.F.Q.)
| | - Talal F. Qahtan
- Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (N.A.); (M.A.); (L.A.); (T.F.Q.)
| | - Ali K. Ismael
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| |
Collapse
|
2
|
Reider AM, Szalay M, Reichegger J, Barabás J, Schmidt M, Kappe M, Höltzl T, Scheier P, Lushchikova OV. Spectroscopic investigation of size-dependent CO 2 binding on cationic copper clusters: analysis of the CO 2 asymmetric stretch. Phys Chem Chem Phys 2024; 26:20355-20364. [PMID: 39015096 PMCID: PMC11290062 DOI: 10.1039/d4cp01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Photofragmentation spectroscopy, combined with quantum chemical computations, was employed to investigate the position of the asymmetric CO2 stretch in cold, He-tagged Cun[CO2]+ (n = 1-10) and Cun[CO2][H2O]+ (n = 1-7) complexes. A blue shift in the band position was observed compared to the free CO2 molecule for Cun[CO2]+ complexes. Furthermore, this shift was found to exhibit a notable dependence on cluster size, progressively redshifting with increasing cluster size. The computations revealed that the CO2 binding energy is the highest for Cu+ and continuously decreases with increasing cluster size. This dependency could be explained by highlighting the role of polarization in electronic structure, according to energy decomposition analysis. The introduction of water to this complex amplified the redshift of the asymmetric stretch, showing a similar dependency on the cluster size as observed for Cun[CO2]+ complexes.
Collapse
Affiliation(s)
- A M Reider
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Szalay
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - J Reichegger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - J Barabás
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - M Schmidt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Kappe
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - T Höltzl
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - P Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - O V Lushchikova
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| |
Collapse
|
3
|
Androutsopoulos A, Sader S, Miliordos E. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas. J Phys Chem A 2024; 128:4401-4411. [PMID: 38797970 DOI: 10.1021/acs.jpca.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molecular complexes with electron-rich metal centers are highlighted as potential catalysts for the following five important chemical transformations: selective conversion of methane to methanol, capture and utilization of carbon dioxide, fixation of molecular nitrogen, water splitting, and recycling of perfluorochemicals. Our initial focus lies on negatively charged metal centers and ligands that can stabilize anionic metal atoms. Catalysts with electron-rich metal atoms (CERMAs) can sustain catalytic cycles with a "ping-pong" mechanism, where one or more electrons are transferred from the metal center to the substrate and back. The donated electrons can activate the chemical bonds of the substrate by populating its antibonding orbitals. At the last step of the catalytic cycle, the electrons return to the metal and the product interacts only weakly with the formed anion, which enables the solvent molecules to remove the product fast from the catalytic cycle and prevent subsequent unfavorable reactions. This process resembles electrocatalysis, but the metal serves as both an anode and a cathode (molecular electrocatalysis). We also analyze the usage of CERMAs as the base of Frustrated Lewis pairs proposing a new type of bimetallic catalysts. This Featured Article aspires to initiate systematic experimental and theoretical studies on CERMAs and their reactivity, the potential of which has probably been underestimated in the literature.
Collapse
Affiliation(s)
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | | |
Collapse
|
4
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Han J, Liu P, Qiu B, Wang G, Liu S, Zhou X. Observation of inserted oxocarbonyl species in the tantalum cation-mediated activation of carbon dioxide dictated by two-state reactivity. Dalton Trans 2023; 53:171-179. [PMID: 38018569 DOI: 10.1039/d3dt03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Reductive activation of carbon dioxide (CO2) has drawn increasing attention as an effective and convenient method to unlock this stable molecule, especially via transition metal-catalyzed reactions. Taking the [TaC4O8]+ ion-molecule complex formed in the laser ablation source as a representative, the reactivity of the tantalum metal cation towards CO2 molecules is explored using infrared photodissociation spectroscopy combined with quantum chemical calculations. The strong absorption in the carbonyl stretching region provides solid evidence for the insertion reactions into CO bonds by the tantalum cation. Two inserted oxocarbonyl products are identified based on the great agreement between the experimental results and simulated infrared spectra of energetically low-lying structures in the singlet and triplet states. The pivotal role of two-state reactivity in driving CO2 activation among three different spin states is rationalized by potential energy surface analysis. Our conclusion provides valuable insight into the intrinsic mechanisms of CO2 activation by the tantalum metal cation, highlighting the affinity of tantalum for CO bond insertion in addition to typical "end-on" binding configurations.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Guanjun Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Foreman MM, Stanton JF, Weber JM. Relation Between Bond Angle and Carbon-Oxygen Stretching Frequencies in CO 2-Containing Compounds. J Phys Chem A 2023; 127:9717-9722. [PMID: 37944122 DOI: 10.1021/acs.jpca.3c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The symmetric (νs) and antisymmetric (νas) O-C-O stretching modes of CO2-containing compounds encode structural information that can be difficult to decipher, due to the sensitivity of these spectral features to small shifts in charge distribution and structure, as well as the anharmonicities of these two vibrational modes. In this work, we discuss the relation between the frequency of these modes and the geometry of the O-C-O group, showing that the splitting between νs and νas (Δνas-s = νas - νs) can be predicted based only on the O-C-O bond angle obtained from quantum chemical calculations with reasonable accuracy (±46 cm-1, R2 = 0.994). The relationship is shown to hold for the infrared spectra of a variety of CO2-containing molecules measured in vacuo. The origins of this model are discussed in the framework of elementary mode analysis.
