1
|
Parmar SM, Depew DD, Wirz RE, Vaghjiani GL. Structural Properties of HEHN- and HAN-Based Ionic Liquid Mixtures: A Polarizable Molecular Dynamics Study. J Phys Chem B 2023; 127:8616-8633. [PMID: 37776252 DOI: 10.1021/acs.jpcb.3c02649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Molecular dynamics simulations of binary mixtures comprising 2-hydroxyethylhydrazinium nitrate (HEHN) and hydroxylammonium nitrate (HAN) were conducted using the polarizable APPLE&P force field to investigate fundamental properties of multimode propulsion (MMP) propellants. Calculated densities as a function of temperature were in good agreement with experiments and similar simulations. The structural properties of neat HEHN and HAN-HEHN provided insights into their inherent, protic nature. Radial distribution functions (RDFs) identified key hydrogen bonding sites located at N-H···O and O-H···O within a first solvation shell of approximately 2 Å. Angular distribution functions further affirmed the relatively strong nature of the hydrogen bonds with nearly linear directionality. The increased hydroxylammonium cation (HA+) mole fraction shows the influence of competitively strong hydrogen bonds on the overall hydrogen bond network. Dominant spatial motifs via three-dimensional distribution functions along with nearly nanosecond-long hydrogen bond lifetimes highlight the local bonding environment that may precede proton transfer reactions.
Collapse
Affiliation(s)
- Shehan M Parmar
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel D Depew
- Department of Astronautical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Richard E Wirz
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
2
|
Biswas S, Antonov I, Fujioka K, Rizzo GL, Chambreau SD, Schneider S, Sun R, Kaiser RI. Unraveling the initial steps of the ignition chemistry of the hypergolic ionic liquid 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) with nitric acid (HNO 3) exploiting chirped pulse triggered droplet merging. Phys Chem Chem Phys 2023; 25:6602-6625. [PMID: 36806836 DOI: 10.1039/d2cp05943f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The composition of the products and the mechanistic routes for the reaction of the hypergolic ionic liquid (HIL) 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) and nitric acid (HNO3) at various concentrations from 10% to 70% were explored using a contactless single droplet merging within an ultrasonic levitation setup in an inert atmosphere of argon to reveal the initial steps that cause hypergolicity. The reactions were initiated through controlled droplet-merging manipulation triggered by a frequency chirp pulse amplitude modulation. Utilizing the high-speed optical and infrared cameras surrounding the levitation process chamber, intriguing visual images were unveiled: (i) extensive gas release and (ii) temperature rises of up to 435 K in the merged droplets. The gas development was validated qualitatively and quantitatively with Fourier Transform Infrared Spectroscopy (FTIR) indicating the major gas-phase products to be hydrogen cyanide (HCN) and nitrous oxide (N2O). The merged droplet was also probed by pulsed Raman spectroscopy which deciphered features for key functional groups of the reaction products and intermediates (-BH, -BH2, -BH3, -NCO); reaction kinetics revealed that the reaction was initiated by the interaction of the [CBH]- anion of the HIL with the oxidizer (HNO3) through proton transfer. Computations indicate the formation of a van-der-Waals complex between the [CBH]- anion and HNO3 initially, followed by proton transfer from the acid to the anion and subsequent extensive isomerization; these rearrangements were found to be essential for the formation of HCN and N2O. The exoergicity observed during the merging process provides a molar enthalpy change up to 10 kJ mol-1 to the system, which could be sufficient for a significant fraction of the reactants of about 11% to overcome the reaction barriers in the individual steps of the computationally determined minimum energy pathways.
