1
|
Baerends EJ, Aguirre NF, Austin ND, Autschbach J, Bickelhaupt FM, Bulo R, Cappelli C, van Duin ACT, Egidi F, Fonseca Guerra C, Förster A, Franchini M, Goumans TPM, Heine T, Hellström M, Jacob CR, Jensen L, Krykunov M, van Lenthe E, Michalak A, Mitoraj MM, Neugebauer J, Nicu VP, Philipsen P, Ramanantoanina H, Rüger R, Schreckenbach G, Stener M, Swart M, Thijssen JM, Trnka T, Visscher L, Yakovlev A, van Gisbergen S. The Amsterdam Modeling Suite. J Chem Phys 2025; 162:162501. [PMID: 40260801 DOI: 10.1063/5.0258496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
In this paper, we present the Amsterdam Modeling Suite (AMS), a comprehensive software platform designed to support advanced molecular and materials simulations across a wide range of chemical and physical systems. AMS integrates cutting-edge quantum chemical methods, including Density Functional Theory (DFT) and time-dependent DFT, with molecular mechanics, fluid thermodynamics, machine learning techniques, and more, to enable multi-scale modeling of complex chemical systems. Its design philosophy allows for seamless coupling between components, facilitating simulations that range from small molecules to complex biomolecular and solid-state systems, making it a versatile tool for tackling interdisciplinary challenges, both in industry and in academia. The suite also emphasizes user accessibility, with an intuitive graphical interface, extensive scripting capabilities, and compatibility with high-performance computing environments.
Collapse
Affiliation(s)
- Evert Jan Baerends
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Nestor F Aguirre
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Nick D Austin
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York, Buffalo, New York 14260-3000, USA
| | - F Matthias Bickelhaupt
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Rosa Bulo
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, I-55100 Lucca, Italy
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Franco Egidi
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Arno Förster
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Mirko Franchini
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Theodorus P M Goumans
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstraße 66c, 01069 Dresden, Germany
| | - Matti Hellström
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, USA
| | - Mykhaylo Krykunov
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, P.O. Box 145748, Abu Dhabi, United Arab Emirates
| | - Erik van Lenthe
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Artur Michalak
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Mariusz M Mitoraj
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Corrensstraße 36, 48149 Münster, Germany
| | | | - Pier Philipsen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Harry Ramanantoanina
- Department Chemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, 55128 Mainz, Germany
| | - Robert Rüger
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- IQCC and Department Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Jos M Thijssen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Tomáš Trnka
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucas Visscher
- Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Alexei Yakovlev
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| | - Stan van Gisbergen
- Software for Chemistry & Materials BV, De Boelelaan 1109, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Das M, Gangopadhyay D, Andrushchenko V, Kapitán J, Bouř P. Bisignate Surface-Enhanced Raman Optical Activity with Analyte-Capped Colloids. ACS NANO 2025; 19:10412-10420. [PMID: 40053825 PMCID: PMC11924305 DOI: 10.1021/acsnano.4c19027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Spectroscopic detection of chiral compounds is often hampered by a low sensitivity. For Raman optical activity (ROA), the signal can be dramatically increased in surface-enhanced experiments. So far, however, reproducible surface-enhanced ROA (SEROA) spectra were obtained for a reporter molecule only via induced chirality, and the intensities were just proportional to the Raman scattering. In the present study, we show that the signal can be substantially increased if colloidal silver nanoparticles are prepared already in the presence of a chiral analyte. In this case, both the analyte's and reporter's bands are visible. In addition, some experiments provided bisignate SEROA patterns, thus significantly enhancing information about the molecular structure provided by this spectroscopic method. Increased electronic circular dichroism (ECD) of the capped aggregated colloids suggests that ECD and polarized Raman scattering (ECD-Raman) contribute to the monosignate SEROA intensities, while well-dispersed nonaggregating colloids are important for observation of true (bisignate) molecular vibrational SEROA.
