1
|
Borges-Araújo L, Patmanidis I, Singh AP, Santos LHS, Sieradzan AK, Vanni S, Czaplewski C, Pantano S, Shinoda W, Monticelli L, Liwo A, Marrink SJ, Souza PCT. Pragmatic Coarse-Graining of Proteins: Models and Applications. J Chem Theory Comput 2023; 19:7112-7135. [PMID: 37788237 DOI: 10.1021/acs.jctc.3c00733] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The molecular details involved in the folding, dynamics, organization, and interaction of proteins with other molecules are often difficult to assess by experimental techniques. Consequently, computational models play an ever-increasing role in the field. However, biological processes involving large-scale protein assemblies or long time scale dynamics are still computationally expensive to study in atomistic detail. For these applications, employing coarse-grained (CG) modeling approaches has become a key strategy. In this Review, we provide an overview of what we call pragmatic CG protein models, which are strategies combining, at least in part, a physics-based implementation and a top-down experimental approach to their parametrization. In particular, we focus on CG models in which most protein residues are represented by at least two beads, allowing these models to retain some degree of chemical specificity. A description of the main modern pragmatic protein CG models is provided, including a review of the most recent applications and an outlook on future perspectives in the field.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Ilias Patmanidis
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Akhil P Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Lucianna H S Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg CH-1700, Switzerland
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Inserm, CNRS, 06560 Valbonne, France
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita, Okayama 700-8530, Japan
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| |
Collapse
|
2
|
Raina N, Hassan MI, Ahmad F, Islam A, Singh AK. PEG mediated destabilization of holo α-lactalbumin probed by in silico and in vitro studies: deviation from excluded volume effect. J Biomol Struct Dyn 2022; 40:13265-13277. [PMID: 34726117 DOI: 10.1080/07391102.2021.1987990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crowded and confined macromolecular milieus surround proteins, and both are stabilizing if the nature of the interaction between crowder and proteins are considered hard-core repulsive interactions. However, non-specific chemical interactions between a protein and its surroundings also play a significant role and the sum effect of both hard-core repulsion and soft interaction balances the overall effect of crowding/confinement. Previous studies showing the effect of polyethylene glycol (PEG) on protein and nucleic acid may be interpreted as either primarily excluded volume effect or, in some cases, chemical effect by changing solvent properties. In case of destabilizing interactions, charge-charge and hydrophobic contact have to gain more attention. For instance, in vitro and in vivo studies using protein as crowding agent revealed the destabilization of proteins induced by charge-charge interactions. To investigate the effect of PEG 10 kDa on holo α-lactalbumin (holo α-LA), structure and thermal stability of the protein were measured at different pH values using several techniques. Structural characterization by Trp-fluorescence, near-UV CD and far-UV measurements at different pH values clearly shows perturbation of tertiary and secondary structure of holo α-LA by PEG 10 kDa. Furthermore, the dynamic light scattering measurement shows that the protein is homogeneous under all experimental conditions. Analysis of the heat-induced denaturation profile in the presence of the crowder shows destabilization of the protein in terms of Tm (midpoint of denaturation) and ΔGD0 (Gibbs free energy change at 25 °C). To evaluate the interaction of PEG 10 kDa with holo α-LA and stability of PEG-α-LA complex, docking and molecular dynamic simulation were carried out for 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Patel CK, Singh S, Saini B, Mukherjee TK. Macromolecular Crowding-Induced Unusual Liquid-Liquid Phase Separation of Human Serum Albumin via Soft Protein-Protein Interactions. J Phys Chem Lett 2022; 13:3636-3644. [PMID: 35435684 DOI: 10.1021/acs.jpclett.2c00307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macromolecular crowding has a profound impact on the conformational dynamics and intermolecular interactions of biological macromolecules. In this context, the role of inert synthetic crowders in the protein-protein interactions of globular proteins is poorly understood. Here, using native human serum albumin (HSA) under physiological conditions, we show that macromolecular crowding induces liquid-liquid phase separation (LLPS) via liquid-like membrane-less droplet formation in a concentration- and time-dependent manner. Circular dichroism measurements reveal significant alteration in the secondary structure of HSA inside the droplet during aging. In contrast, at a high protein concentration, a liquid-to-solid-like phase transition has been observed upon maturation. Our findings reveal that the LLPS of HSA is mainly driven by enthalpically controlled intermolecular protein-protein interactions via hydrophobic contacts involving aromatic and/or nonaromatic residues. Moreover, modulation of LLPS of HSA has been demonstrated upon denaturation and ligand binding. This study highlights the importance of soft protein-protein interactions of globular proteins in a crowded cellular environment in driving the LLPS.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Shivendra Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Bhawna Saini