Collapse
Affiliation(s)
- Madison M Foreman
- JILA and Department of Chemistry, University of Colorado-Boulder, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - John F Stanton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado-Boulder, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
7
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
8
|
Han J, Yang Y, Qiu B, Liu P, Wu X, Wang G, Liu S, Zhou X. Infrared photodissociation spectroscopy of mass-selected [TaO 3(CO 2) n] + ( n = 2-5) complexes in the gas phase. Phys Chem Chem Phys 2023; 25:13198-13208. [PMID: 37129869 DOI: 10.1039/d3cp01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a joint experimental and theoretical study on the structures of gas-phase [TaO3(CO2)n]+ (n = 2-5) ion-molecule complexes. Infrared photodissociation spectra of mass-selected [TaO3(CO2)n]+ complexes were recorded in the frequency region from 2200 to 2450 cm-1 and assigned through comparing with the simulated infrared spectra of energetically low-lying structures derived from quantum chemical calculations. With the increasing number of attached CO2 molecules, the larger clusters show significantly enhanced fragmentation efficiency and a strong band appears at around 2350 cm-1 near the free CO2 antisymmetric stretching vibration band, indicating only a small perturbation of CO2 molecules on the secondary solvation sphere while higher frequency bands corresponding to the core structure remain largely unaffected. A core structure [TaO3(CO2)3]+ is identified to which subsequent CO2 ligands are weakly attached and the most favorable cluster growth path is verified to proceed on the triplet potential energy surface higher in energy than that of ground states. Theoretical exploration reveals a two-state reactivity (TSR) scenario in which the energetically favored triplet transition state crosses over the singlet ground state to form a TaO3+ core ion, providing new information on the cluster formation correlated with the reactivity of tantalum metal oxides towards CO2.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yang Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Pengcheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
9
|
Kong X, Zhang Z, Zhang N, Hou F, Zhao Z, Xie H. Reactions of 3d transition metal hydride cations with CO2. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Lushchikova OV, Szalay M, Höltzl T, Bakker JM. Tuning the degree of CO 2 activation by carbon doping Cu n- ( n = 3-10) clusters: an IR spectroscopic study. Faraday Discuss 2023; 242:252-268. [PMID: 36325973 PMCID: PMC9890493 DOI: 10.1039/d2fd00128d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper clusters on carbide surfaces have shown a high catalytic activity towards methanol formation. To understand the interaction between CO2 and the catalytically active sites during this process and the role that carbon atoms could play in this, they are modeled by copper clusters, with carbon atoms incorporated. The formed clusters CunCm- (n = 3-10, m = 1-2) are reacted with CO2 and investigated by IR multiple-photon dissociation (IR-MPD) spectroscopy to probe the degree of CO2 activation. IR spectra for the reaction products [CunC·CO2]-, (n = 6-10), and [CunC2·CO2]-, (n = 3-8) are compared to reference spectra recorded for products formed when reacting the same cluster sizes with CO, and with density functional theory (DFT) calculated spectra. The results reveal a size- and carbon load-dependent activation and dissociation of CO2. The complexes [CunC·CO2]- with n = 6 and 10 show predominantly molecular activation of CO2, while those with n = 7-9 show only dissociative adsorption. The addition of the second carbon to the cluster leads to the exclusive molecular activation of the CO2 on all measured cluster sizes, except for Cu5C2- where CO2 dissociates. Combining these findings with DFT calculations leads us to speculate that at lower carbon-to-metal ratios (CMRs), the C can act as an oxygen anchor facilitating the OCO bond rupture, whereas at higher CMRs the carbon atoms increasingly attract negative charge, reducing the Cu cluster's ability to donate electron density to CO2, and consequently its ability to activate CO2.
