1
|
Benndorf S, Schleusener A, Müller R, Micheel M, Baruah R, Dellith J, Undisz A, Neumann C, Turchanin A, Leopold K, Weigand W, Wächtler M. Covalent Functionalization of CdSe Quantum Dot Films with Molecular [FeFe] Hydrogenase Mimics for Light-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18889-18897. [PMID: 37014708 PMCID: PMC10120591 DOI: 10.1021/acsami.3c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023]
Abstract
CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.
Collapse
Affiliation(s)
- Stefan Benndorf
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Alexander Schleusener
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Mathias Micheel
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Raktim Baruah
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jan Dellith
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Andreas Undisz
- Institute
of Materials Science and Engineering, Chemnitz
University of Technology, Erfenschlager Str. 73, 09125 Chemnitz, Germany
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, 07743 Jena, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Abbe
Center of Photonics (ACP), Friedrich Schiller
University Jena, Albert-Einstein-Straße
6, 07745 Jena, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Wolfgang Weigand
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Maria Wächtler
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
2
|
Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica. Catalysts 2022. [DOI: 10.3390/catal12030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A biomimetic model complex of the [FeFe]-hydrogenase active site (FeFeOH) with an ethylene bridge and a pendant hydroxyl group has been synthesized, characterized and evaluated as catalyst for the light-driven hydrogen production. The interaction of the hydroxyl group present in the complex with 3-isocyanopropyltriethoxysilane provided a carbamate triethoxysilane bearing a diiron dithiolate complex (NCOFeFe), thus becoming a potentially promising candidate for anchoring on heterogeneous supports. As a proof of concept, the NCOFeFe precursor was anchored by a grafting procedure into a periodic mesoporous organosilica with ethane bridges (EthanePMO@NCOFeFe). Both molecular and heterogenized complexes were tested as catalysts for light-driven hydrogen generation in aqueous solutions. The photocatalytic conditions were optimized for the homogenous complex by varying the reaction time, pH, amount of the catalyst or photosensitizer, photon flux, and the type of light source (light-emitting diode (LED) and Xe lamp). It was shown that the molecular FeFeOH diiron complex achieved a decent turnover number (TON) of 70 after 6 h, while NCOFeFe and EthanePMO@NCOFeFe had slightly lower activities showing TONs of 37 and 5 at 6 h, respectively.
Collapse
|
3
|
Meyers A, Heilweil EJ, Stromberg CJ. Photodynamics of Asymmetric Di-Iron-Cyano Hydrogenases Examined by Time-Resolved Mid-Infrared Spectroscopy. J Phys Chem A 2021; 125:1413-1423. [PMID: 33567824 DOI: 10.1021/acs.jpca.0c08921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two anionic asymmetric Fe-Fe hydrogenase model compounds containing a single cyano (CN) and five carboxyl (CO) ligands, [Et4N][Fe2(μ-S2C3H6)(CO)5(CN)1] and [Et4N][Fe2(μ-S2C2H4)(CO)5(CN)1], dissolved in room-temperature acetonitrile, are examined. The molecular asymmetry affects the redox potentials of the central iron atoms, thus changing the photophysics and possible catalytic properties of the compounds. Femtosecond ultraviolet excitation with mid-infrared probe spectroscopy of the model compounds was employed to better understand the ultrafast dynamics of the enzyme-active site. Continuous ultraviolet lamp excitation with Fourier transform infrared (FTIR) spectroscopy was also used to explore stable product formation on the second timescale. For both model compounds, two timescales are observed; a 20-30 ps decay and the formation of a long-lived photoproduct. The picosecond decay is assigned to vibrational cooling and rotational dynamics, while the residual spectra remain for up to 300 ps, suggesting the formation of new photoproducts. Static FTIR spectroscopy yielded a different stable photoproduct than that observed on the ultrafast timescale. Density functional theory calculations simulated photoproducts for CO-loss and CN-loss isomers, and the resulting photoproduct spectra suggest that the picosecond transients arise from a complex mixture of isomerization after CO-loss, while dimerization and formation of a CN-containing Fe-CO-Fe bridged species are also considered.