Collapse
Affiliation(s)
- Moumita Das
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| | - Debraj Gangopadhyay
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 16610, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 16628, Czech Republic
| |
Collapse
|
3
|
He H, Zhen X, Li S, Chen S, Chen X. The near field response of molecules coupled with plasmons at atomistic resolution. NANOSCALE HORIZONS 2024; 10:165-171. [PMID: 39526527 DOI: 10.1039/d4nh00451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The interaction between nanoparticles on mirror (NPoM) nanostructures and molecules is of great significance for the development of plasmon-enhanced spectroscopy (PES) techniques. However, the coupling mechanism between resonantly excited molecules and plasmonics has not been fully understood. In this work, we took viologen molecules within an Au plasmonic nanocavity (AuNC) as an example to illustrate how resonant molecules influence the near-field distributions. We found that the near-fields are highly enhanced and the near-field distributions are altered when the monocationic viologen (V+˙) is in resonance. In the AuNC, the near-field enhancement of a molecule is significantly enhanced by the adjacent molecules. However, the average near-field enhancements experienced by each molecule decrease with the increasing coverage of the molecular monolayer. Furthermore, the contributions of molecules to the near-field enhancement initially increase and then decrease as coverage increases. The interactions between the molecules and the nanocavity exhibit negative contributions to near-field enhancement. Overall, this work offers valuable insights into the impact of resonantly excited molecules on near-field enhancements in nanocavities and offers guidance for tuning excitation wavelength. We propose that the resonance state and coverage of molecules are critical to improving the sensitivity and specificity of PES techniques.
Collapse
Affiliation(s)
- Huijie He
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300192, P. R. China
| | - Xueyang Zhen
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300192, P. R. China
| | - Shuang Li
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300192, P. R. China
| | - Sibing Chen
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300192, P. R. China
| | - Xing Chen
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, Tianjin 300192, P. R. China
- Tianjin Key Laboratory of Low-Dimensional Electronic Materials and Advanced Instrumentation, Tianjin 300192, P. R. China.
| |
Collapse
|
4
|
Sørensen LK, Gerasimov VS, Karpov SV, Ågren H. Development of discrete interaction models for ultra-fine nanoparticle plasmonics. Phys Chem Chem Phys 2024; 26:24209-24245. [PMID: 39257371 DOI: 10.1039/d4cp00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plasmonics serves as a most outstanding feature of nanoparticle technology and is nowadays used in numerous applications within imaging, sensing and energy harvesting, like plasmonically enhanced solar cells, nanoparticle bioimaging, plasmon-controlled fluorescence for molecular tracking in living cells, plasmon-controlled electronic molecular devices and surface enhanced Raman spectroscopy for single molecular detection. Although plasmonics has been utilized since ancient times, the understanding of its basic interactions has not been fully achieved even under the emergence of modern nanoscience. In particular, it has been difficult to address the "ultra-fine" 1-10 nm regime, important for applications especially in bioimaging and biomedical areas, where neither classical nor quantum based theoretical methods apply. Recently, new approaches have been put forward to bridge this size gap based on semi-empirical discrete interaction models where each atom makes a difference. A primary aim of this perspective article is to review some of the most salient features of these models, and in particular focus on a recent extension - the extended discrete interaction model (Ex-DIM), where the geometric and environmental features are extended - and highlight a set of benchmark studies using this model concerning size, shape, material, temperature dependence and other characteristics of ultra-fine plasmonic nanoparticles. We also analyze new possibilities offered by the model for designing ultra-fine plasmonic particles for applications in the areas of bioimaging, biosensing, photothermal therapy, infrared light harvesting and photodetection. We foresee that future modelling activities will be closely connected to collaborative experimental work including synthesis, device fabrication and measurements with feedback and validation in a systematic fashion. With this strategy we can expect that modelling of ultra-fine plasmonics particles can be integrated in the development of novel plasmonic systems with unprecedented performance and applicability.
Collapse
Affiliation(s)
- Lasse K Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark.
- University Library, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Valeriy S Gerasimov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
- Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Sergey V Karpov
- L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia.