Collapse
Affiliation(s)
- Olga V. Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands,Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstraße 256020 InnsbruckAustria
| | - Máté Szalay
- Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University ofTechnology and EconomicsMuegyetem rkp. 3Budapest 1111Hungary,Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands
| |
Collapse
|
11
|
Brewer EI, Green AE, Gentleman AS, Beardsmore PW, Pearcy PAJ, Meizyte G, Pickering J, Mackenzie SR. An infrared study of CO 2 activation by holmium ions, Ho + and HoO . Phys Chem Chem Phys 2022; 24:22716-22723. [PMID: 36106954 DOI: 10.1039/d2cp02862j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined experimental and computational study of carbon dioxide activation at gas-phase Ho+ and HoO+ centres. Infrared action spectra of Ho(CO2)n+ and [HoO(CO2)n]+ ion-molecule complexes have been recorded in the spectral region 1700-2400 cm-1 and assigned by comparison with simulated spectra of energetically low-lying structures determined by density functional theory. Little by way of activation is observed in Ho(CO2)n+ complexes with CO2 binding end-on to the Ho+ ion. By contrast, all [HoO(CO2)n]+ complexes n ≥ 3 show unambiguous evidence for formation of a carbonate radical anion moiety, . The signature of this structure, a new vibrational band observed around 1840 cm-1 for n = 3, continues to red-shift monotonically with each successive CO2 ligand binding with net charge transfer from the ligand rather than the metal centre.
Collapse
Affiliation(s)
- Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Peter W Beardsmore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Jack Pickering
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
12
|
Dong X, Wang L, Wang G, Zhou M. Carbon Dioxide Activation by Alkaline-Earth Metals: Formation and Spectroscopic Characterization of OCMCO 3 and MC 2O 4 (M = Ca, Sr, Ba) in Solid Neon. J Phys Chem A 2022; 126:4598-4607. [PMID: 35816036 DOI: 10.1021/acs.jpca.2c02948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of alkaline-earth metal atoms (Ca, Sr, and Ba) with carbon dioxide are investigated using matrix isolation infrared spectroscopy in solid neon. The ground-state metal atoms react with two carbon dioxide molecules to produce the oxalate complexes MC2O4 and the carbonate-carbonyl complexes OCMCO3 (M = Ca, Sr, Ba) spontaneously on annealing. The species are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. Bonding analyses reveal that the attractive forces between M2+ and (CO3)2- or (C2O4)2- in the OCMCO3 and MC2O4 complexes come mainly from electrostatic attraction, but covalent orbital interactions also play an important role, which are dominated by the ligand-to-metal donation bonding. The calcium, strontium, and barium metal centers in these complexes use their ns and predominately (n - 1)d atomic orbitals for covalent bonding that mimic transition metals.
Collapse
Affiliation(s)
- Xuelin Dong
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Guanjun Wang
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
13
|
Liu Z, He J, Li Y, Lin Q, Jiao J, Liu L, Yan Y, Wu H, Zhang F, Jia J, Xie H. Synergetic electron donation and back-donation interactions in (Au−CO2)− complex: A joint anionic photoelectron velocity-map imaging spectroscopy and theoretical investigation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yang Y, Zhou Y, Jin X, Wang G, Zhou M. Infrared spectroscopy of Be(CO 2) 4+ in the gas phase: electron transfer and C-C coupling of CO 2. Phys Chem Chem Phys 2022; 24:13149-13155. [PMID: 35587654 DOI: 10.1039/d2cp01788a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beryllium-carbon dioxide cation complexes Be(CO2)n+ are produced by a laser vaporization-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy supplemented by theoretical calculations confirms that Be(CO2)4+ is a coordination saturated complex that can be assigned to a mixture of two isomers. The first structure involves a bent CO2- ligand that is bound in a monodentate η1-O coordination mode. Another isomer has a metal oxalate-type C2O4- moiety with a C-C hemibond.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yangyu Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Xiaoyang Jin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
15
|
Iwamoto M, Koyasu K, Konuma T, Tsuruoka K, Muramatsu S, Tsukuda T. Temperature effect on photoelectron spectra of AuCO2–:Relative stability between physisorbed and chemisorbed isomers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Jestilä JS, Uggerud E. Computational Exploration of the Direct Reduction of CO 2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joakim S. Jestilä
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Einar Uggerud
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
17
|
Lim E, Heo J, Zhang X, Bowen KH, Lee SH, Kim SK. Anionic Activation of CO 2 via (M n-CO 2) - Complex on Magic-Numbered Anionic Coinage Metal Clusters M n- (M = Cu, Ag, Au). J Phys Chem A 2021; 125:2243-2248. [PMID: 33721997 DOI: 10.1021/acs.jpca.0c10867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given the immense challenge of excessive accumulation of carbon dioxide (CO2) in the earth's atmosphere, an extensive search is under way to convert atmospheric CO2 to compounds of more utility. With CO2 being thermodynamically extremely stable, activation of CO2 is the first and most important step toward its chemical conversion. Building upon our earlier model for the anionic activation of CO2 with azabenzene and inspired by the work of others on metal atom-CO2 complexes, we investigated the possibility of anionic activation of CO2 on small anionic metal clusters, which would have implications for catalytic conversion of CO2 on metal surfaces with atomic-scale structural irregularities. We carried out theoretical calculations using density functional theory to examine small anionic metal clusters of Cu, Ag, and Au to check whether they form a complex with CO2, with the sign of CO2 being chemically activated. We found that a class of anionic metal clusters Mn- with 1, 2, and 6 atoms consistently produced the activated complex (Mn-CO2)- for all three metals. There exists a strong interaction between the CO2 moiety and Mn- via a partially covalent M-C bond with a full delocalization of the electronic charge, as a result of electron transfer from the HOMO of Mn- to the LUMO of CO2 as in metal-CO2 π-backbonding. We examined the interaction of frontier orbitals from the viewpoints of the orbital geometry and orbital energetics and found that the above magic numbers are consistent with both aspects.