Collapse
Affiliation(s)
- Amber Meyers
- Department of Chemistry and Physics, Hood College, Frederick, Maryland 21701-8524, United States
| | - Edwin J Heilweil
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Christopher J Stromberg
- Department of Chemistry and Physics, Hood College, Frederick, Maryland 21701-8524, United States
| |
Collapse
|
4
|
Mukherjee P, Chandra Singh P. Experimental insight into enzyme catalysis and dynamics: A review on applications of state of art spectroscopic methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 122:33-62. [PMID: 32951815 DOI: 10.1016/bs.apcsb.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes are dynamic in nature and understanding their activity depends on exploring their overall structural fluctuation as well as transformation at the active site in free state as well as turnover conditions. In this chapter, the application of several different spectroscopy techniques viz. single molecule spectroscopy, ultrafast spectroscopy and Raman spectroscopy in the context of enzyme dynamics and catalysis are discussed. The importance of such studies are significant in the understanding of new discoveries of drugs, cure for some lethal diseases, gene modification as well as in industrial applications.
Collapse
Affiliation(s)
- Puspal Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Marx M, Mele A, Spannenberg A, Steinlechner C, Junge H, Schollhammer P, Beller M. Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.201901686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Marx
- Leibniz Institute for Catalysis at theUniversity of Rostock Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Andrea Mele
- UMR CNRS 6521 CEMCA Faculté des Sciences et TechniquesUniversity of Brest 6 Avenue Victor le Gorgeu Brest 29238 France
| | - Anke Spannenberg
- Leibniz Institute for Catalysis at theUniversity of Rostock Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Christoph Steinlechner
- Leibniz Institute for Catalysis at theUniversity of Rostock Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Henrik Junge
- Leibniz Institute for Catalysis at theUniversity of Rostock Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Philippe Schollhammer
- UMR CNRS 6521 CEMCA Faculté des Sciences et TechniquesUniversity of Brest 6 Avenue Victor le Gorgeu Brest 29238 France
| | - Matthias Beller
- Leibniz Institute for Catalysis at theUniversity of Rostock Albert-Einstein-Straße 29a Rostock 18059 Germany
| |
Collapse
|
6
|
Becker R, Bouwens T, Schippers ECF, van Gelderen T, Hilbers M, Woutersen S, Reek JNH. Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study. Chemistry 2019; 25:13921-13929. [PMID: 31418952 PMCID: PMC6899470 DOI: 10.1002/chem.201902514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 12/22/2022]
Abstract
Artificial photosynthesis—the direct photochemical generation of hydrogen from water—is a promising but scientifically challenging future technology. Because nature employs membranes for photodriven reactions, the aim of this work is to elucidate the effect of membranes on artificial photocatalysis. To do so, a combination of electrochemistry, photocatalysis, and time‐resolved spectroscopy on vesicle‐embedded [FeFe]hydrogenase mimics, driven by a ruthenium tris‐2,2′‐bipyridine photosensitizer, is reported. The membrane effects encountered can be summarized as follows: the presence of vesicles steers the reactivity of the [FeFe]‐benzodithiolate catalyst towards disproportionation, instead of protonation, due to membrane characteristics, such as providing a constant local effective pH, and concentrating and organizing species inside the membrane. The maximum turnover number is limited by photodegradation of the resting state in the catalytic cycle. Understanding these fundamental productive and destructive pathways in complex photochemical systems allows progress towards the development of efficient artificial leaves.