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
5
|
Er E, Chow TH, Liz-Marzán LM, Kotov NA. Circular Polarization-Resolved Raman Optical Activity: A Perspective on Chiral Spectroscopies of Vibrational States. ACS NANO 2024; 18:12589-12597. [PMID: 38709673 PMCID: PMC11112978 DOI: 10.1021/acsnano.3c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Circular polarization-resolved Raman scattering methods include Raman optical activity (ROA) and its derivative─surface-enhanced Raman optical activity (SEROA). These spectroscopic modalities are rapidly developing due to their high information content, stand-off capabilities, and rapid development of Raman-active chiral nanostructures. These methods enable a direct readout of the vibrational energy levels of chiral molecules, crystals, and nanostructured materials, making it possible to study complex interactions and the dynamic interfaces between them. They were shown to be particularly valuable for nano- and biotechnological fields encompassing complex particles with nanoscale chirality that combine strong scattering and intense polarization rotation. This perspective dives into recent advancements in ROA and SEROA, their distinction from surface-enhanced Raman scattering, and the potential of these information-rich label-free spectroscopies for the detection of chiral biomolecules.
Collapse
Affiliation(s)
- Engin Er
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Biotechnology
Institute, Ankara University, Ankara 06135, Turkey
| | - Tsz Him Chow
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 43009, Spain
- Centro de
Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- NSF
Center for Complex Particle Systems (COMPASS), Ann Arbor 48109, Michigan, United States
- Department
of Materials Science, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor 48109-2102, Michigan, United States
| |
Collapse
|
6
|
Ye H, Becca JC, Jensen L. Modeling the near-field effect on molecular excited states using the discrete interaction model/quantum mechanical method. J Chem Phys 2024; 160:014707. [PMID: 38174789 DOI: 10.1063/5.0164711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Strong light-matter interactions significantly modify the optical properties of molecules in the vicinity of plasmonic metal nanoparticles. Since the dimension of the plasmonic cavity approaches that of the molecules, it is critical to explicitly describe the nanoparticle junctions. In this work, we use the discrete interaction model/quantum mechanical (DIM/QM) method to model the coupling between the plasmonic near-field and molecular excited states. DIM/QM is a combined electrodynamics/quantum mechanical model that uses an atomistic description of the nanoparticle. We extend the DIM/QM method to include the local field effects in the sum-over-state formalism of time-dependent density functional theory. As a test of the method, we study the interactions between small organic chromophores and metal nanoparticles. In particular, we examine how the inclusion of multiple electronic transitions and intermolecular interactions modify the coupling between molecules and nanoparticles. Using the sum-over-state formalism of DIM/QM, we show that two-state models break down when the plasmon excitation is detuned from the molecular excitations. To gain further insight, we compare the simple coupled-dipole model (CDM) with the DIM/QM model. We find that CDM works well for simple systems but fails when going beyond the single molecule or single nanoparticle cases. We also find that the coupling depends strongly on the site of the nanoparticle in which the chromophore couples to. Our work suggests the importance of explicitly describing the cavity to capture the atomistic level local field environment in which the molecule strongly couples to.
