1
|
Elkhatib O, Tetteh J, Ali R, Mohamed AIA, Bai S, Kubelka J, Piri M, Goual L. Wettability of rock minerals and the underlying surface forces: A review of the implications for oil recovery and geological storage of CO 2. Adv Colloid Interface Sci 2024; 333:103283. [PMID: 39305582 DOI: 10.1016/j.cis.2024.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/01/2024]
Abstract
The wettability of subsurface minerals is a critical factor influencing the pore-scale displacement of fluids in underground reservoirs. As such, it plays a key role in hydrocarbon production and greenhouse gas geo-sequestration. We present a comprehensive and critical review of the current state of knowledge on the intermolecular forces governing wettability of rock minerals most relevant to subsurface fluid storage and recovery. In this review we first provide a detailed summary of the available data, both experimental and theoretical, from the perspective of the fundamental intermolecular and surface forces, specifically considering the roles played by the surface chemistry, fluid properties, as well as other significant factors. We subsequently offer an analysis of the effects of chemical additives such as surfactants and nanoparticles that have emerged as viable means for manipulating wettability. In each example, we highlight the practical implications for hydrocarbon production and CO2 geo-storage as two of the most important current applications. As the physico-chemical mechanisms governing the wetting phenomena are the main focus, special emphasis is placed on nano-scale experimental approaches along with atomic-scale modeling that specifically probe the underlying intermolecular and surface forces. Lastly, we discuss the gaps in the current state of knowledge and outline future research directions to further our fundamental understanding of the interactions and their impact on the wetting characteristics of Earth's minerals.
Collapse
Affiliation(s)
- Omar Elkhatib
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Julius Tetteh
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Ramzi Ali
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Abdelhalim I A Mohamed
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Shixun Bai
- China University of Petroleum (Beijing) at Karamay, Xinjiang, China
| | - Jan Kubelka
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Mohammad Piri
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Lamia Goual
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
2
|
Liu C, Friedman O, Li Y, Li S, Tian Y, Golan Y, Meng Y. Electric Response of CuS Nanoparticle Lubricant Additives: The Effect of Crystalline and Amorphous Octadecylamine Surfactant Capping Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15825-15833. [PMID: 31365262 DOI: 10.1021/acs.langmuir.9b01714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Octadecylamine-coated CuS nanoparticles were designed and confirmed to play an important role in their electric response and boundary lubrication in the ester lubricant. For the case of CuS nanoparticles coated with crystalline surfactant, the surface potential is 18.47 ± 0.99 mV higher than with amorphous surfactant, owing to the random chain conformations of the octadecylamine molecules. When used as a lubricant additive, CuS nanoparticles (in the form of nanoplates or nanoarrays) with a crystalline surfactant were positively charged due to the presence of the amino headgroup in octadecylamine. The observed friction coefficient decreased from 0.18 to 0.09 and 0.05, respectively, when negative potential (for the copper lower pair) was applied across untreated CuS nanoparticles. However, thermally treated CuS nanoparticles showed good lubricating effect, but almost no effect of potential control since the amino groups were obscured by the disordered carbon chains, hindering electron transfer and weakening the response to externally applied electric field.
Collapse
Affiliation(s)
- Chenxu Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Ofir Friedman
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Yuanzhe Li
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Shaowei Li
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Yu Tian
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Yuval Golan
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer-Sheva 84105 , Israel
| | - Yonggang Meng
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
3
|
Ali I, Basheer AA, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, Pershin V, Kuznetsov D, Galunin E, Grachev V, Tkachev A. Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Tribological Properties of ZnS(NH2CH2CH2NH2)0.5 and ZnS as Additives in Lithium Grease. LUBRICANTS 2019. [DOI: 10.3390/lubricants7030026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The layered compound ZnS(NH2CH2CH2NH2)0.5 was evaluated as an additive in grease with different concentrations by using a four-ball tribometer. Results show that ZnS(NH2CH2CH2NH2)0.5 grease has good load bearing ability and excellent anti-wear properties. ZnS(NH2CH2CH2NH2)0.5 revealed better wear resistance than that of ZnS under all test conditions. The reason for this may be that the two-dimensional structure of ZnS(NH2CH2CH2NH2)0.5, with larger interspaces, facilitates an easier sliding process, improving the anti-wear performance. The mechanism was estimated through analysis of the worn surface with SEM, EDS, 3D, and XPS. XPS analysis results show that the tribofilm was mainly composed of FeS, ZnS, ZnO, FexOy, Feu(SO4)v, and ZnSO4. Owing to the simple synthetic method and superior tribological properties as a grease-based additive, ZnS(NH2CH2CH2NH2)0.5 holds great potential for use in demanding industrial applications in the future.