Collapse
Affiliation(s)
- Eunhak Lim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Korea
| | - Xinxing Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Zheng H, Kong X, Wang C, Wang T, Yang D, Li G, Xie H, Zhao Z, Shi R, Han H, Fan H, Yang X, Jiang L. Spectroscopic Identification of Transition-Metal M[η 2-(O,O)C] Species for Highly-Efficient CO 2 Activation. J Phys Chem Lett 2021; 12:472-477. [PMID: 33370117 DOI: 10.1021/acs.jpclett.0c03379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CO2 activation by transition metals is important in CO2 utilization but has proven to be challenging for experimental targets. Here we report first synthesis and spectroscopic characterization of transition-metal M[η2-(O,O)C] species with bidentate double oxygen metal-CO2 coordination in the [ZrO(CO2)n≥4]+ complexes. The Zr[η2-(O,O)C] species yields a CO2- radical ligand, showing a high efficiency in CO2 activation. We find that two important prerequisites are demanded for certain metals to form this intriguing M[η2-(O,O)C] species. One is that the metal center has high reduction capability, and the other is that the oxidation state of the metal center is lower than its highest one by 1. This study highlights the pivotal roles played by the M[η2-(O,O)C] species in CO2 activation and also open new avenues toward the development of related single-atom catalysts with isolated transition-metal atoms dispersed on supports.
Collapse
Affiliation(s)
- Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi Zhao
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Ruili Shi
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Haiyan Han
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Wang Y, Han C, Fei Z, Dong C, Liu H. Probing the Hydrogen Bonding in Microsolvated Clusters of Au 1,2-(Solv) n (Solv = C 2H 5OH, n-C 3H 7OH; n = 1-3 for Au -; n =1 for Au 2-). J Phys Chem A 2020; 124:5590-5598. [PMID: 32551619 DOI: 10.1021/acs.jpca.0c03746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microsolvation of gold anions in different alcohol solvents is demonstrated by the combination of anion photoelectron spectroscopy and quantum chemical calculations on the Au1,2-(Solv)n (Solv = C2H5OH, n-C3H7OH; n = 1-3 for Au-; n = 1 for Au2-). The microsolvation structures of these clusters and their corresponding neutrals are assigned by comparing calculations with experiments. In terms of overall regularity, the increasing solvation number (n) and carbon chain extension both can increase the stability of the anion. When n ≥ 2, these clusters have low-energy isomers, where conventional hydrogen bonds (HBs) compete with nonconventional HBs (NHBs). NHBs are dominant when n ≤ 2 and when n is increased, vice versa. Interestingly, a variety of theoretical calculations show that after the hydroxy H atom of the ethanol molecule forms a weak ionic HB with Au-, there are two lowest conformations of ethanol, trans and gauche, which could be coexisting in the molecular beams. Some theoretical methods also suggest that the gauche isomer is more stable than the trans one, which indicates that Au- may exist as a gold gauche effect similar to fluorine.
Collapse
Affiliation(s)
- Yongtian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Changcai Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| |
Collapse
|
20
|
|
21
|
Marks JH, Ward TB, Brathwaite AD, Duncan MA. Infrared Spectroscopy of Zn(Acetylene)n+ Complexes: Ligand Activation and Nascent Polymerization. J Phys Chem A 2020; 124:4764-4776. [DOI: 10.1021/acs.jpca.0c03358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua H. Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy B. Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | - Michael A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Barwa E, Pascher TF, Ončák M, Linde C, Beyer MK. Aktivierung von Kohlenstoffdioxid an Metallzentren: Entwicklung des Ladungstransfers von Mg
.+
auf CO
2
in [MgCO
2
(H
2
O)
n
]
.+
,
n=
0–8. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Christian Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
23
|
Jestilä JS, Denton JK, Perez EH, Khuu T, Aprà E, Xantheas SS, Johnson MA, Uggerud E. Characterization of the alkali metal oxalates (MC 2O 4-) and their formation by CO 2 reduction via the alkali metal carbonites (MCO 2-). Phys Chem Chem Phys 2020; 22:7460-7473. [PMID: 32219243 DOI: 10.1039/d0cp00547a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.