Collapse
Affiliation(s)
- Souvick Biswas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ivan Antonov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Grace L Rizzo
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | | | - Stefan Schneider
- Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
3
|
Correa E, Montaño D, Restrepo A. Cation ⋯anion bonding interactions in 1–Ethyl–3–Methylimidazolium based ionic liquids. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
|
5
|
Chambreau SD, Popolan-Vaida DM, Kostko O, Lee JK, Zhou Z, Brown TA, Jones P, Shao K, Zhang J, Vaghjiani GL, Zare RN, Leone SR. Thermal and Catalytic Decomposition of 2-Hydroxyethylhydrazine and 2-Hydroxyethylhydrazinium Nitrate Ionic Liquid. J Phys Chem A 2022; 126:373-394. [PMID: 35014846 DOI: 10.1021/acs.jpca.1c07408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO3. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.45 eV) photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS). Next, the investigation into the thermal and catalytic decomposition of HEHN includes two mass spectrometric techniques: (1) tunable VUV-PI-TOFMS (7.4-15 eV) and (2) ambient ionization mass spectrometry utilizing both plasma and laser ionization techniques whereby HEHN is introduced onto a heated inert or iridium catalytic surface and the products are probed. The products can be identified by their masses, their ionization energies, and their collision-induced fragmentation patterns. Formation of product species indicates that catalytic surface recombination is an important reaction process in the decomposition mechanism of HEHN. The products and their possible elementary reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Steven D Chambreau
- Jacobs Technology, Inc., Edwards Air Force Base, California 93524, United States
| | - Denisia M Popolan-Vaida
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Zhenpeng Zhou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Timothy A Brown
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul Jones
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Kuanliang Shao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen R Leone
- Departments of Chemistry and Physics, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Dunaev AM, Motalov VB, Kudin LS. The Composition of Saturated Vapor over 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid: A Multi-Technique Study of the Vaporization Process. ENTROPY 2021; 23:e23111478. [PMID: 34828176 PMCID: PMC8625100 DOI: 10.3390/e23111478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
A multi-technique approach based on Knudsen effusion mass spectrometry, gas phase chromatography, mass spectrometry, NMR and IR spectroscopy, thermal analysis, and quantum-chemical calculations was used to study the evaporation of 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4). The saturated vapor over BMImBF4 was shown to have a complex composition which consisted of the neutral ion pairs (NIPs) [BMIm+][BF4-], imidazole-2-ylidene C8N2H14BF3, 1-methylimidazole C4N2H6, 1-butene C4H8, hydrogen fluoride HF, and boron trifluoride BF3. The vapor composition strongly depends on the evaporation conditions, shifting from congruent evaporation in the form of NIP under Langmuir conditions (open surface) to primary evaporation in the form of decomposition products under equilibrium conditions (Knudsen cell). Decomposition into imidazole-2-ylidene and HF is preferred. The vapor composition of BMImBF4 is temperature-depended as well: the fraction ratio of [BMIm+][BF4-] NIPs to decomposition products decreased by about a factor of three in the temperature range from 450 K to 510 K.
Collapse
|
7
|
Ohaion-Raz T, Attia S, Kostyria N, Ben-Eliyahu Y. The thermal decomposition of Samarium-Thiocyanate-Based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Seymour JM, Gousseva E, Large AI, Clarke CJ, Licence P, Fogarty RM, Duncan DA, Ferrer P, Venturini F, Bennett RA, Palgrave RG, Lovelock KRJ. Experimental measurement and prediction of ionic liquid ionisation energies. Phys Chem Chem Phys 2021; 23:20957-20973. [PMID: 34545382 DOI: 10.1039/d1cp02441h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquid (IL) valence electronic structure provides key descriptors for understanding and predicting IL properties. The ionisation energies of 60 ILs are measured and the most readily ionised valence state of each IL (the highest occupied molecular orbital, HOMO) is identified using a combination of X-ray photoelectron spectroscopy (XPS) and synchrotron resonant XPS. A structurally diverse range of cations and anions were studied. The cation gave rise to the HOMO for nine of the 60 ILs presented here, meaning it is energetically more favourable to remove an electron from the cation than the anion. The influence of the cation on the anion electronic structure (and vice versa) were established; the electrostatic effects are well understood and demonstrated to be consistently predictable. We used this knowledge to make predictions of both ionisation energy and HOMO identity for a further 516 ILs, providing a very valuable dataset for benchmarking electronic structure calculations and enabling the development of models linking experimental valence electronic structure descriptors to other IL properties, e.g. electrochemical stability. Furthermore, we provide design rules for the prediction of the electronic structure of ILs.
Collapse
Affiliation(s)
- Jake M Seymour
- Department of Chemistry, University of Reading, Reading, RG6 6AD, UK.
| | | | - Alexander I Large
- Department of Chemistry, University of Reading, Reading, RG6 6AD, UK. .,Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | - Coby J Clarke
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Peter Licence
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | - Pilar Ferrer
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
| | | | - Roger A Bennett
- Department of Chemistry, University of Reading, Reading, RG6 6AD, UK.