Collapse
|
5
|
Bouju X, Duguet É, Gauffre F, Henry CR, Kahn ML, Mélinon P, Ravaine S. Nonisotropic Self-Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706558. [PMID: 29740924 DOI: 10.1002/adma.201706558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Indexed: 06/08/2023]
Abstract
Quantum strongly correlated systems that exhibit interesting features in condensed matter physics often need an unachievable temperature or pressure range in classical materials. One solution is to introduce a scaling factor, namely, the lattice parameter. Synthetic heterostructures named superlattices or supracrystals are synthesized by the assembling of colloidal atoms. These include semiconductors, metals, and insulators for the exploitation of their unique properties. Most of them are currently limited to dense packing. However, some of desired properties need to adjust the colloidal atoms neighboring number. Here, the current state of research in nondense packing is summarized, discussing the benefits, outlining possible scenarios and methodologies, describing examples reported in the literature, briefly discussing the challenges, and offering preliminary conclusions. Penetrating such new and intriguing research fields demands a multidisciplinary approach accounting for the coupling of statistic physics, solid state and quantum physics, chemistry, computational science, and mathematics. Standard interactions between colloidal atoms and emerging fields, such as the use of Casimir forces, are reported. In particular, the focus is on the novelty of patchy colloidal atoms to meet this challenge.
Collapse
Affiliation(s)
- Xavier Bouju
- Centre d'élaboration de matériaux et d'études structurales (CEMES), CNRS, Université de Toulouse, UPR CNRS 8011, 29 Rue J. Marvig, F-31055, Toulouse, France
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
| | - Étienne Duguet
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600, Pessac, France
| | - Fabienne Gauffre
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut des sciences chimiques de Rennes (ISCR), CNRS, Université de Rennes, UMR CNRS 6226, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Claude R Henry
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Centre interdisciplinaire de nanoscience de Marseille (CINAM), CNRS, Aix-Marseille Université, UMR CNRS 7325, Campus de Luminy, F-13288, Marseille, France
| | - Myrtil L Kahn
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Laboratoire de chimie de coordination (LCC), CNRS, Université de Toulouse, UPR CNRS 8241, F-31000, Toulouse, France
| | - Patrice Mélinon
- Observatoire des micro et nanotechnologies (OMNT), Minatec, 17 rue des Martyrs, F-38000, Grenoble, France
- Institut Lumière Matière (ILM), CNRS, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5306, F-69622, Villeurbanne, France
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600, Pessac, France
| |
Collapse
|
6
|
Widmer-Cooper A, Geissler PL. Ligand-Mediated Interactions between Nanoscale Surfaces Depend Sensitively and Nonlinearly on Temperature, Facet Dimensions, and Ligand Coverage. ACS NANO 2016; 10:1877-87. [PMID: 26756464 DOI: 10.1021/acsnano.5b05569] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticles are often covered in ligand monolayers, which can undergo a temperature-dependent order-disorder transition that switches the particle-particle interaction from repulsive to attractive in solution. In this work, we examine how changes in the ligand surface coverage and facet dimensions affect the ordering of ligands, the arrangement of nearby solvent molecules, and the interaction between ligand monolayers on different particles. In particular, we consider the case of strongly bound octadecyl ligands on the (100) facet of CdS in the presence of an explicit n-hexane solvent. Depending on the facet dimensions and surface coverage, we observe three distinct ordered states that differ in how the ligands are packed together, and which affect the thickness of the ligand shell and the structure of the ligand-solvent interface. The temperature dependence of the order-disorder transition also broadens and shifts to lower temperature in a nonlinear manner as the nanoscale is approached from above. We find that ligands on nanoscale facets can behave very similarly to those on macroscopic surfaces in solution, and that some facet dimensions affect the ligand alignment more strongly than others. As the ligands order, the interaction between opposing monolayers becomes attractive, even well below full surface coverage. The strength of attraction per unit surface area is strongly affected by ligand coverage, but only weakly by facet width. Conversely, we find that bringing two monolayers together just above the order-disorder transition temperature can induce ordering and attraction.
