1
|
González-Sánchez L, Yurtsever E, de la Fuente JA, Sanz-Sanz C, Wester R, Gianturco FA. Collision-induced state-changing rate coefficients for cyanogen backbones NCN 3Σ - and CNN 3Σ - in astrophysical environments. Phys Chem Chem Phys 2023; 25:30330-30342. [PMID: 37909202 DOI: 10.1039/d3cp03316c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report quantum calculations involving the dynamics of rotational energy-transfer processes, by collision with He atoms in interstellar environments, of the title molecular species which share the presence of the CN backbone and are considered of importance in those environments. The latter structural feature is taken to be especially relevant for prebiotic chemistry and for its possible role in the processing of the heterocyclic rings of RNA and DNA nucleobases in the interstellar space. We carry out ab initio calculations of their interaction potentials with He atoms and further obtain the state-to-state rotationally inelastic cross sections and rate coefficients over the relevant range of temperatures. The similarities and differences between such species and other similar partners which have been already detected are analyzed and discussed for their significance on internal state populations in interstellar space for the two title molecular radicals.
Collapse
Affiliation(s)
- Lola González-Sánchez
- Departamento de Química Física, University of Salamanca Plaza de los Caídos sn, 37008, Salamanca, Spain
| | - Ersin Yurtsever
- Department of Chemistry, Koc University Rumelifeneriyolu, Sariyer TR 34450, Istanbul, Turkey
| | - Jorge Alonso de la Fuente
- Departamento de Quimica Fisica Aplicada, Modulo 14, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Cristina Sanz-Sanz
- Departamento de Quimica Fisica Aplicada, Modulo 14, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstr., 25 A-6020, Innsbruck, Austria.
| | - Francesco A Gianturco
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstr., 25 A-6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Choe JC. Formation of Cytosine and Uracil from Cyanoacetylaldehyde and Guanidine: A Computational Study. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joong Chul Choe
- Department of ChemistryDongguk University‐Seoul Seoul 04620 South Korea
| |
Collapse
|
3
|
Giacomozzi L, D’Angelo G, Diaz-Tendero S, de Ruette N, Stockett MH, Alcamí M, Cederquist H, Schmidt HT, Zettergren H. Decay pathways for protonated and deprotonated adenine molecules. J Chem Phys 2019; 151:044306. [DOI: 10.1063/1.5109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. Giacomozzi
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - G. D’Angelo
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - S. Diaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - N. de Ruette
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - M. H. Stockett
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - M. Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-NANO), 28049 Madrid, Spain
| | - H. Cederquist
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - H. T. Schmidt
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - H. Zettergren
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
4
|
One-step synthesis of acriflavine-based carbon dots for adenine detection and a theoretical study on the detection mechanism. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
|
6
|
de Oliveira PMC, Silva JAB, Longo RL. Benchmark, DFT assessments, cooperativity, and energy decomposition analysis of the hydrogen bonds in HCN/HNC oligomeric complexes. J Mol Model 2017; 23:56. [PMID: 28161784 DOI: 10.1007/s00894-017-3235-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023]
Abstract
Hydrogen cyanide (HCN) and its tautomer hydrogen isocyanide (HNC) are relevant for extraterrestrial chemistry and possible relation to the origin of biomolecules. Several processes and reactions involving these molecules depend on their intermolecular interactions that can lead to aggregates and liquids especially due to the hydrogen bonds. It is thus important to comprehend, to describe, and to quantify their hydrogen bonds, mainly their nature and the cooperativity effects. A systematic study of all linear complexes up to pentamers of HCN and HNC is presented. CCSD(T)/CBS energy calculations, with and without basis set superposition error (BSSE) corrections for energies and geometries, provided a suitable set of benchmarks. Approximated methods based on the density functional theory (DFT) such as BP86, PBE, TPSS, B3LYP, CAM-B3LYP with and without dispersion corrections and long-range corrections, were assessed to describe the interaction energies and cooperativity effects. These assessments are relevant to select DFT functionals for liquid simulations. Energy decomposition analysis was performed at the PBE/STO-TZ2P level and provided insights into the nature of the hydrogen bonds, which are dominated by the electrostatic component. In addition, several linear relationships between the various energy components and the interaction energy were obtained. The cooperativity energy was also found to be practically linear with respect to the interaction energy, which may be relevant for designing and/or correcting empirical force fields. Graphical Abstract Hydrogen bonds in HCN/HNC oligomeric complexesᅟ.
Collapse
Affiliation(s)
| | - Juliana A B Silva
- Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970, Caruaru, PE, Brazil
| | - Ricardo L Longo
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-540, Recife, PE, Brazil.
| |
Collapse
|
7
|
Pandey P, Pant CK, Gururani K, Arora P, Pandey N, Bhatt P, Sharma Y, Negi JS, Mehata MS. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology. ORIGINS LIFE EVOL B 2015; 45:411-26. [PMID: 25952510 DOI: 10.1007/s11084-015-9437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/17/2015] [Indexed: 11/24/2022]
Abstract
Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.
Collapse
Affiliation(s)
- Pramod Pandey
- Chemical Laboratory, Department of Chemistry, DSB Campus, Kumaun University, Nainital, 263002, Uttarakhand, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cole CA, Wang ZC, Snow TP, Bierbaum VM. Deprotonated Purine Dissociation: Experiments, Computations, and Astrobiological Implications. J Phys Chem A 2015; 119:334-43. [DOI: 10.1021/jp509012s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Callie A. Cole
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
| | - Zhe-Chen Wang
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
| | - Theodore P. Snow
- Department
of Astrophysical and Planetary Sciences, University of Colorado, 391 UCB, Boulder, Colorado 80309, United States
- Center
for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, Colorado 80309, United States
| | - Veronica M. Bierbaum
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
- Center
for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|