1
|
Esders M, Schnake T, Lederer J, Kabylda A, Montavon G, Tkatchenko A, Müller KR. Analyzing Atomic Interactions in Molecules as Learned by Neural Networks. J Chem Theory Comput 2025; 21:714-729. [PMID: 39792788 PMCID: PMC11780731 DOI: 10.1021/acs.jctc.4c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data. We focus on the strength of the interactions for different atomic species, how predictions for intensive and extensive quantum molecular properties are made, and analyze the decay and many-body nature of the interactions with interatomic distance. Models that deviate too far from known physical principles produce unstable MD trajectories, even when they have very high energy and force prediction accuracy. We also suggest further improvements to the ML architectures to better account for the polynomial decay of atomic interactions.
Collapse
Affiliation(s)
- Malte Esders
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Thomas Schnake
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Jonas Lederer
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
| | - Adil Kabylda
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Grégoire Montavon
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
- Department
of Mathematics and Computer Science, Free
University of Berlin, 14195 Berlin, Germany
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Klaus-Robert Müller
- BIFOLD—Berlin
Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Machine
Learning Group, Berlin Institute of Technology, 10587 Berlin, Germany
- Google
Deepmind, 10963 Berlin, Germany
- Department
of Artificial Intelligence, Korea University, 136-713 Seoul, Korea
- Max
Planck Institute for Informatics, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Charry J, Tkatchenko A. van der Waals Radii of Free and Bonded Atoms from Hydrogen (Z = 1) to Oganesson (Z = 118). J Chem Theory Comput 2024; 20:7469-7478. [PMID: 39208255 PMCID: PMC11391583 DOI: 10.1021/acs.jctc.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reliable numerical values of van der Waals (vdW) radii are required for constructing empirical force fields, vdW-inclusive density functional, and quantum-chemical methods, as well as for implicit solvent models. However, multiple definitions exist for vdW radii, involving either equilibrium or the closest contact distances between free or bonded atoms within molecules or crystals. For the paradigmatic case of the hydrogen atom, its reported vdW radius fluctuates between 2.15 and 3.70 Bohr depending on the definition, leading to a high uncertainty in calculations and different conceptual interpretations of noncovalent interactions. In this work, we systematically review different definitions and methodologies to establish the free and bonded vdW radii for hydrogen, based on equilibrium vdW distances in noncovalently bonded molecules, enveloping electron density cutoffs, noncovalent positron bonds in hydrogen anion dimer, vacuum virtual photon cloud caused by the hydrogen atom, and atomic dipole polarizability. By doing so, we show that the vdW radius of the free hydrogen atom is 3.16 ± 0.06 Bohr. By employing the most general and elegant definition of atomic vdW radius as a function of the atomic polarizability, we tabulate consistent values of vdW radii for all atoms in the periodic table up to Z = 118.
Collapse
Affiliation(s)
- Jorge Charry
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
3
|
Roszak K, Katrusiak A. Competition of interactions and a new high-temperature phase of selenourea. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:64-72. [PMID: 36748899 DOI: 10.1107/s2052520622011623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 01/21/2023]
Abstract
The aggregation of molecules is usually associated with a specific type of interaction, which can be altered by thermodynamic conditions. Under normal conditions, the crystal structure of selenourea, SeC(NH2)2, phase α is trigonal, space group P31, Z = 27. Its large number of independent molecules (Zα' = 9) can be associated with the formation of an NH...N hydrogen bond substituting one of 36 independent NH...Se hydrogen bonds, which prevail among intermolecular interactions. Phase α approximates the trigonal structure with a threefold smaller unit cell (Z = 9), which in turn approximates another still threefold smaller unit cell (Z = 3). The temperature-induced transformations of selenourea have been characterized by calorimetry and by performing 21 single-crystal X-ray diffraction structural determinations as a function of temperature. At 381.0 K, phase α undergoes a first-order displacive transition to phase γ, with space group P3121 and Z reduced to 9, when the NH...N bond is broken and an NH...Se bond is formed in its place. Previously, an analogous competition was observed between NH...N and NH...O hydrogen bonds in high-pressure phase III of urea. The lattice vectors along the (001) plane in low- and high-temperature phases of selenourea are related by a similarity rule, while the lattice dimensions along direction c are not affected. This similarity rule also applies to the structures of phase γ and hypothetical phase δ (Z = 3). The thermally controlled transition between enantiomorphic phases of selenourea contrasts with its high-pressure transition at 0.21 GPa to a centrosymmetric phase β, where both the NH...Se and NH...N bonds are present. The compression and heating reduce the number of independent molecules from Z' = 9 in phase α, to Z' = 2 in phase β and to Z' = 1.5 in phase γ.