| | | | | |
Collapse
|
9
|
Stoppelman JP, McDaniel JG. Physics-based, neural network force fields for reactive molecular dynamics: Investigation of carbene formation from [EMIM +][OAc -]. J Chem Phys 2021; 155:104112. [PMID: 34525833 DOI: 10.1063/5.0063187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reactive molecular dynamics simulations enable a detailed understanding of solvent effects on chemical reaction mechanisms and reaction rates. While classical molecular dynamics using reactive force fields allows significantly longer simulation time scales and larger system sizes compared with ab initio molecular dynamics, constructing reactive force fields is a difficult and complex task. In this work, we describe a general approach following the empirical valence bond framework for constructing ab initio reactive force fields for condensed phase simulations by combining physics-based methods with neural networks (PB/NNs). The physics-based terms ensure the correct asymptotic behavior of electrostatic, polarization, and dispersion interactions and are compatible with existing solvent force fields. NNs are utilized for a versatile description of short-range orbital interactions within the transition state region and accurate rendering of vibrational motion of the reacting complex. We demonstrate our methodology for a simple deprotonation reaction of the 1-ethyl-3-methylimidazolium cation with acetate to form 1-ethyl-3-methylimidazol-2-ylidene and acetic acid. Our PB/NN force field exhibits ∼1 kJ mol-1 mean absolute error accuracy within the transition state region for the gas-phase complex. To characterize the solvent modulation of the reaction profile, we compute potentials of mean force for the gas-phase reaction as well as the reaction within a four-ion cluster and benchmark against ab initio molecular dynamics simulations. We find that the surrounding ionic environment significantly destabilizes the formation of the carbene product, and we show that this effect is accurately captured by the reactive force field. By construction, the PB/NN potential may be directly employed for simulations of other solvents/chemical environments without additional parameterization.
Collapse
Affiliation(s)
- John P Stoppelman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
10
|
Ramajo B, Blanco D, Rivera N, Viesca J, González R, Battez AH. Long-term thermal stability of fatty acid anion-based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Liu J, Zhou W, Chambreau SD, Vaghjiani GL. Molecular Dynamics Simulations and Product Vibrational Spectral Analysis for the Reactions of NO 2 with 1-Ethyl-3-methylimidazolium Dicyanamide (EMIM +DCA -), 1-Butyl-3-methylimidazolium Dicyanamide (BMIM +DCA -), and 1-Allyl-3-methylimidazolium Dicyanamide (AMIM +DCA -). J Phys Chem B 2020; 124:4303-4325. [PMID: 32364732 DOI: 10.1021/acs.jpcb.0c02253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct dynamics trajectory simulations were carried out for the NO2 oxidation of 1-ethyl-3-methylimidazolium dicyanamide (EMIM+DCA-), which were aimed at probing the nature of the primary and secondary reactions in the system. Guided by trajectory results, reaction coordinates and potential energy diagrams were mapped out for NO2 with EMIM+DCA-, as well as with its analogues 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) and 1-allyl-3-methylimidazolium dicyanamide (AMIM+DCA-). Reactions of the dialkylimidazolium-dicyanamide (DCA) ionic liquids (ILs) are all initiated by proton transfer and/or alkyl abstraction between 1,3-dialkylimidazolium cations and DCA- anion, of which two exoergic pathways are particularly relevant to their oxidation activities. One pathway is the transfer of a Hβ-proton from the ethyl, butyl, or allyl group of the dialkylimidazolium cation to DCA- that results in the concomitant elimination of the corresponding alkyl as a neutral alkene, and the other pathway is the alkyl abstraction by DCA- via a second order nucleophilic substitution (SN2) mechanism. The intra-ion-pair reaction products, including [dialkylimidazolium+ - HC2+], alkylimidazole, alkene, alkyl-DCA, HDCA, and DCA-, react with NO2 and favor the formation of nitrite (-ONO) complexes over nitro (-NO2) complexes, albeit the two complex structures have similar formation energies. The exoergic intra-ion-pair reactions in the dialkylimidazolium-DCA ILs account for their significantly higher oxidation activities over the previously reported 1-methyl-4-amino-1,2,4-triazolium dicyanamide [Liu, J.; J. Phys. Chem. B 2019, 123, 2956-2970] and for the relatively higher reactivity of BMIM+DCA- vs AMIM+DCA- as BMIM+ has a higher reaction path degeneracy for intra-ion-pair Hβ-proton transfer and its Hβ-transfer is more energetically favorable. To validate and directly compare our computational results with spectral measurements in the ILs, infrared and Raman spectra of BMIM+DCA- and AMIM+DCA- and their products with NO2 were calculated using an ionic liquid solvation model. The simulated spectra reproduced all of the vibrational frequencies detected in the reactions of BMIM+DCA- and AMIM+DCA- IL droplets with NO2 (as reported by Brotton et al. [ J. Phys. Chem. A 2018, 122, 7351-7377] and Lucas et al. [ J. Phys. Chem. A 2019, 123, 400-416]).