Collapse
Affiliation(s)
- Joakim S Jestilä
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| | - Joanna K Denton
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Evan H Perez
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington, USA and Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, USA
| | - Einar Uggerud
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0135, Norway.
| |
Collapse
|
24
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Kong XT, Li G, Xie H, Zhang WQ, Fan HJ, Jiang L. Infrared spectroscopy of CO 2 transformation by group III metal monoxide cations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Barwa E, Pascher TF, Ončák M, van der Linde C, Beyer MK. Carbon Dioxide Activation at Metal Centers: Evolution of Charge Transfer from Mg .+ to CO 2 in [MgCO 2 (H 2 O) n ] .+ , n=0-8. Angew Chem Int Ed Engl 2020; 59:7467-7471. [PMID: 32100953 PMCID: PMC7217156 DOI: 10.1002/anie.202001292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/06/2022]
Abstract
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm−1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.− coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
26
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
27
|
Muramatsu S, Tsukuda T. Reductive Activation of Small Molecules by Anionic Coinage Metal Atoms and Clusters in the Gas Phase. Chem Asian J 2019; 14:3763-3772. [PMID: 31553821 DOI: 10.1002/asia.201901156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 11/08/2022]
Abstract
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas-phase reactions between size- and charge-selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single-atom and cluster-based catalysts. Especially, recent gas-phase studies have elucidated that small molecules such as O2 , CO2 , and CH3 I can be catalytically activated by negatively-charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such "reductive activation" processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.
Collapse
Affiliation(s)
- Satoru Muramatsu
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima-shi, Hiroshima, 739-8526, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
28
|
Herburger A, Ončák M, Siu C, Demissie EG, Heller J, Tang WK, Beyer MK. Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO 2 .- (H 2 O) n (n=2-61) in the C-O Stretch Region. Chemistry 2019; 25:10165-10171. [PMID: 31132183 PMCID: PMC6771497 DOI: 10.1002/chem.201901650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 11/08/2022]
Abstract
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2 .- (H2 O)n is relevant for electrochemical carbon dioxide functionalization. CO2 .- (H2 O)n (n=2-61) is investigated by using infrared action spectroscopy in the 1150-2220 cm-1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm-1 , which is assigned to the symmetric C-O stretching vibration νs . It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C-O vibration νas is strongly coupled with the water bending mode ν2 , causing a broad feature at approximately 1650 cm-1 . For larger clusters, an additional broad and weak band appears above 1900 cm-1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2 .- with the hydrogen-bonding network.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Chi‐Kit Siu
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Ephrem G. Demissie
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Wai Kit Tang
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
29
|
Marks JH, Ward TB, Brathwaite AD, Ferguson S, Duncan MA. Cyclotrimerization of Acetylene in Gas Phase V+(C2H2)n Complexes: Detection of Intermediates and Products with Infrared Spectroscopy. J Phys Chem A 2019; 123:6733-6743. [DOI: 10.1021/acs.jpca.9b04962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua H. Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy B. Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | | | - Sojourna Ferguson
- College of Science and Mathematics, University of the Virgin Islands, St. Thomas, United States Virgin Islands 00802
| | - Michael A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Yang D, Kong X, Zheng H, Su M, Zhao Z, Xie H, Fan H, Zhang W, Jiang L. Structures and Infrared Spectra of [M(CO 2) 7] + (M = V, Cr, and Mn) Complexes. J Phys Chem A 2019; 123:3703-3708. [PMID: 30957997 DOI: 10.1021/acs.jpca.9b00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase infrared photodissociation spectra of [V(CO2) n]+ complexes revealed three new vibrational bands at 1140, 1800, and 3008 cm-1 at n = 7, the features of which are retained in the larger clusters (Ricks, A. M.; Brathwaite, A. D.; Duncan, M. A. J. Phys. Chem. A 2013, 117, 11490-11498). However, structural assignment of this intriguing feature remains open. Herein, quantum chemical calculations on [V(CO2)7]+ were carried out to identify the structure of the low-lying isomers and to assign the observed spectral features. The comparison of calculated infrared spectra of [V(CO2)7]+ with experimental infrared spectra identified the formation of a bent CO2- species, suggesting the ligand-induced activation of CO2 by the vanadium cation. The structures and infrared spectra of [Cr(CO2)7]+ and [Mn(CO2)7]+ were also predicted and discussed.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
31
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Li G, Kong XT, Xie H, Fan HJ, Zhang WQ, Jiang L. Infrared photodissociation spectroscopic and theoretical study of [Co(CO2)n]+ clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1902032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Liu G, Ciborowski SM, Zhu Z, Chen Y, Zhang X, Bowen KH. The metallo-formate anions, M(CO2)−, M = Ni, Pd, Pt, formed by electron-induced CO2 activation. Phys Chem Chem Phys 2019; 21:10955-10960. [DOI: 10.1039/c9cp01915d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metallo-formate anions, M(CO2)−, M = Ni, Pd, and Pt, were formed by electron-induced CO2 activation.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | | | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Yinlin Chen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
33
|
Habib M, Sarkar R, Biswas S, Pramanik A, Sarkar P, Pal S. Unambiguous hydrogenation of CO2 by coinage-metal hydride anions: an intuitive idea based on in silico experiments. Phys Chem Chem Phys 2019; 21:7483-7490. [DOI: 10.1039/c9cp00133f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coinage metal hydride anions, especially AgH−, can effectively and deterministically hydrogenate CO2 to HCO2−.