Collapse
Affiliation(s)
- Kinga Roszak
- Department of Materials Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Andrzej Katrusiak
- Department of Materials Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
4
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
5
|
Abstract
It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electronic density that are perpendicular to planar portions of the molecular frameworks. π-Holes often have positive electrostatic potentials associated with them, which result in mutually polarizing attractive forces with negative sites such as lone pairs, π electrons or anions. In many molecules, π-holes correspond to a flattening of the electronic density surface but in benzene derivatives and in polyazines the π-holes are craters above and below the rings. The interaction energies of π-hole complexes can be expressed quite well in terms of regression relationships that account for both the electrostatics and the polarization. There is a marked gradation in the interaction energies, from quite weak (about -2 kcal mol-1) to relatively strong (about -40 kcal mol-1). Gradations are also evident in the ratios of the intermolecular separations to the sums of the respective van der Waals radii and in the gradual transition of the π-hole atoms from trigonal to quasi-tetrahedral configurations. These trends are consistent with the concept that chemical interactions form a continuum, from very weak to very strong.
Collapse
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
6
|
Murray JS, Politzer P. Can Counter-Intuitive Halogen Bonding Be Coulombic? Chemphyschem 2021; 22:1201-1207. [PMID: 33844430 DOI: 10.1002/cphc.202100202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 01/14/2023]
Abstract
We use the term "counter-intuitive" to describe an intermolecular interaction in which the electrostatic potentials of the interacting regions of the ground-state molecules have the same sign, both positive or both negative. In the present work, we consider counter-intuitive halogen bonding with nitrogen bases, in which both the halogen σ-hole and the nitrogen lone pair have negative potentials on their molecular surfaces. We show that these interactions can be treated as Coulombic despite the apparent repulsion between the ground-state molecules, provided that both electrostatics and polarization are explicitly taken into account. We demonstrate first that the energies of 20 counter-intuitive interactions with four nitrogen bases can be expressed very well in terms of just two molecular properties: the electrostatic potential of the halogen σ-hole and the average polarizability of the nitrogen base. Then we show that the same two properties can also represent the energies of an expanded data base that includes the 20 counter-intuitive plus an additional 20 weak and moderately-strong intuitive halogen bonding interactions (in which the σ-hole potentials are now positive).
Collapse
Affiliation(s)
- Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
7
|
|
8
|
Structural biology of DNA abasic site protection by SRAP proteins. DNA Repair (Amst) 2020; 94:102903. [PMID: 32663791 DOI: 10.1016/j.dnarep.2020.102903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022]
Abstract
Abasic (AP) sites are one of the most frequently occurring types of DNA damage. They lead to DNA strand breaks, interstrand DNA crosslinks, and block transcription and replication. Mutagenicity of AP sites arises from translesion synthesis (TLS) by error-prone bypass polymerases. Recently, a new cellular response to AP sites was discovered, in which the protein HMCES (5-hydroxymethlycytosine (5hmC) binding, embryonic stem cell-specific) forms a stable, covalent DNA-protein crosslink (DPC) to AP sites at stalled replication forks. The stability of the HMCES-DPC prevents strand cleavage by endonucleases and mutagenic bypass by TLS polymerases. Crosslinking is carried out by a unique SRAP (SOS Response Associated Peptidase) domain conserved across all domains of life. Here, we review the collection of recently reported SRAP crystal structures from human HMCES and E. coli YedK, which provide a unified basis for SRAP specificity and a putative chemical mechanism of AP site crosslinking. We discuss the structural and chemical basis for the stability of the SRAP DPC and how it differs from covalent protein-DNA intermediates in DNA lyase catalysis of strand scission.