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Steven D Chambreau
- ERC, Inc., Air Force Research Laboratory, Edwards Air Force Base, California 93524, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| |
Collapse
|
12
|
Thomas AE, Chambreau SD, Redeker ND, Esparza AA, Shafirovich E, Ribbeck T, Sprenger JAP, Finze M, Vaghjiani GL. Thermal Decomposition and Hypergolic Reaction of a Dicyanoborohydride Ionic Liquid. J Phys Chem A 2020; 124:864-874. [PMID: 31914728 DOI: 10.1021/acs.jpca.9b09242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, in situ infrared spectroscopy techniques and thermogravimetric analysis coupled with mass spectrometry (TGA-MS) are employed to characterize the reactivity of the ionic liquid, 1-butyl-3-methylimidazolium dicyanoborohydride (BMIM+DCBH-), in comparison to the well-characterized 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) ionic liquid. TGA measurements determined the enthalpy of vaporization (ΔHvap) to be 112.7 ± 12.3 kJ/mol at 298 K. A rapid scan Fourier transform infrared spectrometer was used to obtain vibrational information useful in tracking the appearance and disappearance of species in the hypergolic reactions of BMIM+DCBH- and BMIM+DCA- with white fuming nitric acid (WFNA) and in the thermal decomposition of these energetic ionic liquids. Attenuated total reflectance measurements recorded the infrared spectra of the reactant sample (BMIM+DCBH-) and the liquid reaction products after reacting with WFNA. Computational chemistry efforts, aided by the experimental results, were used to propose key reaction pathways leading to the hypergolic ignition of BMIM+DCBH- + WFNA. Experimental results indicate that the hypergolic reaction of BMIM+DCBH- with WFNA generates both common and unique intermediates as compared to previous BMIM+DCA- + WFNA investigations: nitrous oxide was generated during both hypergolic reactions indicating that it may play a crucial role in the hypergolic ignition process, NO2 was generated in significantly higher concentrations for BMIM+DCBH- than for BMIM+DCA-, CO2 was only generated for BMIM+DCA-, and HCN was only generated during thermal decomposition and hypergolic ignition of BMIM+DCBH-.
Collapse
Affiliation(s)
- Anna E Thomas
- Department of Aeronautics and Astronautics , Stanford University , Stanford , California 94305 , United States
| | - Steven D Chambreau
- ERC Inc. , Air Force Research Laboratory, AFRL/RQRP , Edwards Air Force Base , California 93524 , United States
| | - Neil D Redeker
- ERC Inc. , Air Force Research Laboratory, AFRL/RQRP , Edwards Air Force Base , California 93524 , United States
| | - Alan A Esparza
- Department of Mechanical Engineering , The University of Texas at El Paso , 500 W. University Avenue, El Paso , Texas 79968 , United States
| | - Evgeny Shafirovich
- Department of Mechanical Engineering , The University of Texas at El Paso , 500 W. University Avenue, El Paso , Texas 79968 , United States
| | - Tatjana Ribbeck
- Institut für Anorganische Chemie, Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Jan A P Sprenger
- Institut für Anorganische Chemie, Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Institut für nachhaltige Chemie & Katalyse mit Bor (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland, 97074 Würzburg , Germany
| | - Ghanshyam L Vaghjiani
- Aerospace Systems Directorate , Air Force Research Laboratory , AFRL/RQRS, Edwards Air Force Base , California 93524 , United States
| |
Collapse
|
13
|
Pawar AA, Chaugule AA, Kim H. Greener synthesis of dimethyl carbonate from carbon dioxide and methanol using a tunable ionic liquid catalyst. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractSeveral types of ionic liquids (ILs) performance towards dimethyl carbonate (DMC) synthesis using cheap reactant (methanol) and waste CO2 which is abundantly available in the environment are discussed. We synthesized ILs with cheap raw materials such as ethylene glycol. The main aim of this study is to synthesize efficient catalysts for the production of profitable fuel additives. ILs show high thermal stability, less viscosity, and low vapor pressure. In addition, some ILs have high CO2 absorption capacity due to moderate acid-base properties. These ILs reversibly capture more CO2 which is more efficient towards mass transport of methanol at optimum reaction conditions which enhance the DMC yield. This catalytic system is easily reusable for several reactions without decreased performance under the same reaction conditions. These reaction conditions had an effect on the synthesis of DMC. Temperature, pressure, IL loading, and IL/DMAP ratio were fine tuned. We propose a mechanism which the reaction may follow. The synthesized ILs required moderate reaction conditions and reduce waste gases (CO2) from the environments as they have high CO2 absorption capacity compared to the metal oxide catalyst. Therefore, this catalytic system helps and gives new direction to synthesize new catalyst for other application.