Collapse
Affiliation(s)
- Asaph Widmer-Cooper
- School of Chemistry, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Phillip L Geissler
- Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
7
|
Abécassis B. Three-Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. Chemphyschem 2015; 17:618-31. [DOI: 10.1002/cphc.201500856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin Abécassis
- Laboratoire de Physique des Solides; CNRS; Univ. Paris-Sud, Université Paris-Saclay; 91405 Orsay Cedex France
| |
Collapse
|
8
|
Jana S, Phan TNT, Bouet C, Tessier MD, Davidson P, Dubertret B, Abécassis B. Stacking and Colloidal Stability of CdSe Nanoplatelets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10532-10539. [PMID: 26343169 DOI: 10.1021/acs.langmuir.5b02152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Colloidal CdSe nanoplatelets with monolayer control over their thickness can now be synthesized in solution and display interesting optical properties. From a fundamental point of view, the self-assembly of CdSe nanoplatelets can impact their optical properties through short-range interactions, and achieving control over their dispersion state in solution is of major relevance. The related issue of colloidal stability is important from an applicative standpoint in the perspective of the processing of these materials. Using UV-vis spectroscopy, we assess the colloidal stability of dispersions of CdSe nanoplatelets at different nanoparticle and ligand (oleic acid) concentrations. We unravel an optimum in oleic acid concentration for colloidal stability and show that even moderately concentrated dispersions flocculate on a time scale ranging from minutes to hours. Small-angle X-ray scattering shows that the precipitation proceeds through a face-to-face stacking of the nanoplatelets due to long-ranged van der Waals attraction. To address this issue, we coated the platelets with a carboxylic acid-terminated polystyrene, thus achieving colloidal stability while retaining the optical properties of the platelets.
Collapse
Affiliation(s)
- Santanu Jana
- Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France
| | - Trang N T Phan
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR 7273, Site de St Jerome, Av. Escadrille Normandie Niemen - case 542, 13397 Marseille, France
| | - Cécile Bouet
- Laboratoire de Physique et d'Etude des Matériaux, CNRS, Université Pierre et Marie Curie, ESPCI, 10 rue Vauquelin, 75005 Paris, France
| | - Mickael D Tessier
- Laboratoire de Physique et d'Etude des Matériaux, CNRS, Université Pierre et Marie Curie, ESPCI, 10 rue Vauquelin, 75005 Paris, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France
| | - Benoit Dubertret
- Laboratoire de Physique et d'Etude des Matériaux, CNRS, Université Pierre et Marie Curie, ESPCI, 10 rue Vauquelin, 75005 Paris, France
| | - Benjamin Abécassis
- Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France
| |
Collapse
|
9
|
Joksimovic R, Mizukami M, Hojo D, Adschiri T, Kurihara K. Surface forces between mica surfaces confining inorganic nanoparticle dispersions and frictional properties. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abécassis B, Tessier MD, Davidson P, Dubertret B. Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. NANO LETTERS 2014; 14:710-5. [PMID: 24368017 DOI: 10.1021/nl4039746] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report on the self-assembly of colloidal CdSe nanoplatelets into micrometers long anisotropic needle-like superparticles (SPs), which are formed in solution upon addition of an antisolvent to a stable colloidal dispersion. Optical fluorescence microscopy, transmission electron microscopy, and small-angle X-ray scattering provide detailed structural characterization and show that each particle is composed of 10(6) nanoplatelets organized in highly aligned columns. Within the SPs, the nanoplatelets are stacked on each other to maximize the contact surface between the ligands. When deposited on a substrate, the planes of the platelets are oriented perpendicularly to its surface and the SPs exhibit polarized emission properties.