Collapse
Affiliation(s)
- Hepeng Ye
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jeffrey C Becca
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lasse Jensen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Harshan AK, Bronson MJ, Jensen L. Local-Field Effects in Linear Response Properties within a Polarizable Frozen Density Embedding Method. J Chem Theory Comput 2021; 18:380-393. [PMID: 34905917 DOI: 10.1021/acs.jctc.1c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we present a polarizable frozen density embedding (FDE) method for calculating polarizabilities of coupled subsystems. The method (FDE-pol) combines a FDE method with an explicit polarization model such that the expensive freeze/thaw cycles can be bypassed, and approximate nonadditive kinetic potentials are avoided by enforcing external orthogonality between the subsystems. To describe the polarization of the frozen environment, we introduce a Hirshfeld partition-based density-dependent method for calculating the atomic polarizabilities of atoms in molecules, which alleviates the need to fit the atomic parameters to a specific system of interest or to a larger general set of molecules. We show that the Hirshfeld partition-based method predicts molecular polarizabilities close to the basis set limit, and thus, a single basis set-dependent scaling parameter can be introduced to improve the agreement against the reference polarizability data. To test the model, we characterized the uncoupled and coupled response of small interacting molecular complexes. Here, the coupled response properties include the perturbation of the frozen system due to the external perturbation which is ignored in the uncoupled response. We show that FDE-pol can accurately reproduce both the exact uncoupled polarizability and the coupled polarizabilities of the supermolecular systems. Using damped response theory, we also demonstrate that the coupled frequency-dependent polarizability can be described by including local field effects. The results emphasize the necessity of including local-field effects for describing the response properties of coupled subsystems, as well as the importance of accurate atomic polarizability models.
Collapse
Affiliation(s)
- Aparna K Harshan
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| | - Mark J Bronson
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park 16802, United States
| |
Collapse
|
8
|
Zając G, Bouř P. Measurement and Theory of Resonance Raman Optical Activity for Gases, Liquids, and Aggregates. What It Tells about Molecules. J Phys Chem B 2021; 126:355-367. [PMID: 34792364 DOI: 10.1021/acs.jpcb.1c08370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resonance Raman Optical Activity (RROA) appeared as a natural extension of the nonresonance branch. It combines the structural sensitivity of chiroptical spectroscopy with the signal enhancement coming from the resonance of molecular electronic transitions with the excitation laser light. However, the idea has been hampered by many technical and theoretical problems that are being clarified only in recent years. We provide the theoretical basis and several examples documenting the problems, achievements, and potential of RROA, in particular in biomolecular studies.
Collapse
Affiliation(s)
- Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague, 16610, Czech Republic
| |
Collapse
|
9
|
Becca JC, Chen X, Jensen L. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy in solution. J Chem Phys 2021; 154:224705. [PMID: 34241237 DOI: 10.1063/5.0051256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since surface-enhanced Raman scattering (SERS) is of considerable interest for sensing applications in aqueous solution, the role that solvent plays in the spectroscopy must be understood. However, these efforts are hindered due to a lack of simulation approaches for modeling solvent effects in SERS. In this work, we present an atomistic electrodynamics-quantum mechanical method to simulate SERS in aqueous solution based on the discrete interaction model/quantum mechanical method. This method combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule and a polarizable embedding method for the solvent. The explicit treatment of solvent molecules and nanoparticles results in a large number of polarizable dipoles that need to be considered. To reduce the computational cost, a simple cut-off based approach has been implemented to limit the number of dipoles that need to be treated without sacrificing accuracy. As a test of this method, we have studied how solvent affects the SERS of pyridine in the junction between two nanoparticles in aqueous solution. We find that the solvent leads to an enhanced SERS due to an increased local field at the position of the pyridine. We further demonstrate the importance of both image field and local field effects in determining the enhancements and the spectral signatures. Our results show the importance of describing the local environment due to the solvent molecules when modeling SERS.
Collapse
Affiliation(s)
- Jeffrey C Becca
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802-4615, USA
| | - Xing Chen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802-4615, USA
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802-4615, USA
| |
Collapse
|
10
|
Gabel M, O'Callahan BT, Groome C, Wang CF, Ragan R, Gu Y, El-Khoury PZ. Mapping Molecular Adsorption Configurations with <5 nm Spatial Resolution through Ambient Tip-Enhanced Raman Imaging. J Phys Chem Lett 2021; 12:3586-3590. [PMID: 33819047 DOI: 10.1021/acs.jpclett.1c00661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We interrogate para-mercaptobenzoic acid (MBA) molecules chemisorbed onto plasmonic silver nanocubes through tip-enhanced Raman (TER) spectral nanoimaging. Through a detailed examination of the spectra, aided by correlation analysis and density functional theory calculations, we find that MBA chemisorbs onto the plasmonic particles with at least two distinct configurations: S- and CO2-bound. High spatial resolution TER mapping allows us to distinguish between the distinct adsorption geometries with a pixel-limited (<5 nm) spatial resolution under ambient laboratory conditions.