Collapse
Affiliation(s)
- Atul A. Pawar
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Avinash A. Chaugule
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Hern Kim
- Department of Energy Science and Technology, Smart Living Innovation Technology Center, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
14
|
Pawar AA, Kim H. Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
O'Harra KE, Kammakakam I, Bara JE, Jackson EM. Understanding the effects of backbone chemistry and anion type on the structure and thermal behaviors of imidazolium polyimide‐ionenes. POLYM INT 2019. [DOI: 10.1002/pi.5825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kathryn E O'Harra
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Irshad Kammakakam
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | - Jason E Bara
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL USA
| | | |
Collapse
|
16
|
Liu J, Zhou W, Chambreau SD, Vaghjiani GL. Computational Study of the Reaction of 1-Methyl-4-amino-1,2,4-triazolium Dicyanamide with NO 2: From Reaction Dynamics to Potential Surfaces, Kinetics and Spectroscopy. J Phys Chem B 2019; 123:2956-2970. [PMID: 30789734 DOI: 10.1021/acs.jpcb.9b01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Direct dynamics trajectories were calculated at the B3LYP/6-31G(d) level of theory in an attempt to understand the reaction of 1-methyl-4-amino-1,2,4-triazolium dicyanamide (MAT+DCA-) with NO2. The trajectories revealed an extensive intra-ion-pair proton transfer in MAT+DCA-. The reaction pathways of the ensuing HDCA (i.e., HNCNCN) and [MAT+ - HC5+] (i.e., deprotonated at C5-H of MAT+) molecules as well as DCA- with NO2 were identified. The reaction of NO2 with HDCA and DCA- produces HNC(-ONO)NCN and NCNC(-ONO)N- or NCNCN-NO2-, respectively, whereas that with [MAT+ - HC5+] results in the formation of 5-O-MAT (i.e., 4-amino-2-methyl-2,4-dihydro-3 H-1,2,4-triazo-3-one) + NO and [MAT+ - H2+] + HNO2. Using trajectories for guidance, structures of intermediates, transition states and products, and the corresponding reaction potential surfaces were elucidated at B3LYP/6-311++ G(d,p). Rice-Ramsperger-Kassel-Marcus (RRKM) theory was utilized to calculate the reaction rates and statistical product branching ratios. A comparison of direct dynamics simulations with RRKM modeling results indicate that the reactions of NO2 with HDCA and DCA- are nonstatistical. To validate our computational results, infrared and Raman spectra of MAT+DCA- and its reaction products with NO2 were calculated using an ionic liquid solvation model. The calculated spectra reproduced the vibrational frequencies detected in an earlier spectroscopic study of MAT+DCA- droplets with NO2 [ Brotton , S. J. ; J. Phys. Chem. Lett. 2017 , 8 , 6053 ].
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Chemistry and Biochemistry , Queens College and the Graduate Center of the City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry , Queens College and the Graduate Center of the City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States
| | - Steven D Chambreau
- ERC, Inc. , Air Force Research Laboratory , Edwards Air Force Base , California 93524 , United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate , Air Force Research Laboratory, AFRL/RQRS , Edwards Air Force Base , California 93524 , United States
| |
Collapse
|
17
|
Lucas M, Brotton SJ, Shukla SK, Yu J, Anderson SL, Kaiser RI. Oxidation of a Levitated Droplet of 1-Allyl-3-methylimidazolium Dicyanamide by Nitrogen Dioxide. J Phys Chem A 2019; 123:400-416. [PMID: 30336051 DOI: 10.1021/acs.jpca.8b08395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the reaction mechanisms of ionic liquids and their oxidizers is necessary to develop the next generation of hypergolic, ionic-liquid-based fuels. We studied reactions between a levitated droplet of 1-allyl-3-methylimidazolium dicyanamide ([AMIM][DCA]), with and without hydrogen-capped boron nanoparticles, and nitrogen dioxide (NO2). The reactions were monitored with Fourier-transform infrared (FTIR) and Raman spectroscopy. The emergence of new structures in the FTIR and Raman spectra is consistent with the formation of functional groups including organic nitrites (RONO), nitroamines (R1R2NNO2), and carbonitrates (R1R2C=NO2-). Possible reaction mechanisms based on these new functional groups are discussed. The reaction rates were deduced at various temperatures by heating the levitated droplets with a carbon dioxide laser. We thereby determined an overall activation energy of 38.5 ± 2.3 kJ mol-1 for the oxidation of [AMIM][DCA] for the first time.