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| |
Collapse
|
4
|
On the Effects of Disordered Tails, Supertertiary Structure and Quinary Interactions on the Folding and Function of Protein Domains. Biomolecules 2022; 12:biom12020209. [PMID: 35204709 PMCID: PMC8961636 DOI: 10.3390/biom12020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
The vast majority of our current knowledge about the biochemical and biophysical properties of proteins derives from in vitro studies conducted on isolated globular domains. However, a very large fraction of the proteins expressed in the eukaryotic cell are structurally more complex. In particular, the discovery that up to 40% of the eukaryotic proteins are intrinsically disordered, or possess intrinsically disordered regions, and are highly dynamic entities lacking a well-defined three-dimensional structure, revolutionized the structure–function paradigm and our understanding of proteins. Moreover, proteins are mostly characterized by the presence of multiple domains, influencing each other by intramolecular interactions. Furthermore, proteins exert their function in a crowded intracellular milieu, transiently interacting with a myriad of other macromolecules. In this review we summarize the literature tackling these themes from both the theoretical and experimental perspectives, highlighting the effects on protein folding and function that are played by (i) flanking disordered tails; (ii) contiguous protein domains; (iii) interactions with the cellular environment, defined as quinary structures. We show that, in many cases, both the folding and function of protein domains is remarkably perturbed by the presence of these interactions, pinpointing the importance to increase the level of complexity of the experimental work and to extend the efforts to characterize protein domains in more complex contexts.
Collapse
|
5
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
6
|
Timr S, Sterpone F. Stabilizing or Destabilizing: Simulations of Chymotrypsin Inhibitor 2 under Crowding Reveal Existence of a Crossover Temperature. J Phys Chem Lett 2021; 12:1741-1746. [PMID: 33570420 DOI: 10.1021/acs.jpclett.0c03626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of macromolecular crowding on the stability of proteins can change with temperature. This dependence might reveal a delicate balance between two factors: the entropic excluded volume and the stability-modulating quinary interactions. Here we computationally investigate the thermal stability of the native state of chymotrypsin inhibitor 2 (CI2), which was previously shown by experiments to be destabilized by protein crowders at room temperature. Mimicking experimental conditions, our enhanced-sampling atomistic simulations of CI2 surrounded by lysozyme and bovine serum albumin reproduce this destabilization but also provide evidence of a crossover temperature above which lysozyme is found to become stabilizing, as previously predicted by analysis of thermodynamic data. We relate this crossover to the different CI2-crowder interactions and the local packing experienced by CI2. In fact, we clearly show that the pronounced stabilization induced by lysozyme at high temperatures stems from the tight local packing created around CI2 by this smaller crowder.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
7
|
Timr S, Madern D, Sterpone F. Protein thermal stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:239-272. [PMID: 32145947 DOI: 10.1016/bs.pmbts.2019.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins, in general, fold to a well-organized three-dimensional structure in order to function. The stability of this functional shape can be perturbed by external environmental conditions, such as temperature. Understanding the molecular factors underlying the resistance of proteins to the thermal stress has important consequences. First of all, it can aid the design of thermostable enzymes able to perform efficient catalysis in the high-temperature regime. Second, it is an essential brick of knowledge required to decipher the evolutionary pathways of life adaptation on Earth. Thanks to the development of atomistic simulations and ad hoc enhanced sampling techniques, it is now possible to investigate this problem in silico, and therefore provide support to experiments. After having described the methodological aspects, the chapter proposes an extended discussion on two problems. First, we focus on thermophilic proteins, a perfect model to address the issue of thermal stability and molecular evolution. Second, we discuss the issue of how protein thermal stability is affected by crowded in vivo-like conditions.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Francisco CC, Luis CLJ, Marina EBJ, Javier CMF, Alexis LZA, Del Carmen SOH, Alfredo REI. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Protein Pept Lett 2019; 26:532-541. [PMID: 30950340 DOI: 10.2174/0929866526666190405124353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. OBJECTIVE In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. METHODS Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. RESULTS It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. CONCLUSION In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.
