1
|
Ye JT, Bai FY, Yu JQ, Wang LH. Theoretical Study on Second-Order Nonlinear Optical Responses of Pyrazine-carbazole Derivatives in Gas, Solution, and Crystal States. J Phys Chem A 2024; 128:10965-10974. [PMID: 39668335 DOI: 10.1021/acs.jpca.4c06140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The packing fashion of an organic molecule in the crystal plays a critical role in the global nonlinear optical (NLO) responses under ambient conditions. To better understand how the crystal packing affects the first hyperpolarizability (β) and achieve efficient NLO material, herein, the three positional isomers (regioisomers) through changing the substituted position of 3-carbazole-pyrazine-based isomers were performed. The phenyl groups with different positions (ortho-, meta-, and para-) of pyrazine, named 23-B3C, 25-B3C, and 26-B3C, are theoretically studied in gas, solvent, and solid states by using the polarizable continuum model and the combined quantum mechanics and molecular mechanics method, respectively. These two regioisomers (23-B3C and 25-B3C) exhibit totally different aggregation behaviors. Through density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, it has been concluded that the geometric changes of 23-B3C and 25-B3C are mainly contributed by the bond length and dihedral angle from gas to the solid phase. Herein, a lower HOMO-LUMO energy gap and a better intramolecular charge-transfer absorption are found for 25-B3C owing to a more sizable π-conjugation effect with smaller bond length alternation. Importantly, the β value of 25-B3C in the crystal with the π-π stacking with the same CT direction between the whole backbones (H-aggregate) and the end-groups (J-aggregate) commonly can substantially increase compared to that of the monomer. However, the obtained reduction of β value for 23-B3C is mainly because of V-aggregate (α > 90°) and reverse J-aggregate in crystal. Thus, our work showcases a profound understanding of the relationship between solid-state packing and macroscopic second-order NLO properties and provides a feasible molecule strategy for the development of high-efficiency NLO materials.
Collapse
Affiliation(s)
- Jin-Ting Ye
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People's Republic of China
| | - Jia-Qi Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Li-Hui Wang
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
2
|
Olsen JMH, Reine S, Vahtras O, Kjellgren E, Reinholdt P, Hjorth Dundas KO, Li X, Cukras J, Ringholm M, Hedegård ED, Di Remigio R, List NH, Faber R, Cabral Tenorio BN, Bast R, Pedersen TB, Rinkevicius Z, Sauer SPA, Mikkelsen KV, Kongsted J, Coriani S, Ruud K, Helgaker T, Jensen HJA, Norman P. Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. J Chem Phys 2020; 152:214115. [PMID: 32505165 DOI: 10.1063/1.5144298] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.
Collapse
Affiliation(s)
- Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Erik Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Karen Oda Hjorth Dundas
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Janusz Cukras
- Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Magnus Ringholm
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden
| | - Roberto Di Remigio
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Radovan Bast
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas Bondo Pedersen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kenneth Ruud
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trygve Helgaker
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Martinez-Fernandez L, Fahleson T, Norman P, Santoro F, Coriani S, Improta R. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution. Photochem Photobiol Sci 2017; 16:1415-1423. [DOI: 10.1039/c7pp00105c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The excited electronic states of thiouracils, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the TD-DFT level of theory.
Collapse
Affiliation(s)
| | - T. Fahleson
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - P. Norman
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - F. Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR)
- Area della Ricerca del CNR
- I-56124 Pisa
- Italy
| | - S. Coriani
- Department of Chemistry
- Technical University of Denmark
- Denmark
| | - R. Improta
- Istituto di Biostrutture e Bioimmagini-CNR
- I-80134 Napoli
- Italy
- LIDYL
- CEA
| |
Collapse
|
4
|
Rinkevicius Z, Sandberg JAR, Li X, Linares M, Norman P, Ågren H. Hybrid Complex Polarization Propagator/Molecular Mechanics Method for Heterogeneous Environments. J Chem Theory Comput 2016; 12:2661-7. [DOI: 10.1021/acs.jctc.6b00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish
e-Science Research Centre, KTH Royal Institute of Technology, SE-104 50 Stockholm, Sweden
| | - Jaime A. R. Sandberg
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Xin Li
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mathieu Linares
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
- Swedish
e-Science Research Centre, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Hans Ågren
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Li K, Chung-Davidson YW, Bussy U, Li W. Recent advances and applications of experimental technologies in marine natural product research. Mar Drugs 2015; 13:2694-713. [PMID: 25939037 PMCID: PMC4446601 DOI: 10.3390/md13052694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a rich source of novel and biologically active compounds. The number of identified marine natural compounds has grown 20% over the last five years from 2009 to 2013. Several challenges, including sample collection and structure elucidation, have limited the development of this research field. Nonetheless, new approaches, such as sampling strategies for organisms from extreme ocean environments, nanoscale NMR and computational chemistry for structural determination, are now available to overcome the barriers. In this review, we highlight the experimental technology innovations in the field of marine natural products, which in our view will lead to the development of many new drugs in the future.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Fahleson T, Kauczor J, Norman P, Santoro F, Improta R, Coriani S. TD-DFT Investigation of the Magnetic Circular Dichroism Spectra of Some Purine and Pyrimidine Bases of Nucleic Acids. J Phys Chem A 2015; 119:5476-89. [DOI: 10.1021/jp512468k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tobias Fahleson
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Joanna Kauczor
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM−CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| | - Sonia Coriani
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|