Collapse
Affiliation(s)
- Benjamin Abécassis
- Laboratoire de Physique des Solides, Univ. Paris-Sud , CNRS, UMR 8502, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
11
|
Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN. Synergistic Interactions between Grafted Hyaluronic Acid and Lubricin Provide Enhanced Wear Protection and Lubrication. Biomacromolecules 2013; 14:1669-77. [DOI: 10.1021/bm400327a] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saurabh Das
- Department of Chemical
Engineering, University of California, Santa Barbara, California 93106, United States
| | - Xavier Banquy
- Department of Chemical
Engineering, University of California, Santa Barbara, California 93106, United States
| | - Bruno Zappone
- Consiglio Nazionale
delle Ricerche, CNR-IPCF and Cemif.Cal, Università della Calabria, 31/C Rende (CS),
87036 Italy
| | - George W. Greene
- Institute
of Frontier
Materials, Deakin University, Burwood 3125, Australia
| | - Gregory D. Jay
- Department of Emergency
Medicine and Division of Engineering, Brown University, Providence, Rhode
Island, United States
| | - Jacob N. Israelachvili
- Department of Chemical
Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Pilkington GA, Briscoe WH. Nanofluids mediating surface forces. Adv Colloid Interface Sci 2012; 179-182:68-84. [PMID: 22795777 DOI: 10.1016/j.cis.2012.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/13/2012] [Accepted: 06/23/2012] [Indexed: 12/28/2022]
Abstract
Fluids containing nanostructures, known as nanofluids, are increasingly found in a wide array of applications due to their unique physical properties as compared with their base fluids and larger colloidal suspensions. With several tuneable parameters such as the size, shape and surface chemistry of nanostructures, as well as numerous base fluids available, nanofluids also offer a new paradigm for mediating surface forces. Other properties such as local surface plasmon resonance and size dependent magnetism of nanostructures also present novel mechanisms for imparting tuneable surface interactions. However, our fundamental understanding, experimentally and theoretically, of how these parameters might affect surface forces remains incomplete. Here we review recent results on equilibrium and dynamic surface forces between macroscopic surfaces in nanofluids, highlighting the overriding trends in the correlation between the physical parameters that characterise nanofluids and the surface forces they mediate. We also discuss the challenges that confront existing surface force knowledge as a result of this new paradigm.
Collapse
|
13
|
Belman N, Jin K, Golan Y, Israelachvili JN, Pesika NS. Origin of the contact angle hysteresis of water on chemisorbed and physisorbed self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14609-14617. [PMID: 22978680 DOI: 10.1021/la3026717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Self-assembled monolayers (SAMs) are known to form on a variety of substrates either via chemisorption (i.e., through chemical interactions such as a covalent bond) or physisorption (i.e., through physical interactions such as van der Waals forces or "ionic" bonds). We have studied the behavior and effects of water on the structures and surface energies of both chemisorbed octadecanethiol and physisorbed octadecylamine SAMs on GaAs using a number of complementary techniques including "dynamic" contact angle measurements (with important time and rate-dependent effects), AFM, and electron microscopy. We conclude that both molecular overturning and submolecular structural changes occur over different time scales when such SAMs are exposed to water. These results provide new insights into the time-dependent interactions between surfaces and colloids functionalized with SAMs when synthesized in or exposed to high humidity or bulk water or wetted by water. The study has implications for a wide array of phenomena and applications such as adhesion, friction/lubrication and wear (tribology), surfactant-solid surface interactions, the organization of surfactant-coated nanoparticles, etc.
Collapse
Affiliation(s)
- Nataly Belman
- Department of Chemical Engineering, and Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|