1
|
Okamoto Y. Toward a Monte Carlo simulation of protein systems in amino-acid sequence space. J Chem Phys 2025; 162:114109. [PMID: 40099731 DOI: 10.1063/5.0240764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
In this article, we present our strategy for studying amino-acid sequence dependences on protein structures. For this purpose, performing Metropolis Monte Carlo simulations in the amino-acid sequence space is necessary. We want to use a coarse-grained protein model with an accurate potential energy function. We introduce a method for optimizing potential-energy parameters based on the native protein structure database, Protein Data Bank.
Collapse
Affiliation(s)
- Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan; High Performance Computing Division, Information Technology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan; Global Engagement Center, International Affairs, Nagoya University, Nagoya, Aichi 464-8601, Japan; and Funai Foundation for Information Technology, 4-11-5 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan
| |
Collapse
|
2
|
Lipska A, Sieradzan AK, Atmaca S, Czaplewski C, Liwo A. Toward Consistent Physics-Based Modeling of Local Backbone Structures and Chirality Change of Proteins in Coarse-Grained Approaches. J Phys Chem Lett 2023; 14:9824-9833. [PMID: 37889895 PMCID: PMC10641867 DOI: 10.1021/acs.jpclett.3c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
A reliable representation of local interactions is critical for the accuracy of modeling protein structure and dynamics at both the all-atom and coarse-grained levels. The development of local (mainly torsional) potentials was focused on careful parametrization of the predetermined (usually Fourier) formulas rather than on their physics-based derivation. In this Perspective we discuss the state-of-the-art methods for modeling local interactions, including the scale-consistent theory developed in our laboratory, which implies that the coarse-grained torsional potentials inseparably depend on the virtual-bond angles adjacent to a given dihedral and that multitorsional terms should be considered. We extend the treatment to split the residue-based torsional potentials into the site-based regular and improper torsional potentials. These considerations are illustrated with the revised torsional potentials and improper-torsional potentials involving the l-alanine residue and the improper-torsional potential corresponding to serine-residue enantiomerization. Applications of the new approach in coarse-grained modeling and revising all-atom force fields are discussed.
Collapse
Affiliation(s)
- Agnieszka
G. Lipska
- Centre
of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit
Union of Universities in Gdańsk, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adam K. Sieradzan
- Centre
of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit
Union of Universities in Gdańsk, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Faculty
of Chemistry, University of Gdańsk,
Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sümeyye Atmaca
- Kocaeli
University, Institute of Science,
Umuttepe Yerleşkesi, 41001 İzmit/Kocaeli̇, Türkiye
| | - Cezary Czaplewski
- Centre
of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit
Union of Universities in Gdańsk, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Faculty
of Chemistry, University of Gdańsk,
Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Centre
of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit
Union of Universities in Gdańsk, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Faculty
of Chemistry, University of Gdańsk,
Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Oliveira MP, Gonçalves YMH, Ol Gheta SK, Rieder SR, Horta BAC, Hünenberger PH. Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set. J Chem Theory Comput 2022; 18:6757-6778. [PMID: 36190354 DOI: 10.1021/acs.jctc.2c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔHvap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard-Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κT, the isobaric thermal-expansion coefficient αP, the isobaric heat capacity cP, the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔGwat, and the free energy of solvation ΔGche in cyclohexane. For the target properties ρliq and ΔHvap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κT, αP, ϵ, D, and ΔGche; and less accurate results in terms of cP and ΔGwat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.