Collapse
Affiliation(s)
- Michael Lucas
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Stephen J Brotton
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Shashi Kant Shukla
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Jiang Yu
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Scott L Anderson
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Ralf I Kaiser
- Department of Chemistry , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
18
|
Thomas A, Chambreau SD, Vaghjiani GL. Ignition Delay Reduction with Sodium Addition to Imidazolium-Based Dicyanamide Ionic Liquid. J Phys Chem A 2019; 123:10-14. [PMID: 30543100 DOI: 10.1021/acs.jpca.8b08678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A range of ionic liquids (ILs) have been synthesized and modeled to better understand the role of the cation in the ignition of hypergolic ionic liquids. Vogelhuber et al. have shown by density functional theory methods that the addition of sodium cations to an ionic liquid promotes ignition with white fuming nitric acid (WFNA) by lowering energy barriers. To validate this prediction, solid sodium dicyanamide (Na+DCA-) was added at various weight percents to 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-). The ignition delay was measured for each mixture with WFNA. Overall, it was found that the Na+DCA- lowered the ignition delay by 11 ms at 7 wt %. The calculations done by Vogelhuber et al. appear to be consistent with this observation. The sodium cation may play a role by orienting the anion with the WFNA resulting in the favorable reaction energetics observed.
Collapse
Affiliation(s)
- Anna Thomas
- Department of Aeronautics and Astronautics , Stanford University , Stanford , California 94305 , United States
| | - Steven D Chambreau
- ERC Inc. , Air Force Research Laboratory, AFRL , Edwards Air Force Base , California 93524 , United States
| | - Ghanshyam L Vaghjiani
- Aerospace Systems Directorate , Air Force Research Laboratory, AFRL/RQRS , Edwards Air Force Base , California 93524 , United States
| |
Collapse
|
19
|
Karousos D, Labropoulos A, Tzialla O, Papadokostaki K, Gjoka M, Stefanopoulos K, Beltsios K, Iliev B, Schubert T, Romanos G. Effect of a cyclic heating process on the CO 2 /N 2 separation performance and structure of a ceramic nanoporous membrane supporting the ionic liquid 1-methyl-3-octylimidazolium tricyanomethanide. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Clarke CJ, Puttick S, Sanderson TJ, Taylor AW, Bourne RA, Lovelock KRJ, Licence P. Thermal stability of dialkylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids: ex situ bulk heating to complement in situ mass spectrometry. Phys Chem Chem Phys 2018; 20:16786-16800. [PMID: 29888367 DOI: 10.1039/c8cp01090k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thermal decomposition (TD) products of the ionic liquids (ILs) [CnC1Im][BF4] and [CnC1Im][PF6] ([CnC1Im]+ = 1-alkyl-3-methylimidazolium, [BF4]- = tetrafluoroborate, and [PF6]- = hexafluorophosphate) were prepared, ex situ, by bulk heating experiments in a bespoke setup. The respective products, CnC1(C3N2H2)BF3 and CnC1(C3N2H2)PF5 (1-alkyl-3-methylimidazolium-2-trifluoroborate and 1-alkyl-3-methylimidazolium-2-pentafluorophosphate), were then vaporized and analyzed by direct insertion mass spectrometry (DIMS) in order to identify their characteristic MS signals. During IL DIMS experiments we were subsequently able, in situ, to identify and monitor signals due to both IL vaporization and IL thermal decomposition. These decomposition products have not been observed in situ during previous analytical vaporization studies of similar ILs. The ex situ preparation of TD products is therefore perfectly complimentary to in situ thermal stability measurements. Experimental parameters such as sample surface area to volume ratios are consequently very important for ILs that show competitive vaporization and thermal decomposition. We have explained these experimental factors in terms of Langmuir evaporation and Knudsen effusion-like conditions, allowing us to draw together observations from previous studies to make sense of the literature on IL thermal stability. Hence, the design of experimental setups are crucial and previously overlooked experimental factors.