Collapse
|
9
|
Abstract
We demonstrate that a wide range of σ- and π-hole interaction energies can be related to (a) the electrostatic potentials and electric fields of the σ- and π-hole molecules at the approximate positions of the negative sites and (b) the electrostatic potentials and polarizabilities of the latter. This is consistent with the Coulombic nature of these interactions, which should be understood to include both electrostatics and polarization. The energies associated with polarization were estimated and were shown to overall be greater for the stronger interactions; no new factors need be introduced to account for these. All of the interactions can be treated in the same manner.
Collapse
|
10
|
Politzer P, Murray JS. Electrostatics and Polarization in σ‐ and π‐Hole Noncovalent Interactions: An Overview. Chemphyschem 2020; 21:579-588. [DOI: 10.1002/cphc.201900968] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Peter Politzer
- Department of ChemistryUniversity of New Orleans New Orleans, LA 70148 USA
| | - Jane S. Murray
- Department of ChemistryUniversity of New Orleans New Orleans, LA 70148 USA
| |
Collapse
|
11
|
Politzer P, Murray JS, Clark T. Explicit Inclusion of Polarizing Electric Fields in σ- and π-Hole Interactions. J Phys Chem A 2019; 123:10123-10130. [DOI: 10.1021/acs.jpca.9b08750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Jane S. Murray
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
12
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
13
|
Abstract
Our discussion focuses upon three possible features that a bonded halogen atom may exhibit on its outer side, on the extension of the bond. These are (1) a region of lower electronic density (a σ-hole) accompanied by a positive electrostatic potential with a local maximum, (2) a region of lower electronic density (a σ-hole) accompanied by a negative electrostatic potential that also has a local maximum, and (3) a buildup of electronic density accompanied by a negative electrostatic potential that has a local minimum. In the last case, there is no σ-hole. We show that for diatomic halides and halogen-substituted hydrides, the signs and magnitudes of these maxima and minima can be expressed quite well in terms of the differences in the electronegativities of the halogen atoms and their bonding partners, and the polarizabilities of both. We suggest that the buildup of electronic density and absence of a σ-hole on the extension of the bond to the halogen may be an operational indication of ionicity.
Collapse
|
14
|
Hagler AT. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics. J Comput Aided Mol Des 2018; 33:205-264. [DOI: 10.1007/s10822-018-0134-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/18/2018] [Indexed: 01/04/2023]
|
15
|
Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there? J Comput Aided Mol Des 2018; 33:133-203. [DOI: 10.1007/s10822-018-0111-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 10/27/2022]
|
16
|
Weyer N, Guthardt R, Correia Bicho BA, Oetzel J, Bruhn C, Siemeling U. Stable N-Heterocyclic Germylenes of the Type [Fe{(η5
-C5
H4
)NR
}2
Ge] and Their Oxidation Reactions with Sulfur, Selenium, and Diphenyl Diselenide. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nadine Weyer
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| | - Robin Guthardt
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| | - Bruno A. Correia Bicho
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| | - Jan Oetzel
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| | - Clemens Bruhn
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| | - Ulrich Siemeling
- Institute of Chemistry; University of Kassel; Heinrich-Plett-Str. 40 34132 Kassel Germany
| |
Collapse
|
17
|
Comparison between Tetrel Bonded Complexes Stabilized by σ and π Hole Interactions. Molecules 2018; 23:molecules23061416. [PMID: 29891824 PMCID: PMC6100375 DOI: 10.3390/molecules23061416] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 01/22/2023] Open
Abstract
The σ-hole tetrel bonds formed by a tetravalent molecule are compared with those involving a π-hole above the tetrel atom in a trivalent bonding situation. The former are modeled by TH₄, TH₃F, and TH₂F₂ (T = Si, Ge, Sn) and the latter by TH₂=CH₂, THF=CH₂, and TF₂=CH₂, all paired with NH₃ as Lewis base. The latter π-bonded complexes are considerably more strongly bound, despite the near equivalence of the σ and π-hole intensities. The larger binding energies of the π-dimers are attributed to greater electrostatic attraction and orbital interaction. Each progressive replacement of H by F increases the strength of the tetrel bond, whether σ or π. The magnitudes of the maxima of the molecular electrostatic potential in the two types of systems are not good indicators of either the interaction energy or even the full Coulombic energy. The geometry of the Lewis acid is significantly distorted by the formation of the dimer, more so in the case of the σ-bonded complexes, and this deformation intensifies the σ and π holes.