Collapse
Affiliation(s)
- Md Habib
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| | - Ritabrata Sarkar
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| | - Santu Biswas
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Anup Pramanik
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Pranab Sarkar
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Sougata Pal
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| |
Collapse
|
34
|
Anila S, Suresh CH. Formation of large clusters of CO2 around anions: DFT study reveals cooperative CO2 adsorption. Phys Chem Chem Phys 2019; 21:23143-23153. [DOI: 10.1039/c9cp03348c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cooperative O⋯C secondary interactions compensate for the diminishing effect of primary anion⋯C interactions in anionic clusters of CO2 molecules.
Collapse
Affiliation(s)
- Sebastian Anila
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
35
|
Herburger A, Ončák M, Barwa E, van der Linde C, Beyer MK. Carbon-carbon bond formation in the reaction of hydrated carbon dioxide radical anions with 3-butyn-1-ol. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:101-106. [PMID: 33209089 PMCID: PMC7116384 DOI: 10.1016/j.ijms.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical activation of carbon dioxide in aqueous solution is a promising way to use carbon dioxide as a C1 building block. Mechanistic studies in the gas phase play an important role to understand the inherent chemical reactivity of the carbon dioxide radical anion. Here, the reactivity of CO2 •-(H2O)n with 3-butyn-1-ol is investigated by Fourier transform ion cyclotron (FT-ICR) mass spectrometry and quantum chemical calculations. Carbon-carbon bond formation takes places, but is associated with a barrier. Therefore, bond formation may require uptake of several butynol molecules. The water molecules slowly evaporate from the cluster due to the absorption of room temperature black-body radiation. When all water molecules are lost, butynol evaporation sets in. In this late stage of the reaction, side reactions occur including H• atom transfer and elimination of HOCO•.
Collapse
Affiliation(s)
| | | | | | | | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Aydia MI, El-Said H, El-Sadek AA, El-Azony KM. Preparation and characterization of zirconium silico 188W-tungstate as a base material for 188W/ 188Re generator. Appl Radiat Isot 2018; 142:203-210. [PMID: 30408724 DOI: 10.1016/j.apradiso.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 11/18/2022]
Abstract
Zr:W:Si. The optimum gel was prepared using the molar ratio 1:1:7 at pH 8. The ZrSiW gel was investigated by FTIR, XRD, thermal analysis (TGA and DTA), FESEM, XRF, and NAA. Then, XRF and NAA techniques were used to estimate the proportion of the constituents of the gel according to the molecular formula [ZrO2(Si(WO4)2)16H2O]. 188W/188Re generator was prepared based on the selected ZrSi188W gel, which gives the highest tungsten content (393.3 mg W/g gel) with 75 ± 3% elution yield of 188Re. Quality control was studied on the 188Re to make sure its validity for clinical applications.
Collapse
Affiliation(s)
- M I Aydia
- Radioactive Isotopes and Generators Department, Hot Labs. Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - H El-Said
- Radioactive Isotopes and Generators Department, Hot Labs. Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - A A El-Sadek
- Radioactive Isotopes and Generators Department, Hot Labs. Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - K M El-Azony
- Radioactive Isotopes and Generators Department, Hot Labs. Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| |
Collapse
|
37
|
Blaziak K, Tzeli D, Xantheas SS, Uggerud E. The activation of carbon dioxide by first row transition metals (Sc-Zn). Phys Chem Chem Phys 2018; 20:25495-25505. [PMID: 30276383 DOI: 10.1039/c8cp04231d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of CO2 by chloride-tagged first-row transition metal anions [ClM]- (M = Sc-Zn), was examined by mass spectrometry, quantum chemical calculations, and statistical analysis. The direct formation of [ClM(CO2)]- complexes was demonstrated in the reaction between [ClM]- and neutral CO2. In addition, the reverse reaction was investigated by energy-variable collisionally induced dissociation (CID) of the corresponding [ClM(CO2)]- anions generated in-source. Five different mono- and bi-dentate binding motifs present in the ion/CO2 complexes were identified by quantum chemical calculations and the relative stability of each of these isomers was established and analyzed for all first-row transition metals based on the experimental and theoretical ion/molecule binding energies. It was found that the early first row transition metals form strong covalent bonds with the neutral CO2 molecule, while the late ones and in particular copper and zinc are weakly bonded. Using simple valence bond Lewis diagrams, the different binding motifs and their relative stabilities across the first row were described using multi-configurational self consistent field (MSCSCF) wavefunctions in a quantitative manner based on the electronic structure of the individual metals. This analysis provides an explanation for the change of the most favorite bonding motif of the transition metals with CO2 along the 1st transition metal row. The nature of the activated CO2 complex and the relationship between its stability and other structural and spectral properties was also analyzed by Principal Component Analysis (PCA) and artificial neural networks.