Collapse
Affiliation(s)
- René Becker
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Tessel Bouwens
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Esther C F Schippers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Toon van Gelderen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michiel Hilbers
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sander Woutersen
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
7
|
Manton JC, Cerpentier FJR, Harvey EC, Clark IP, Greetham GM, Long C, Pryce MT. Photochemical or electrochemical bond breaking – exploring the chemistry of (μ 2-alkyne)Co 2(CO) 6 complexes using time-resolved infrared spectroscopy, spectro-electrochemical and density functional methods. Dalton Trans 2019; 48:14642-14652. [DOI: 10.1039/c9dt03006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoassisted Pauson–Khand reaction involves the formation of a high-spin diradical species and not CO loss as previously thought.
Collapse
Affiliation(s)
| | | | - Emma C. Harvey
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| | - Ian P. Clark
- Central Laser Facility
- Science & Technology Facilities Council
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Didcot
| | - Gregory M. Greetham
- Central Laser Facility
- Science & Technology Facilities Council
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Didcot
| | - Conor Long
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| | - Mary T. Pryce
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
8
|
Stromberg CJ, Heilweil EJ. Ultrafast Photodynamics of Cyano-Functionalized [FeFe] Hydrogenase Model Compounds. J Phys Chem A 2018; 122:4023-4030. [PMID: 29652502 PMCID: PMC6051340 DOI: 10.1021/acs.jpca.8b00661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[FeFe] hydrogenases are efficient enzymes that produce hydrogen gas under mild conditions. Synthetic model compounds containing all CO or mixed CO/PMe3 ligands were previously studied by us and others with ultrafast ultraviolet or visible pump-infrared probe spectroscopy in an effort to better understand the function and interactions of the active site with light. Studies of anionic species containing cyano groups, which more closely match the biological active site, have been elusive. In this work, two model compounds dissolved in room-temperature acetonitrile solution were examined: [Fe2(μ-S2C3H6)(CO)4(CN)2]2- (1) and [Fe2(μ-S2C2H4)(CO)4(CN)2]2- (2). These species exhibit long-lived transient signals consistent with loss of one CO ligand with potential isomerization of newly formed ground electronic state photoproducts, as previously observed with all-CO and CO/PMe3-containing models. We find no evidence for fast (ca. 150 ps) relaxation seen in the all-CO and CO/PMe3 compounds because of the absence of the metal-to-metal charge transfer band in the cyano-functionalized models. These results indicate that incorporation of cyano ligands may significantly alter the electronic properties and photoproducts produced immediately after photoexcitation, which may influence the catalytic activity of model compounds when attached to photosensitizers.
Collapse
Affiliation(s)
- Christopher J. Stromberg
- Department of Chemistry and Physics, Hood College, 401 Rosemont Avenue, Frederick, Maryland 21701-8524, United States
| | - Edwin J. Heilweil
- Engineering Physics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8443 United States
| |
Collapse
|
9
|
Kumar Das D, Makhal K, Goswami D. Observing ground state vibrational coherence and excited state relaxation dynamics of a cyanine dye in pure solvents. Phys Chem Chem Phys 2018; 20:13400-13411. [DOI: 10.1039/c7cp08605a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a degenerate pump probe technique at 800 nm, Ground State Vibrational Coherence (GSVC) of a cyanine dye (IR780) is explored in various solvents.
Collapse
Affiliation(s)
- Dipak Kumar Das
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| | - Krishnandu Makhal
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| | - Debabrata Goswami
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur – 208016
- India
| |
Collapse
|
10
|
Liu W, Tang L, Oscar BG, Wang Y, Chen C, Fang C. Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2017; 8:997-1003. [PMID: 28195486 DOI: 10.1021/acs.jpclett.7b00322] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Energy dissipation following photoexcitation is foundational to photophysics and chemistry. Consequently, understanding such processes on molecular time scales holds paramount importance. Femtosecond stimulated Raman spectroscopy (FSRS) has been used to study the molecular structure-function relationships but usually on the Stokes side. Here, we perform both Stokes and anti-Stokes FSRS to track energy dissipation and excited-state proton transfer (ESPT) for the photoacid pyranine in aqueous solution. We reveal biphasic vibrational cooling on fs-ps time scales during ESPT. Characteristic low-frequency motions (<800 cm-1) exhibit initial energy dissipation (∼2 ps) that correlates with functional events of forming contact ion pairs via H-bonds between photoacid and water, which lengthens to ∼9 ps in methanol where ESPT is inhibited. The interplay between photoinduced dissipative and reactive channels is implied. Thermal cooling to bulk solvent occurs on the ∼50 ps time scale. These results demonstrate the combined Stokes and anti-Stokes FSRS as a powerful toolset to elucidate structural dynamics.