Collapse
Affiliation(s)
- Matthew Gabel
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Brian T O'Callahan
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Chloe Groome
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2575, United States
| | - Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Regina Ragan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2575, United States
| | - Yi Gu
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Hu Z, Jensen L. A Discrete Interaction Model/Quantum Mechanical Method for Simulating Plasmon-Enhanced Two-Photon Absorption. J Chem Theory Comput 2018; 14:5896-5903. [PMID: 30351932 DOI: 10.1021/acs.jctc.8b00893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we extend the discrete interaction model/quantum mechanical (DIM/QM) method to simulate plasmon-enhanced two-photon absorption (PETPA). The metal nanoparticle is treated atomistically by means of electrodynamics, while the molecule is described using damped cubic response theory within a time-dependent density functional theory framework. Using DIM/QM, we study the PETPA of para-nitroaniline ( p-NA) with a focus on the local and image field effects, the molecular orientation effects, and the molecule-nanoparticle distance effects. Our findings show that the enhancement is more complex than the simple | E|4 enhancement mechanism, where | E| is the local field at the position of the molecule. Because of specific interactions with the nanoparticle, we find that a TPA dark state of p-NA can be significantly enhanced through a coupling with the plasmon excitation. The results presented in this work illustrate that the coupling between molecular excitations and plasmons can give rise to unusual and complex behavior in nonlinear spectroscopy that cannot simply be understood by considering the optical properties of the individual molecules and nanoparticles separately. The method presented here provides detailed insights into the enhancement of nonlinear optical properties of molecules coupled to plasmonic nanoparticles.
Collapse
Affiliation(s)
- Zhongwei Hu
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , United States
| | - Lasse Jensen
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
12
|
Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA. Spectroscopy in Complex Environments from QM–MM Simulations. Chem Rev 2018; 118:4071-4113. [DOI: 10.1021/acs.chemrev.8b00026] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Diego J. Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Nicolás O. Foglia
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Francisco Ramírez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Mariano C. González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Damián A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
13
|
Hu L, Xi F, Qv L, Fang Y. Searching the Theoretical Ultimate Limits of Probing Surface-Enhanced Raman Optical Activity. ACS OMEGA 2018; 3:1170-1177. [PMID: 31457959 PMCID: PMC6641311 DOI: 10.1021/acsomega.7b02098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/18/2018] [Indexed: 06/09/2023]
Abstract
The single-molecule Raman detection has been realized for a long time because of the enhancement effect of surface plasmons. However, the small cross section of Raman optical activity (ROA) makes it so hard to detect the ROA of even a few molecules; and a normal surface-enhanced ROA (SE-ROA) is also very time consumable even with strong laser power. Detecting ROA in an economic way is an important issue. In this paper, we discuss the ultimate limit of the SE-ROA and provide the enhancement factor formula for SE-ROA. Following the formula, we proposed a structure with both huge Raman enhancement and ROA enhancement, which is helpful for single-molecule ROA detection.
Collapse
Affiliation(s)
- Li Hu
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
- Chongqing
Engineering Laboratory for Detection, Control and Integrated System,
School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Feng Xi
- Chongqing
Engineering Laboratory for Detection, Control and Integrated System,
School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Linhong Qv
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yurui Fang
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
14
|
Ren X, Lin W, Fang Y, Ma F, Wang J. Raman optical activity (ROA) and surface-enhanced ROA (SE-ROA) of (+)-(R)-methyloxirane adsorbed on a Ag20cluster. RSC Adv 2017. [DOI: 10.1039/c7ra04949h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chirality is ubiquitous in nature and plays an important role in biochemistry because biological function is largely dependent on the handedness of chiral molecules.