Collapse
|
18
|
Abstract
A covalently-bonded atom typically has a region of lower electronic density, a "σ-hole," on the side of the atom opposite to the bond, along its extension. There is frequently a positive electrostatic potential associated with this region, through which the atom can interact attractively but noncovalently with negative sites. This positive potential reflects not only the lower electronic density of the σ-hole but also contributions from other portions of the molecule. These can significantly influence both the value and also the angular position of the positive potential, causing it to deviate from the extension of the covalent bond. We have surveyed these effects, and their consequences for the directionalities of subsequent noncovalent intermolecular interactions, for atoms of Groups IV-VII. The overall trends are that larger deviations of the positive potential result in less linear intermolecular interactions, while smaller deviations lead to more linear interactions. We find that the deviations of the positive potentials and the nonlinearities of the noncovalent interactions tend to be greatest for atoms of Groups V and VI. We also present arguments supporting the use of the 0.001 a.u. contour of the electronic density as the molecular surface on which to compute the electrostatic potential.
Collapse
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|
19
|
Van Vleet MJ, Misquitta AJ, Schmidt JR. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy. J Chem Theory Comput 2018; 14:739-758. [DOI: 10.1021/acs.jctc.7b00851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary J. Van Vleet
- Theoretical
Chemistry Institute and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alston J. Misquitta
- Department
of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - J. R. Schmidt
- Theoretical
Chemistry Institute and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Liu X, McMillen CD, Thrasher JS. Cooperative intermolecular S–Cl⋯O and F⋯F associations in the crystal packing of α,ω-di(sulfonyl chloride) perfluoroalkanes, ClSO 2(CF 2) nSO 2Cl, where n = 4, 6. NEW J CHEM 2018. [DOI: 10.1039/c8nj00536b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen bonding between neighboring sulfonyl chloride groups and short fluorine–fluorine contacts supports crystal formation in the title compounds.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Materials Science and Engineering
- Clemson University
- Advanced Materials Research Laboratory
- Anderson
- USA
| | - Colin D. McMillen
- Department of Chemistry
- Clemson University
- Hunter Laboratories
- Clemson
- USA
| | - Joseph S. Thrasher
- Department of Chemistry
- Clemson University
- Advanced Materials Research Laboratory
- Anderson
- USA
| |
Collapse
|
21
|
Abstract
After a brief discussion of the σ-hole concept and the significance of molecular electrostatic potentials in noncovalent interactions, we draw attention to some common misconceptions that are encountered in that context: (1) Since the electrostatic potential reflects the contributions of both the nuclei and the electrons, it cannot be assumed that negative potentials correspond to “electron-rich” regions and positive potentials to “electron-poor” ones; (2) The electrostatic potential in a given region is determined not only by the electrons and nuclei in that region, but also by those in other portions of the molecule, especially neighboring ones; (3) A σ-hole is a region of lower electronic density on the extension of a covalent bond, not an electrostatic potential; (4) Noncovalent interactions are between positive and negative regions, which are not necessarily associated with specific atoms, so that “close contacts” between atoms do not always indicate the actual interactions.
Collapse
|
22
|
Řezáč J, de la Lande A. On the role of charge transfer in halogen bonding. Phys Chem Chem Phys 2017; 19:791-803. [DOI: 10.1039/c6cp07475h] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have quantified the energetic contribution of charge transfer to halogen bonding to be about 10% of the interaction energy.
