1
|
Pinto DEP, Šulc P, Sciortino F, Russo J. Design strategies for the self-assembly of polyhedral shells. Proc Natl Acad Sci U S A 2023; 120:e2219458120. [PMID: 37040398 PMCID: PMC10120017 DOI: 10.1073/pnas.2219458120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
The control over the self-assembly of complex structures is a long-standing challenge of material science, especially at the colloidal scale, as the desired assembly pathway is often kinetically derailed by the formation of amorphous aggregates. Here, we investigate in detail the problem of the self-assembly of the three Archimedean shells with five contact points per vertex, i.e., the icosahedron, the snub cube, and the snub dodecahedron. We use patchy particles with five interaction sites (or patches) as model for the building blocks and recast the assembly problem as a Boolean satisfiability problem (SAT) for the patch-patch interactions. This allows us to find effective designs for all targets and to selectively suppress unwanted structures. By tuning the geometrical arrangement and the specific interactions of the patches, we demonstrate that lowering the symmetry of the building blocks reduces the number of competing structures, which in turn can considerably increase the yield of the target structure. These results cement SAT-assembly as an invaluable tool to solve inverse design problems.
Collapse
Affiliation(s)
- Diogo E. P. Pinto
- Dipartimento di Fisica, Sapienza Università di Roma, Rome00185, Italy
| | - Petr Šulc
- Life and Medical Sciences (LIMES), University of Bonn, Bonn53121, Germany
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ85281
| | | | - John Russo
- Dipartimento di Fisica, Sapienza Università di Roma, Rome00185, Italy
| |
Collapse
|
2
|
Self-assembly in binary mixtures of spherical colloids. Adv Colloid Interface Sci 2022; 308:102748. [DOI: 10.1016/j.cis.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
3
|
Braz Teixeira R, de Las Heras D, Tavares JM, Telo da Gama MM. Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity. J Chem Phys 2021; 155:044903. [PMID: 34340383 DOI: 10.1063/5.0056652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We study theoretically the effect of size difference and that of gravity in the phase behavior of a binary mixture of patchy particles. The species, 2A and 3B, have two A and three B patches, respectively, and only bonds between patches A and B (AB bonds) are allowed. This model describes colloidal systems where the aggregation of particles (3B) is mediated and controlled by a second species, the linkers (2A) to which they bind strongly. Thermodynamic calculations are performed using Wertheim's perturbation theory with a hard sphere reference term that accounts for the difference in the size of the two species. Percolation lines are determined employing a generalized Flory-Stockmayer theory, and the effects of gravity are included through a local density approximation. The bulk phase diagrams are calculated, and all the stacking sequences generated in the presence of gravity are determined and classified in a stacking diagram. The relative size of the particles can be used to control the phase behavior of the mixture. An increase in the size of particles 3B, relative to the size of the linkers 2A, is found to promote mixing while keeping the percolating structures and, in certain cases, leads to changes in the stacking sequence under gravity.
Collapse
Affiliation(s)
- Rodrigo Braz Teixeira
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - José Maria Tavares
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Tavares JM, Antunes GC, Dias CS, Telo da Gama MM, Araújo NAM. Smoluchowski equations for linker-mediated irreversible aggregation. SOFT MATTER 2020; 16:7513-7523. [PMID: 32700709 DOI: 10.1039/d0sm00674b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a generalized Smoluchowski framework to study linker-mediated aggregation, where linkers and particles are explicitly taken into account. We assume that the bonds between linkers and particles are irreversible, and that clustering occurs through limited diffusion aggregation. The kernel is chosen by analogy with single-component diffusive aggregation but the clusters are distinguished by their number of particles and linkers. We found that the dynamics depends on three relevant factors, all tunable experimentally: (i) the ratio of the diffusion coefficients of particles and linkers; (ii) the relative number of particles and linkers; and (iii) the maximum number of linkers that may bond to a single particle. To solve the Smoluchoski equations analytically we employ a scaling hypothesis that renders the fraction of bondable sites of a cluster independent of the size of the cluster, at each instant. We perform numerical simulations of the corresponding lattice model to test this hypothesis. We obtain results for the asymptotic limit, and the time evolution of the bonding probabilities and the size distribution of the clusters. These findings are in agreement with experimental results reported in the literature and shed light on unexplained experimental observations.
Collapse
Affiliation(s)
- J M Tavares
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Instituto Superior de Engenharia de Lisboa, ISEL, Avenida Conselheiro Emídio Navarro, 1 1950-062 Lisboa, Portugal
| | - G C Antunes
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal and Max Planck Institute for Intelligent Systems, Stuttgart, Germany. and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - C S Dias
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - M M Telo da Gama
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - N A M Araújo
- Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Corezzi S, Fioretto D, De Michele C, Zaccarelli E, Sciortino F. Modeling the Crossover between Chemically and Diffusion-Controlled Irreversible Aggregation in a Small-Functionality Gel-Forming System. J Phys Chem B 2010; 114:3769-75. [DOI: 10.1021/jp911165b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. Corezzi
- Dipartimento di Fisica, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy, and Dipartimento di Fisica and CNR-ISC, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - D. Fioretto
- Dipartimento di Fisica, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy, and Dipartimento di Fisica and CNR-ISC, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - C. De Michele
- Dipartimento di Fisica, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy, and Dipartimento di Fisica and CNR-ISC, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - E. Zaccarelli
- Dipartimento di Fisica, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy, and Dipartimento di Fisica and CNR-ISC, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - F. Sciortino
- Dipartimento di Fisica, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy, and Dipartimento di Fisica and CNR-ISC, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Roma, Italy
| |
Collapse
|
6
|
Jamnik A. Effective interaction between large colloidal particles immersed in a bidisperse suspension of short-ranged attractive colloids. J Chem Phys 2009; 131:164111. [DOI: 10.1063/1.3253694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Russo J, Tartaglia P, Sciortino F. Reversible gels of patchy particles: role of the valence. J Chem Phys 2009; 131:014504. [PMID: 19586107 DOI: 10.1063/1.3153843] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We simulate a binary mixture of colloidal patchy particles with two and three patches, respectively, for several relative concentrations and hence relative average valences. For these limited-valence systems, it is possible to reach low temperatures, where the lifetime of the patch-patch interactions becomes longer than the observation time without encountering phase separation in a colloid-poor (gas) and a colloid rich (liquid) phase. The resulting arrested state is a fully connected long-lived network where particles with three patches provide the branching points connecting chains of two-patch particles. We investigate the effect of the valence on the structural and dynamic properties of the resulting gel and attempt to provide a theoretical description of the formation and of the resulting gel structure based on a combination of the Wertheim theory for associated liquids and the Flory-Stockmayer approach for modeling chemical gelation.
Collapse
Affiliation(s)
- John Russo
- Dipartimento di Fisica and INFM-CNR-SOFT, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy.
| | | | | |
Collapse
|