Collapse
Affiliation(s)
- Marina P Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Yan M H Gonçalves
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - S Kashef Ol Gheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A C Horta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
Slough DP, McHugh SM, Lin YS. Understanding and designing head-to-tail cyclic peptides. Biopolymers 2018; 109:e23113. [PMID: 29528114 PMCID: PMC6135719 DOI: 10.1002/bip.23113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/30/2023]
Abstract
Cyclic peptides (CPs) are an exciting class of molecules with a variety of applications. However, design strategies for CP therapeutics, for example, are generally limited by a poor understanding of their sequence-structure relationships. This knowledge gap often leads to a trial-and-error approach for designing CPs for a specific purpose, which is both costly and time-consuming. Herein, we describe the current experimental and computational efforts in understanding and designing head-to-tail CPs along with their respective challenges. In addition, we provide several future directions in the field of computational CP design to improve its accuracy, efficiency and applicability. These advances, combined with experimental techniques, shall ultimately provide a better understanding of these interesting molecules and a reliable working platform to rationally design CPs with desired characteristics.
Collapse
Affiliation(s)
| | | | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts, 02155, United States
| |
Collapse
|
5
|
Gao Y, Zhang C, Zhang JZH, Mei Y. Evaluation of the Coupled Two-Dimensional Main Chain Torsional Potential in Modeling Intrinsically Disordered Proteins. J Chem Inf Model 2017; 57:267-274. [PMID: 28095698 DOI: 10.1021/acs.jcim.6b00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered proteins (IDPs) carry out crucial biological functions in essential biological processes of life. Because of the highly dynamic and conformationally heterogeneous nature of the disordered states of IDPs, molecular dynamics simulations are becoming an indispensable tool for the investigation of the conformational ensembles and dynamic properties of IDPs. Nevertheless, there is still no consensus on the most reliable force field in molecular dynamics simulations for IDPs hitherto. In this work, the recently proposed AMBER99SB2D force field is evaluated in modeling some disordered polypeptides and proteins by checking its ability to reproduce experimental NMR data. The results highlight that when the ildn side-chain corrections are included, AMBER99SB2D-ildn exhibits reliable results that agree with experiments compared with its predecessors, the AMBER14SB, AMBER99SB, AMBER99SB-ildn, and AMBER99SB2D force fields, and that decreasing the overall magnitude of protein-protein interactions in favor of protein-water interactions is a key ingredient behind the improvement.
Collapse
Affiliation(s)
- Ya Gao
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Chaomin Zhang
- College of Fundamental Studies, Shanghai University of Engineering Science , Shanghai 201620, China
| | - John Z H Zhang
- College of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| | - Ye Mei
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China.,State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University , Shanghai 200062, China
| |
Collapse
|
6
|
McHugh SM, Rogers JR, Solomon SA, Yu H, Lin YS. Computational methods to design cyclic peptides. Curr Opin Chem Biol 2016; 34:95-102. [PMID: 27592259 DOI: 10.1016/j.cbpa.2016.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Cyclic peptides (CPs) are promising modulators of protein-protein interactions (PPIs), but their application remains challenging. It is currently difficult to predict the structures and bioavailability of CPs. The ability to design CPs using computer modeling would greatly facilitate the development of CPs as potent PPI modulators for fundamental studies and as potential therapeutics. Herein, we describe computational methods to generate CP libraries for virtual screening, as well as current efforts to accurately predict the conformations adopted by CPs. These advances are making it possible to envision robust computational design of active CPs. However, unique properties of CPs pose significant challenges associated with sampling CP conformational space and accurately describing CP energetics. These major obstacles to structure prediction likely must be solved before robust design of active CPs can be reliably achieved.
Collapse
Affiliation(s)
- Sean M McHugh
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - Julia R Rogers
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - Sarah A Solomon
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University, Medford, MA 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
7
|
Liu J, Zhu T, Wang X, He X, Zhang JZH. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins. J Chem Theory Comput 2015; 11:5897-905. [PMID: 26642993 DOI: 10.1021/acs.jctc.5b00558] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.
Collapse
Affiliation(s)
- Jinfeng Liu
- State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University , Shanghai 200062, China
| | - Tong Zhu
- State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Xianwei Wang
- Center for Optics & Optoelectronics Research, College of Science, Zhejiang University of Technology , Hangzhou, Zhejiang 310023, China
| | - Xiao He
- State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University , Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|