Collapse
Affiliation(s)
- Cadena-Cadena Francisco
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Cárdenas-López José Luis
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | | | | | | | | |
Collapse
|
9
|
Ribeiro S, Ebbinghaus S, Marcos JC. Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Lett 2018; 592:3040-3053. [DOI: 10.1002/1873-3468.13211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Sara Ribeiro
- Centre of Chemistry University of Minho Braga Portugal
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry Technical University Braunschweig Germany
| | | |
Collapse
|
10
|
Nilsson D, Mohanty S, Irbäck A. Markov modeling of peptide folding in the presence of protein crowders. J Chem Phys 2018; 148:055101. [PMID: 29421894 DOI: 10.1063/1.5017031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use Markov state models (MSMs) to analyze the dynamics of a β-hairpin-forming peptide in Monte Carlo (MC) simulations with interacting protein crowders, for two different types of crowder proteins [bovine pancreatic trypsin inhibitor (BPTI) and GB1]. In these systems, at the temperature used, the peptide can be folded or unfolded and bound or unbound to crowder molecules. Four or five major free-energy minima can be identified. To estimate the dominant MC relaxation times of the peptide, we build MSMs using a range of different time resolutions or lag times. We show that stable relaxation-time estimates can be obtained from the MSM eigenfunctions through fits to autocorrelation data. The eigenfunctions remain sufficiently accurate to permit stable relaxation-time estimation down to small lag times, at which point simple estimates based on the corresponding eigenvalues have large systematic uncertainties. The presence of the crowders has a stabilizing effect on the peptide, especially with BPTI crowders, which can be attributed to a reduced unfolding rate ku, while the folding rate kf is left largely unchanged.
Collapse
Affiliation(s)
- Daniel Nilsson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
11
|
Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y. Crowding in Cellular Environments at an Atomistic Level from Computer Simulations. J Phys Chem B 2017; 121:8009-8025. [PMID: 28666087 PMCID: PMC5582368 DOI: 10.1021/acs.jpcb.7b03570] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The
effects of crowding in biological environments on biomolecular
structure, dynamics, and function remain not well understood. Computer
simulations of atomistic models of concentrated peptide and protein
systems at different levels of complexity are beginning to provide
new insights. Crowding, weak interactions with other macromolecules
and metabolites, and altered solvent properties within cellular environments
appear to remodel the energy landscape of peptides and proteins in
significant ways including the possibility of native state destabilization.
Crowding is also seen to affect dynamic properties, both conformational
dynamics and diffusional properties of macromolecules. Recent simulations
that address these questions are reviewed here and discussed in the
context of relevant experiments.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States.,Quantitative Biology Center, RIKEN , Kobe, Japan
| | - Isseki Yu
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan
| | - Po-Hung Wang
- Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan
| | - Grzegorz Nawrocki
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan, United States
| | - Yuji Sugita
- Quantitative Biology Center, RIKEN , Kobe, Japan.,Theoretical Molecular Science Laboratory, RIKEN , Wako, Japan.,iTHES Research Group, RIKEN , Wako, Japan.,Advanced Institute for Computational Science, RIKEN , Kobe, Japan
| |
Collapse
|
12
|
Marasini C, Foderà V, Vestergaard B. Sucrose modulates insulin amyloid-like fibril formation: effect on the aggregation mechanism and fibril morphology. RSC Adv 2017. [DOI: 10.1039/c6ra25872g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sucrose modifies the human insulin fibrillation pathways, affecting the fibril morphology.
Collapse
Affiliation(s)
- Carlotta Marasini
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Vito Foderà
- Section for Biologics
- Department of Pharmacy
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
13
|
Maity S, Marchesi A, Torre V, Mazzolini M. Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS OMEGA 2016; 1:1205-1219. [PMID: 31457189 PMCID: PMC6640748 DOI: 10.1021/acsomega.6b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 06/10/2023]
Abstract
The determination at atomic resolution of the three-dimensional molecular structure of membrane proteins such as receptors and several ion channels has been a major breakthrough in structural biology. The molecular structure of several members of the superfamily of voltage-gated ionic channels such as K+ and Na+ is now available. However, despite several attempts, the molecular structure at atomic resolution of the full cyclic nucleotide-gated (CNG) ion channel, although a member of the same superfamily of voltage-gated ion channels, has not been obtained yet, neither by X-ray crystallography nor by electron cryomicroscopy (cryo-EM). It is possible that CNG channels have a high structural heterogeneity, making difficult crystallization and single-particle analysis. To address this issue, we have combined single-molecule force spectroscopy (SMFS) and electrophysiological experiments to characterize the structural heterogeneity of CNGA1 channels expressed in Xenopus laevis oocytes. The unfolding of the cytoplasmic domain had force peaks, occurring with a probability from 0.2 to 0.96. Force peaks during the unfolding of the transmembrane domain had a probability close to 1, but the distribution of the increase in contour length between two successive force peaks had multiple maxima differing by tens of nanometers. Concomitant electrophysiological experiments showed that the rundown in mutant channels S399C is highly variable and that the effect of thiol reagents when specific residues were mutated was consistent with a dynamic structural heterogeneity. These results show that CNGA1 channels have a wide spectrum of native conformations that are difficult to detect with X-ray crystallography and cryo-EM.