Collapse
Affiliation(s)
- Kacper Blaziak
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033, Blindern, Oslo N-0135, Norway.
| | | | | | | |
Collapse
|
38
|
Dodson LG, Thompson MC, Weber JM. Interactions of Molecular Titanium Oxides TiOx (x = 1–3) with Carbon Dioxide in Cluster Anions. J Phys Chem A 2018; 122:6909-6917. [DOI: 10.1021/acs.jpca.8b06229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leah G. Dodson
- JILA and NIST, University of Colorado, 0440 UCB, Boulder, Colorado 80309-0440, United States
| | - Michael C. Thompson
- JILA and Department of Chemistry, University of Colorado, 0440 UCB, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 0440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
39
|
Dodson LG, Thompson MC, Weber JM. Characterization of Intermediate Oxidation States in CO2Activation. Annu Rev Phys Chem 2018; 69:231-252. [DOI: 10.1146/annurev-physchem-050317-021122] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leah G. Dodson
- JILA and NIST, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Michael C. Thompson
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA;,
| | - J. Mathias Weber
- JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA;,
| |
Collapse
|
40
|
Craig SM, Johnson CJ, Ranasinghe DS, Perera A, Bartlett RJ, Berman MR, Johnson MA. Vibrational Characterization of Radical Ion Adducts between Imidazole and CO 2. J Phys Chem A 2018; 122:3805-3810. [PMID: 29608067 DOI: 10.1021/acs.jpca.8b01883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We address the molecular level origins of the dramatic difference in the catalytic mechanisms of CO2 activation by the seemingly similar molecules pyridine (Py) and imidazole (Im). This is accomplished by comparing the fundamental interactions of CO2 radical anions with Py and Im in the isolated, gas phase PyCO2- and ImCO2- complexes. These species are prepared by condensation of the neutral compounds onto a (CO2) n- cluster ion beam by entrainment in a supersonic jet ion source. The structures of the anionic complexes are determined by theoretical analysis of their vibrational spectra, obtained by IR photodissociation of weakly bound CO2 molecules in a photofragmentation mass spectrometer. Although the radical PyCO2- system adopts a carbamate-like configuration corresponding to formation of an N-C covalent bond, the ImCO2- species is revealed to be best described as an ion-molecule complex in which an oxygen atom in the CO2- radical anion is H-bonded to the NH group. Species that feature a covalent N-C interaction in ImCO2- are calculated to be locally stable structures, but are much higher in energy than the largely electrostatically bound ion-molecule complex. These results support the suggestion from solution phase electrochemical studies (Bocarsly et al. ACS Catal. 2012, 2, 1684-1692) that the N atoms are not directly involved in the catalytic activation of CO2 by Im.
Collapse
Affiliation(s)
- Stephanie M Craig
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Christopher J Johnson
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Duminda S Ranasinghe
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Ajith Perera
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Rodney J Bartlett
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Michael R Berman
- Air Force Office of Scientific Research , Arlington , Virginia 22203 , United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
41
|
Thompson MC, Weber JM. Infrared Photodissociation Spectra of [Sn(CO 2) n] - Cluster Ions. J Phys Chem A 2018; 122:3772-3779. [PMID: 29597348 DOI: 10.1021/acs.jpca.8b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present infrared spectra and density functional theory calculations of mass selected [Sn(CO2) n]- cluster anions ( n = 2-6). The spectra and structures of these clusters exhibit less structural diversity than those of analogous clusters with first-row transition metals, but are more complex than those for the heavy coinage metals or for the related [Bi(CO2) n]- clusters. The most favorable core ion structure for all cluster sizes can be characterized as a Sn-oxalate complex, Sn[C2O4]-. Higher energy isomers based on a bidentate η2-(C,O) CO2 ligand tightly bound to the metal atom in SnCO2- complexes are also observed, even for the largest cluster sizes studied here. For n = 2, another high energy isomer is found, featuring a CO2 ligand weakly bound to the metal atom in a SnCO2- ion.