Collapse
Affiliation(s)
- Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University , Pudong, Shanghai 201210, People's Republic of China
| | - Longteng Tang
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Breland G Oscar
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Yanli Wang
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
11
|
Eckert PA, Kubarych KJ. Dynamic Flexibility of Hydrogenase Active Site Models Studied with 2D-IR Spectroscopy. J Phys Chem A 2017; 121:608-615. [PMID: 28032999 DOI: 10.1021/acs.jpca.6b11962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogenase enzymes enable organisms to use H2 as an energy source, having evolved extremely efficient biological catalysts for the reversible oxidation of molecular hydrogen. Small-molecule mimics of these enzymes provide both simplified models of the catalysis reactions and potential artificial catalysts that might be used to facilitate a hydrogen economy. We have studied two diiron hydrogenase mimics, μ-pdt-[Fe(CO)3]2 and μ-edt-[Fe(CO)3]2 (pdt = propanedithiolate, edt = ethanedithiolate), in a series of alkane solvents and have observed significant ultrafast spectral dynamics using two-dimensional infrared (2D-IR) spectroscopy. Since solvent fluctuations in nonpolar alkanes do not lead to substantial electrostatic modulations in a solute's vibrational mode frequencies, we attribute the spectral diffusion dynamics to intramolecular flexibility. The intramolecular origin is supported by the absence of any measurable solvent viscosity dependence, indicating that the frequency fluctuations are not coupled to the solvent motional dynamics. Quantum chemical calculations reveal a pronounced coupling between the low-frequency torsional rotation of the carbonyl ligands and the terminal CO stretching vibrations. The flexibility of the CO ligands has been proposed to play a central role in the catalytic reaction mechanism, and our results highlight that the CO ligands are highly flexible on a picosecond time scale.
Collapse
Affiliation(s)
- Peter A Eckert
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Sensi M, Baffert C, Greco C, Caserta G, Gauquelin C, Saujet L, Fontecave M, Roy S, Artero V, Soucaille P, Meynial-Salles I, Bottin H, de Gioia L, Fourmond V, Léger C, Bertini L. Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases. J Am Chem Soc 2016; 138:13612-13618. [DOI: 10.1021/jacs.6b06603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matteo Sensi
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Carole Baffert
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
| | - Claudio Greco
- Department
of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della
Scienza 1, 20126 Milan, Italy
| | - Giorgio Caserta
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Laure Saujet
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Marc Fontecave
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Souvik Roy
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Vincent Artero
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Hervé Bottin
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Luca de Gioia
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | | | | | - Luca Bertini
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
13
|
Hunt NT, Wright JA, Pickett C. Detection of Transient Intermediates Generated from Subsite Analogues of [FeFe] Hydrogenases. Inorg Chem 2015; 55:399-410. [DOI: 10.1021/acs.inorgchem.5b02477] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neil T. Hunt
- Department of Physics, University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom
| | - Joseph A. Wright
- Energy Materials Laboratory, School of
Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher Pickett
- Energy Materials Laboratory, School of
Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
14
|
Gloaguen F. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water. Inorg Chem 2015; 55:390-8. [PMID: 26641526 DOI: 10.1021/acs.inorgchem.5b02245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water.
Collapse
Affiliation(s)
- Frederic Gloaguen
- UMR 6521, CNRS, Université de Bretagne Occidentale, CS 93837 , 29238 Brest, France
| |
Collapse
|