Collapse
|
14
|
Musiani F, Giorgetti A. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:49-77. [PMID: 28109331 DOI: 10.1016/bs.ircmb.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment.
Collapse
Affiliation(s)
- F Musiani
- Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy.
| | - A Giorgetti
- Applied Bioinformatics Group, University of Verona, Verona, Italy.
| |
Collapse
|
15
|
Qin S, Zhou HX. Protein folding, binding, and droplet formation in cell-like conditions. Curr Opin Struct Biol 2016; 43:28-37. [PMID: 27771543 DOI: 10.1016/j.sbi.2016.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
The many bystander macromolecules in the crowded cellular environments present both steric repulsion and weak attraction to proteins undergoing folding or binding and hence impact the thermodynamic and kinetic properties of these processes. The weak but nonrandom binding with bystander macromolecules may facilitate subcellular localization and biological function. Weak binding also leads to the emergence of a protein-rich droplet phase, which has been implicated in regulating a variety of cellular functions. All these important problems can now be addressed by realistic modeling of intermolecular interactions. Configurational sampling of concentrated protein solutions is an ongoing challenge.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
16
|
Wang Y, Lu L, Peng H, Xu J, Wang F, Qi R, Xu Z, Zhang W. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chem Commun (Camb) 2016; 52:9247-50. [PMID: 27353571 DOI: 10.1039/c6cc02874h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-doped carbon dots (C-dots) were synthesized using a facile one-pot solvothermal method, and the C-dots can be used as a ratiometric pH probe directly without integrating with other dyes, which was demonstrated by monitoring the proton-producing enzyme catalytic reactions.
Collapse
Affiliation(s)
- Ya Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bille A, Mohanty S, Irbäck A. Peptide folding in the presence of interacting protein crowders. J Chem Phys 2016; 144:175105. [PMID: 27155657 DOI: 10.1063/1.4948462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using Monte Carlo methods, we explore and compare the effects of two protein crowders, BPTI and GB1, on the folding thermodynamics of two peptides, the compact helical trp-cage and the β-hairpin-forming GB1m3. The thermally highly stable crowder proteins are modeled using a fixed backbone and rotatable side-chains, whereas the peptides are free to fold and unfold. In the simulations, the crowder proteins tend to distort the trp-cage fold, while having a stabilizing effect on GB1m3. The extent of the effects on a given peptide depends on the crowder type. Due to a sticky patch on its surface, BPTI causes larger changes than GB1 in the melting properties of the peptides. The observed effects on the peptides stem largely from attractive and specific interactions with the crowder surfaces, and differ from those seen in reference simulations with purely steric crowder particles.
Collapse
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
18
|
Macdonald B, McCarley S, Noeen S, van Giessen AE. β-Hairpin Crowding Agents Affect α-Helix Stability in Crowded Environments. J Phys Chem B 2016; 120:650-9. [DOI: 10.1021/acs.jpcb.5b10575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bryanne Macdonald
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Shannon McCarley
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Sundus Noeen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| | - Alan E. van Giessen
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| |
Collapse
|
19
|
Bille A, Linse B, Mohanty S, Irbäck A. Equilibrium simulation of trp-cage in the presence of protein crowders. J Chem Phys 2015; 143:175102. [DOI: 10.1063/1.4934997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anna Bille
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Björn Linse
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| | - Sandipan Mohanty
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anders Irbäck
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62 Lund, Sweden
| |
Collapse
|
20
|
Knyazev SN, Kalyakin VY, Deryabin IN, Fedorov BA, Smirnov AV, Stepanov EO, Porozov YB. Prediction of protein conformational mobility with validation using small-angle X-ray scattering. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915060147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|