Collapse
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- 166 10 Prague
- Czech Republic
| | | |
Collapse
|
23
|
Abstract
A combined structural and computational analysis has demonstrated that alkyl groups can act as Lewis bases in π-hole bonding.
Collapse
Affiliation(s)
- Jorge Echeverría
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTC-UB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
24
|
Reintanz PM, Guthardt R, Bruhn C, Mohr F, Siemeling U. Phthalocyanine Derivatives with Eight Peripheral Long‐Chain
n
‐Alkylseleno Substituents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Philipp M. Reintanz
- Institute of Chemistry University of Kassel 34109 Kassel Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) University of Kassel 34109 Kassel Germany
| | - Robin Guthardt
- Institute of Chemistry University of Kassel 34109 Kassel Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) University of Kassel 34109 Kassel Germany
| | - Clemens Bruhn
- Institute of Chemistry University of Kassel 34109 Kassel Germany
| | - Fabian Mohr
- Fakultät für Mathematik und Naturwissenschaften Anorganische Chemie Bergische Universität Wuppertal 42119 Wuppertal Germany
| | - Ulrich Siemeling
- Institute of Chemistry University of Kassel 34109 Kassel Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) University of Kassel 34109 Kassel Germany
| |
Collapse
|
25
|
|
26
|
Van Vleet MJ, Misquitta AJ, Stone AJ, Schmidt JR. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields. J Chem Theory Comput 2016; 12:3851-70. [PMID: 27337546 DOI: 10.1021/acs.jctc.6b00209] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.
Collapse
Affiliation(s)
- Mary J Van Vleet
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Alston J Misquitta
- Department of Physics and Astronomy, Queen Mary University of London , London E1 4NS, United Kingdom
| | - Anthony J Stone
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | - J R Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Chwastyk M, Jaskolski M, Cieplak M. The volume of cavities in proteins and virus capsids. Proteins 2016; 84:1275-86. [DOI: 10.1002/prot.25076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mateusz Chwastyk
- Institute of Physics; Polish Academy of Sciences; 02-668 Warsaw Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research; Institute of Bioorganic Chemistry, Polish Academy of Sciences; 61-704 Poznan Poland
- Department of Crystallography, Faculty of Chemistry; Adam Mickiewicz University; 61-614 Poznan Poland
| | - Marek Cieplak
- Institute of Physics; Polish Academy of Sciences; 02-668 Warsaw Poland
| |
Collapse
|
28
|
Hagler AT. Quantum Derivative Fitting and Biomolecular Force Fields: Functional Form, Coupling Terms, Charge Flux, Nonbond Anharmonicity, and Individual Dihedral Potentials. J Chem Theory Comput 2015; 11:5555-72. [DOI: 10.1021/acs.jctc.5b00666] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- A. T. Hagler
- Department of Chemistry University of Massachusetts, Amherst, Massachusetts 01003, United States
- Shifa Biopharm, Shifa Biomedical Corporation, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
29
|
The Bright Future of Unconventional σ/π-Hole Interactions. Chemphyschem 2015; 16:2496-517. [DOI: 10.1002/cphc.201500314] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 01/25/2023]
|
30
|
Lekin K, Phan H, Winter SM, Wong JWL, Leitch AA, Laniel D, Yong W, Secco RA, Tse JS, Desgreniers S, Dube PA, Shatruk M, Oakley RT. Heat, Pressure and Light-Induced Interconversion of Bisdithiazolyl Radicals and Dimers. J Am Chem Soc 2014; 136:8050-62. [DOI: 10.1021/ja502753t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kristina Lekin
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hoa Phan
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stephen M. Winter
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Joanne W. L. Wong
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Alicea A. Leitch
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dominique Laniel
- Department
of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wenjun Yong
- Department
of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Richard A. Secco
- Department
of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - John S. Tse
- Department
of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Serge Desgreniers
- Department
of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Paul A. Dube
- Brockhouse
Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Michael Shatruk
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Richard T. Oakley
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|