Collapse
Affiliation(s)
- Coby J Clarke
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Miller TM, Viggiano AA, Shuman NS. Contrast between the mechanisms for dissociative electron attachment to CH 3SCN and CH 3NCS. J Chem Phys 2018; 148:184303. [PMID: 29764146 DOI: 10.1063/1.5026802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at <1% branching at 300 K, increasing to ∼30% branching at 1000 K. Attachment to CH3NCS yields exclusively SCN- ionic product but at a rate at 300 K that is below our detection threshold (k < 10-12 cm3 s-1). The rate coefficient increases rapidly with increasing temperature (k = 6 × 10-11 cm3 s-1 at 600 K), in a manner well described by an activation energy of 0.51 eV. Calculations at the B3LYP/def2-TZVPPD level suggest that attachment to CH3SCN proceeds through a dissociative state of CH3SCN-, while attachment to CH3NCS initially forms a weakly bound transient anion CH3NCS-* that isomerizes over an energetic barrier to yield SCN-. Kinetic modeling of the two systems is performed in an attempt to identify a kinetic signature differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.
Collapse
Affiliation(s)
- Thomas M Miller
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117, USA
| |
Collapse
|
22
|
Ortloff F, Roschitz M, Ahrens M, Graf F, Schubert T, Kolb T. Characterization of functionalized ionic liquids for a new quasi-isothermal chemical biogas upgrading process. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Vogelhuber KM, Booth RS, Annesley CJ. Theoretical Investigation of the Reactivity of Sodium Dicyanamide with Nitric Acid. J Phys Chem A 2018; 122:1954-1959. [PMID: 29384671 DOI: 10.1021/acs.jpca.7b11661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a need to replace current hydrazine fuels with safer propellants, and dicyanamide (DCA-)-based systems have emerged as promising alternatives because they autoignite when mixed with some oxidizers. Previous studies of the hypergolic reaction mechanism have focused on the reaction between DCA- and the oxidizer HNO3; here, we compare the calculated pathway of DCA- + HNO3 with the reaction coordinate of the ion pair sodium dicyanamide with nitric acid, Na[DCA] + HNO3. Enthalpies and free energies are calculated in the gas phase and in solution using a quantum mechanical continuum solvation model, SMD-GIL. The barriers to the Na[DCA] + HNO3 reaction are dramatically lowered relative to those of the reaction with the bare anion, and an exothermic exit channel to produce NaNO3 and the reactive intermediate HDCA appears. These results suggest that Na[DCA] may accelerate the ignition reaction.
Collapse
Affiliation(s)
- Kristen M Vogelhuber
- Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, New Mexico 87117, United States.,Institute for Scientific Research, Boston College , Chestnut Hill, Massachusetts 02467, United States
| | - Ryan S Booth
- Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, New Mexico 87117, United States.,Institute for Scientific Research, Boston College , Chestnut Hill, Massachusetts 02467, United States
| | - Christopher J Annesley
- Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, New Mexico 87117, United States
| |
Collapse
|
24
|
Volpe V, Brunetti B, Gigli G, Lapi A, Vecchio Ciprioti S, Ciccioli A. Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions. J Phys Chem B 2017; 121:10382-10393. [DOI: 10.1021/acs.jpcb.7b08523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - S. Vecchio Ciprioti
- Dipartimento
S.B.A.I., Sapienza Università di Roma, via del Castro
Laurenziano 7, I-00161 Rome, Italy
| | | |
Collapse
|
25
|
Schmidt MW, Gordon MS. Effect of Boron Clusters on the Ignition Reaction of HNO 3 and Dicynanamide-Based Ionic Liquids. J Phys Chem A 2017; 121:8003-8011. [PMID: 28922914 DOI: 10.1021/acs.jpca.7b07996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many ionic liquids containing the dicynamide anion (DCA-, formula N(CN)2-) exhibit hypergolic ignition when exposed to the common oxidizer nitric acid. However, the ignition delay is often about 10 times longer than the desired 5 ms for rocket applications, so that improvements are desired. Experiments in the past decade have suggested both a mechanism for the early reaction steps and also that additives such as decaborane can reduce the ignition delay. The mechanisms for reactions of nitric acid with both DCA- and protonated DCAH are considered here, using accurate wave function methods. Complexation of DCA- or DCAH with borane clusters B10H14 or B9H14- is found to modify these mechanisms slightly by changing the nature of some of the intermediate saddle points and by small reductions in the reaction barriers.
