1
|
Thaler B, Heim P, Treiber L, Koch M. Ultrafast photoinduced dynamics of single atoms solvated inside helium nanodroplets. J Chem Phys 2020; 152:014307. [PMID: 31914752 DOI: 10.1063/1.5130145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helium nanodroplets can serve as reaction containers for photoinduced time-resolved studies of cold, isolated molecular systems that are otherwise inaccessible. Recently, three different dynamical processes, triggered by photoexcitation of a single atom inside a droplet, were observed in their natural time scale: Expansion of the He solvation shell (He bubble) within 600 fs initiates a collective bubble oscillation with a ∼30 ps oscillation period, followed by dopant ejection after ∼60 ps. Here, we present a systematic investigation of these processes by combining time-resolved photoelectron and photoion spectroscopy with time-dependent He density functional theory simulations. By variation of the photoexcitation energy, we find that the full excess excitation energy, represented by the blue-shifted in-droplet excitation band, is completely transferred to the He environment during the bubble expansion. Surprisingly, we find that variation of the droplet size has only a minor influence on the ejection time, providing insight into the spatial distribution of the ground-state atoms before photoexcitation. Simulated particle trajectories after photoexcitation are in agreement with experimental observations and suggest that the majority of ground-state atoms are located at around 16 Å below the droplet surface. Bubble expansion and oscillation are purely local effects, depending only on the ultimate dopant environment. These solvation-induced dynamics will be superimposed on intramolecular dynamics of molecular systems, and a mechanistic description is fundamental for the interpretation of future experiments.
Collapse
Affiliation(s)
- Bernhard Thaler
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Pascal Heim
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Leonhard Treiber
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| | - Markus Koch
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
2
|
Kranabetter L, Bersenkowitsch NK, Martini P, Gatchell M, Kuhn M, Laimer F, Schiller A, Beyer MK, Ončák M, Scheier P. Considerable matrix shift in the electronic transitions of helium-solvated cesium dimer cation Cs 2He. Phys Chem Chem Phys 2019; 21:25362-25368. [PMID: 31702748 PMCID: PMC7116336 DOI: 10.1039/c9cp04790e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.
Collapse
Affiliation(s)
- Lorenz Kranabetter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria. and Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Kuhn
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Arne Schiller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Messner R, Schiffmann A, Pototschnig JV, Lasserus M, Schnedlitz M, Lackner F, Ernst WE. Spectroscopy of gold atoms and gold oligomers in helium nanodroplets. J Chem Phys 2018; 149:024305. [PMID: 30007398 DOI: 10.1063/1.5026480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 6p 2P1/2 ← 6s 2S1/2 and 6p 2P3/2 ← 6s 2S1/2 transitions (D lines) of gold atoms embedded in superfluid helium nanodroplets have been investigated using resonant two-photon ionization spectroscopy. Both transitions are strongly blue-shifted and broadened due to the repulsive interaction between the Au valence electron and the surrounding helium. The in-droplet D lines are superimposed by the spectral signature of Au atoms relaxed into the metastable 2D states. These features are narrower than the in-droplet D lines and exhibit sharp rising edges that coincide with bare atom transitions. It is concluded that they originate from metastable 2D state AuHen exciplexes that have been ejected from the helium droplets during a relaxation process. Interestingly, the mechanism that leads to the formation of these complexes is suppressed for very large helium droplets consisting of about 2 × 106 He atoms, corresponding to a droplet diameter on the order of 50 nm. The assignment of the observed spectral features is supported by ab initio calculations employing a multiconfigurational self-consistent field method and a multi-reference configuration interaction calculation. For large helium droplets doped with Au oligomers, excitation spectra for mass channels corresponding to Aun with n = 2, 3, 4, 5, 7, and 9 are presented. The mass spectrum reveals even-odd oscillations in the number of Au atoms that constitute the oligomer, which is characteristic for coinage metal clusters. Resonances are observed close by the in-droplet D1 and D2 transitions, and the corresponding peak forms are very similar for different oligomer sizes.
Collapse
Affiliation(s)
- Roman Messner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Alexander Schiffmann
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Johann V Pototschnig
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Maximilian Lasserus
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Martin Schnedlitz
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Florian Lackner
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
4
|
Hauser AW, de Lara-Castells MP. Spatial quenching of a molecular charge-transfer process in a quantum fluid: the Cs x-C 60 reaction in superfluid helium nanodroplets. Phys Chem Chem Phys 2017; 19:1342-1351. [PMID: 27975088 DOI: 10.1039/c6cp06858h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recent experimental study [Renzler et al., J. Chem. Phys., 2016, 145, 181101] on superfluid helium nanodroplets reported different reactivities for Cs atoms and Cs2 dimers with C60 fullerenes inside helium droplets. Alkali metal atoms and clusters are heliophobic, therefore typically residing on the droplet surface, while fullerenes are fully immersed into the droplet. In this theoretical study, which combines standard methods of computational chemistry with orbital-free helium density functional theory, we show that the experimental findings can be interpreted in the light of a quenched electron-transfer reaction between the fullerene and the alkali dopant, which is additionally hindered by a reaction barrier stemming from the necessary extrusion of helium upon approach of the two reactants.
Collapse
Affiliation(s)
- Andreas W Hauser
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria.
| | | |
Collapse
|
5
|
Krasnokutski SA, Huisken F. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets. J Chem Phys 2015; 142:084311. [DOI: 10.1063/1.4908533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Serge A. Krasnokutski
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany
| | - Friedrich Huisken
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany
| |
Collapse
|
6
|
Kautsch A, Koch M, Ernst WE. Photoinduced molecular dissociation and photoinduced recombination mediated by superfluid helium nanodroplets. Phys Chem Chem Phys 2015; 17:12310-6. [DOI: 10.1039/c5cp01009h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced predissociation of Cr2 in helium nanodroplets causes stable, quantum state specific spatial separation followed by geminate recombination upon photoionization.
Collapse
Affiliation(s)
- Andreas Kautsch
- Graz University of Technology
- Institute of Experimental Physics
- NAWI Graz
- A-8010 Graz
- Austria
| | - Markus Koch
- Graz University of Technology
- Institute of Experimental Physics
- NAWI Graz
- A-8010 Graz
- Austria
| | - Wolfgang E. Ernst
- Graz University of Technology
- Institute of Experimental Physics
- NAWI Graz
- A-8010 Graz
- Austria
| |
Collapse
|