Collapse
Affiliation(s)
- Xin Ren
- Department of Physics and Chemistry
- Liaoning University
- Shenyang
- China
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yurui Fang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education)
- School of Physics
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Fengcai Ma
- Department of Physics and Chemistry
- Liaoning University
- Shenyang
- China
| | - Jingang Wang
- Department of Physics and Chemistry
- Liaoning University
- Shenyang
- China
| |
Collapse
|
15
|
Krausbeck F, Autschbach J, Reiher M. Calculated Resonance Vibrational Raman Optical Activity Spectra of Naproxen and Ibuprofen. J Phys Chem A 2016; 120:9740-9748. [DOI: 10.1021/acs.jpca.6b09975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Krausbeck
- ETH Zürich, Laboratorium für Physikalische
Chemie, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische
Chemie, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Hu Z, Chulhai DV, Jensen L. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models. J Chem Theory Comput 2016; 12:5968-5978. [DOI: 10.1021/acs.jctc.6b00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongwei Hu
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| | - Dhabih V. Chulhai
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| | - Lasse Jensen
- Department
of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, 16802, United States
| |
Collapse
|
17
|
Chulhai DV, Hu Z, Moore JE, Chen X, Jensen L. Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies. Annu Rev Phys Chem 2016; 67:541-64. [PMID: 27090843 DOI: 10.1146/annurev-physchem-040215-112347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vibrational spectroscopy of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude so that the detection and identification of single molecules are possible. The enhancement of most linear and nonlinear vibrational spectroscopies has been demonstrated. In this review, we discuss theoretical approaches to understanding linear and nonlinear surface-enhanced vibrational spectroscopies. A unified description of enhancement mechanisms classified as either electromagnetic or chemical in nature is presented. Emphasis is placed on understanding the spectral changes necessary for interpretation of linear and nonlinear surface-enhanced vibrational spectroscopies.
Collapse
Affiliation(s)
- Dhabih V Chulhai
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Zhongwei Hu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Justin E Moore
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Xing Chen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Lasse Jensen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
18
|
Hu L, Huang Y, Fang L, Chen G, Wei H, Fang Y. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality. Sci Rep 2015; 5:16069. [PMID: 26538460 PMCID: PMC4633605 DOI: 10.1038/srep16069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/06/2015] [Indexed: 12/03/2022] Open
Abstract
In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields.
Collapse
Affiliation(s)
- Li Hu
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044, P. R. China
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yingzhou Huang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Liang Fang
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Guo Chen
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Hua Wei
- Soft Matter and Interdisciplinary Research Center, College of Physics, Chongqing University, Chongqing, 400044, P. R. China
| | - Yurui Fang
- Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 412 96, Sweden
| |
Collapse
|
19
|
Chulhai DV, Jensen L. Plasmonic circular dichroism of 310- and α-helix using a discrete interaction model/quantum mechanics method. J Phys Chem A 2015; 119:5218-23. [PMID: 25474537 DOI: 10.1021/jp5099188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmonic circular dichroism (CD) of chiral molecules in the near field of plasmonic nanoparticles (NPs) may be used to enhance molecular CD signatures or to induce a CD signal at the plasmon resonance. A recent few-states theory explored these effects for model systems and showed an orientation dependence of the sign of the induced CD signal for spherical NPs. Here, we use the discrete interaction model/quantum mechanical (DIM/QM) method to simulate the CD and plasmonic CD of the 310- and α-helix conformations of a short alanine peptide. We find that the interactions between the molecule and the plasmon lead to significant changes in the CD spectra. In the plasmon region, we find that the sign of the CD depends strongly on the orientation of the molecule as well as specific interactions with the NP through image dipole effects. A small enhancement of the CD is found in the molecular region of the spectrum, however, the molecular signatures may be significantly altered through interactions with the NP. We also show that the image dipole effect can result in induced plasmonic CD even for achiral molecules. Overall, we find that the specific interactions with the NP can lead to large changes to the CD spectrum that complicates the interpretation of the results.
Collapse
Affiliation(s)
- Dhabih V Chulhai
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|