Collapse
Affiliation(s)
- Michael C Thompson
- JILA and Department of Chemistry and Biochemistry , University of Colorado , 440 UCB , Boulder , Colorado 80309-0440 , United States
| | - J Mathias Weber
- JILA and Department of Chemistry and Biochemistry , University of Colorado , 440 UCB , Boulder , Colorado 80309-0440 , United States
| |
Collapse
|
42
|
Dodson LG, Thompson MC, Weber JM. Titanium Insertion into CO Bonds in Anionic Ti-CO 2 Complexes. J Phys Chem A 2018; 122:2983-2991. [PMID: 29510624 DOI: 10.1021/acs.jpca.8b01843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the structures of [Ti(CO2) y]- cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.
Collapse
|
43
|
Miller GBS, Uggerud E. C-C Bond Formation of Mg- and Zn-Activated Carbon Dioxide. Chemistry 2018; 24:4710-4717. [PMID: 29377331 DOI: 10.1002/chem.201706069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/11/2022]
Abstract
Gas-phase activation of CO2 by chloride tagged metal atoms, [ClM]- (M=Mg, Zn), has been investigated by mass spectrometry and high-level quantum chemistry. Both metals activate CO2 with significant bending of the CO2 moiety to form complexes with the general formula [ClM,CO2 ]- . The structure of the metal-CO2 complex depends on the method of formation, and the energy landscapes and reaction dynamics have been probed by collisional induced dissociation and thermal ion molecule reactions with isotopically labeled species. Having established these structural relationships, the gas-phase reactivity of [ClM(κ2 -O2 C)]- with acetaldehyde (here considered a carbohydrate mimic) was then studied. Formation of lactate and enolate-pyruvate complexes are observed, showing that CO2 fixation by C-C bond formation takes place. For M=Zn, even formation of free pyruvate ([C3 H3 O3 ]- ) is observed. Implications of the observed CO2 reactivity for the electrochemical conversion of carbon dioxide, and to biochemical and artificial photosynthesis is briefly discussed. Detailed potential energy diagrams obtained by the quantum chemical calculations offer models consistent with experimental observation.
Collapse
Affiliation(s)
- Glenn B S Miller
- Mass Spectrometry Laboratory and Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0135, Oslo, Norway
| | - Einar Uggerud
- Mass Spectrometry Laboratory and Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0135, Oslo, Norway
| |
Collapse
|
44
|
Zhao Z, Kong X, Yuan Q, Xie H, Yang D, Zhao J, Fan H, Jiang L. Coordination-induced CO2 fixation into carbonate by metal oxides. Phys Chem Chem Phys 2018; 20:19314-19320. [DOI: 10.1039/c8cp02085j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectroscopic studies reveal how the coordination induces CO2 fixation into carbonate by a cationic yttrium oxide model catalyst.
Collapse
Affiliation(s)
- Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Qinqin Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams
- Dalian University of Technology
- Ministry of Education
- Dalian 116024
- China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
45
|
Thompson MC, Ramsay J, Weber JM. Interaction of CO2 with Atomic Manganese in the Presence of an Excess Negative Charge Probed by Infrared Spectroscopy of [Mn(CO2)n]− Clusters. J Phys Chem A 2017; 121:7534-7542. [DOI: 10.1021/acs.jpca.7b06870] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Thompson
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Jacob Ramsay
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA and Department of Chemistry
and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
46
|
Thompson MC, Weber JM. Enhancement of infrared activity by moving electrons through bonds – The case of CO2 anion and carboxylate. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Thompson MC, Dodson LG, Weber JM. Structural Motifs of [Fe(CO2)n]− Clusters (n = 3–7). J Phys Chem A 2017; 121:4132-4138. [DOI: 10.1021/acs.jpca.7b02742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Thompson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Leah G. Dodson
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J. Mathias Weber
- JILA
and Department of Chemistry and Biochemistry and ‡JILA and NIST, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
48
|
Zhao Z, Kong X, Yang D, Yuan Q, Xie H, Fan H, Zhao J, Jiang L. Reactions of Copper and Silver Cations with Carbon Dioxide: An Infrared Photodissociation Spectroscopic and Theoretical Study. J Phys Chem A 2017; 121:3220-3226. [DOI: 10.1021/acs.jpca.7b01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Zhao
- Key
Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Xiangtao Kong
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qinqin Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hua Xie
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Hongjun Fan
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| | - Jijun Zhao
- Key
Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China
| | - Ling Jiang
- State
Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation
Center of Chemistry for Energy and Materials (iChEM), Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian 116023, China
| |
Collapse
|
49
|
Electronic structure and rearrangements of anionic [ClMg(η2-O2C)]− and [ClMg(η2-CO2)]− complexes: a quantum chemical topology study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2082-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Schwarz H. Metal-mediated activation of carbon dioxide in the gas phase: Mechanistic insight derived from a combined experimental/computational approach. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.03.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|