Collapse
Affiliation(s)
- Michael W Schmidt
- Department of Chemistry, Iowa State University , Ames, Iowa 50014, United States
| | - Mark S Gordon
- Department of Chemistry, Iowa State University , Ames, Iowa 50014, United States
| |
Collapse
|
26
|
Chambreau SD, Popolan-Vaida DM, Vaghjiani GL, Leone SR. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation. J Phys Chem Lett 2017; 8:2126-2130. [PMID: 28438020 DOI: 10.1021/acs.jpclett.7b00672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydroxylammonium nitrate (HAN) is a promising candidate to replace highly toxic hydrazine in monopropellant thruster space applications. The reactivity of HAN aerosols on heated copper and iridium targets was investigated using tunable vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometry. The reaction products were identified by their mass-to-charge ratios and their ionization energies. Products include NH3, H2O, NO, hydroxylamine (HA), HNO3, and a small amount of NO2 at high temperature. No N2O was detected under these experimental conditions, despite the fact that N2O is one of the expected products according to the generally accepted thermal decomposition mechanism of HAN. Upon introduction of iridium catalyst, a significant enhancement of the NO/HA ratio was observed. This observation indicates that the formation of NO via decomposition of HA is an important pathway in the catalytic decomposition of HAN.
Collapse
Affiliation(s)
| | - Denisia M Popolan-Vaida
- Departments of Chemistry and Physics, University of California , Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | - Stephen R Leone
- Departments of Chemistry and Physics, University of California , Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
27
|
Pyschik M, Winter M, Nowak S. Determination and quantification of cations in ionic liquids by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1485:131-141. [DOI: 10.1016/j.chroma.2017.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
|
28
|
Abstract
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
Collapse
Affiliation(s)
- Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Luiz F O Faria
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
29
|
Venkatraman V, Alsberg BK. Quantitative structure-property relationship modelling of thermal decomposition temperatures of ionic liquids. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Chambreau SD, Koh CJ, Popolan-Vaida DM, Gallegos CJ, Hooper JB, Bedrov D, Vaghjiani GL, Leone SR. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry. J Phys Chem A 2016; 120:8011-8023. [DOI: 10.1021/acs.jpca.6b06289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Christine J. Koh
- Departments
of Chemistry and Physics, University of California, Berkeley, California 94720, United States
| | - Denisia M. Popolan-Vaida
- Departments
of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Gallegos
- Propellants Branch,
Rocket Propulsion Division, Aerospace Systems Directorate, Air Force
Research Laboratory, AFRL/RQRP, Edwards
Air Force Base, California, 93524, United States
| | - Justin B. Hooper
- Department
of Materials Science and Engineering, University of Utah, 122 South Central
Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
- Wasatch Molecular Inc., 825 North
300 West, Salt
Lake City, Utah 84103, United States
| | - Dmitry Bedrov
- Department
of Materials Science and Engineering, University of Utah, 122 South Central
Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
- Wasatch Molecular Inc., 825 North
300 West, Salt
Lake City, Utah 84103, United States
| | - Ghanshyam L. Vaghjiani
- Propellants Branch,
Rocket Propulsion Division, Aerospace Systems Directorate, Air Force
Research Laboratory, AFRL/RQRP, Edwards
Air Force Base, California, 93524, United States
| | - Stephen R. Leone
- Departments
of Chemistry and Physics, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Nichols CM, Wang ZC, Yang Z, Lineberger WC, Bierbaum VM. Experimental and Theoretical Studies of the Reactivity and Thermochemistry of Dicyanamide: N(CN)2–. J Phys Chem A 2016; 120:992-9. [DOI: 10.1021/acs.jpca.5b12496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Charles M. Nichols
- Department of Chemistry and
Biochemistry, JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhe-Chen Wang
- Department of Chemistry and
Biochemistry, JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhibo Yang
- Department of Chemistry and
Biochemistry, JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - W. Carl Lineberger
- Department of Chemistry and
Biochemistry, JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Veronica M. Bierbaum
- Department of Chemistry and
Biochemistry, JILA, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Liu J, Chambreau SD, Vaghjiani GL. Dynamics Simulations and Statistical Modeling of Thermal Decomposition of 1-Ethyl-3-methylimidazolium Dicyanamide and 1-Ethyl-2,3-dimethylimidazolium Dicyanamide. J Phys Chem A 2014; 118:11133-44. [DOI: 10.1021/jp5095849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbo Liu
- Department of Chemistry and
Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena
Boulevard, Queens, New York 11367, United States
- ERC, Inc., and ‡Propellants Branch, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Steven D. Chambreau
- Department of Chemistry and
Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena
Boulevard, Queens, New York 11367, United States
- ERC, Inc., and ‡Propellants Branch, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Ghanshyam L. Vaghjiani
- Department of Chemistry and
Biochemistry, Queens College and the Graduate Center of the City University of New York, 65-30 Kissena
Boulevard, Queens, New York 11367, United States
- ERC, Inc., and ‡Propellants Branch, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| |
Collapse
|