1
|
Bridges CA, Fu L, Yeow J, Huang X, Jackson M, Kuchel RP, Sterling JD, Baker SM, Lord MS. The interplay between endothelial glycocalyx maturity and both the toxicity and intracellular uptake of charged nanoparticles. Acta Biomater 2025; 196:293-306. [PMID: 40058617 DOI: 10.1016/j.actbio.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Nanoparticles are widely studied for delivering treatments to target tissues, but few have reached clinical use. Most nanoparticles encounter blood vessels on their way to target tissues. The inner surface of these vessels is lined with endothelial cells covered by a glycocalyx, an extracellular matrix rich in anionic glycans. The role of the glycocalyx in nanoparticle interactions is not well understood. Here, we demonstrate that endothelial cells need extended culture times to synthesize a mature glycocalyx. Our research shows that branched polyethyleneimine functionalized gold nanoparticles bind to endothelial cells expressing either a developing or mature glycocalyx, with the interaction involving hyaluronan and heparan sulfate. These nanoparticles are subsequently internalized. Similar results were seen with poly(L-arginine). A mature glycocalyx protects cells by reducing the toxicity of these cationic nanoparticles. In contrast, lipoic acid-functionalized gold nanoparticles are internalized by cells with a developing glycocalyx, but not a mature one. Poly(L-glutamic acid) only interacts with cells when major glycans in the glycocalyx are degraded. These findings highlight the complex relationship between nanoparticle charge and structure, and their effects on toxicity, binding, and uptake by endothelial cells. This offers important insights for improving nanoparticle interactions with blood vessels in health and disease. STATEMENT OF SIGNIFICANCE: Endothelial cells lining blood vessels form a barrier through which nanoparticles must cross to reach target tissues. These cells are covered with a layer called the glycocalyx, which is rich in anionic glycans. However, the role of the glycocalyx in how nanoparticles interact with cells remains underexplored. Our research revealed that cells with a mature glycocalyx internalize cationic nanoparticles and experience reduced cytotoxicity. Conversely, a mature glycocalyx prevents anionic nanoparticles from entering cells. These results suggest that the structure of both the nanoparticles and the glycocalyx should be considered in future studies to improve the use of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Claire A Bridges
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaojing Huang
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miriam Jackson
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James D Sterling
- College of Innovation, Entrepreneurship, and Economic Development, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Ertekin UE, Okur HI. Greasy Cations Bind to Neutral Macromolecules in Aqueous Solution. J Phys Chem Lett 2024; 15:6151-6157. [PMID: 38835205 PMCID: PMC11181456 DOI: 10.1021/acs.jpclett.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Ions influence the solution properties of macromolecules. Although much is known about anions, cationic effects are considered mostly in terms of weak interactions or exclusion from neutral interfaces. Herein, we have systematically studied the effect of quaternary tetraalkylammonium cations (NH4+, NMe4+, NEt4+, NPr4+, NBu4+) on the phase transition of poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution. Solubility measurements were coupled to 1H NMR and ATR-FTIR spectroscopic measurements. The solubility and NMR measurements revealed a direct binding between the greasiest cations and the isopropyl group of the macromolecule, evidenced from the nonlinear, Langmuir-type chemical shift response only at the isopropyl NMR signals with increasing salt concentrations. The ATR-FTIR measurements focusing on the amide oxygen showed that it is not the main direct-binding site. Additionally, the salting-out effects of the greasier cations correlate with their hydration entropies. These results demonstrate that the most weakly hydrated cations can bind to macromolecules as strongly as the weakly hydrated Hofmeister anions.
Collapse
Affiliation(s)
- Umay Eren Ertekin
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Turkey
| | - Halil Ibrahim Okur
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Turkey
- National
Nanotechnology Research Center (UNAM), Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Fu L, Bridges CA, Kim HN, Ding C, Bao Hou NC, Yeow J, Fok S, Macmillan A, Sterling JD, Baker SM, Lord MS. Cationic Polysaccharides Bind to the Endothelial Cell Surface Extracellular Matrix Involving Heparan Sulfate. Biomacromolecules 2024; 25:3850-3862. [PMID: 38775104 DOI: 10.1021/acs.biomac.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cationic polysaccharides have been extensively studied for drug delivery via the bloodstream, yet few have progressed to clinical use. Endothelial cells lining the blood vessel wall are coated in an anionic extracellular matrix called the glycocalyx. However, we do not fully comprehend the charged polysaccharide interactions with the glycocalyx. We reveal that the cationic polysaccharide poly(acetyl, arginyl) glucosamine (PAAG) exhibits the highest association with the endothelial glycocalyx, followed by dextran (neutral) and hyaluronan (anionic). Furthermore, we demonstrate that PAAG binds heparan sulfate (HS) within the glycocalyx, leading to intracellular accumulation. Using an in vitro glycocalyx model, we demonstrate a charge-based extent of association of polysaccharides with HS. Mechanistically, we observe that PAAG binding to HS occurs via a condensation reaction and functionally protects HS from degradation. Together, this study reveals the interplay between polysaccharide charge properties and interactions with the endothelial cell glycocalyx toward improved delivery system design and application.
Collapse
Affiliation(s)
- Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claire A Bridges
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catherine Ding
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicole Chiwei Bao Hou
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sandra Fok
- Katherina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander Macmillan
- Katherina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James D Sterling
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California 91711, United States
| | - Shenda M Baker
- Synedgen Inc, Claremont, California 91711, United States
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Hanke M, Dornbusch D, Tomm E, Grundmeier G, Fahmy K, Keller A. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants. NANOSCALE 2023; 15:16590-16600. [PMID: 37747200 DOI: 10.1039/d3nr02045b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The structural stability of DNA origami nanostructures in various chemical environments is an important factor in numerous applications, ranging from biomedicine and biophysics to analytical chemistry and materials synthesis. In this work, the stability of six different 2D and 3D DNA origami nanostructures is assessed in the presence of three different chaotropic salts, i.e., guanidinium sulfate (Gdm2SO4), guanidinium chloride (GdmCl), and tetrapropylammonium chloride (TPACl), which are widely employed denaturants. Using atomic force microscopy (AFM) to quantify nanostructural integrity, Gdm2SO4 is found to be the weakest and TPACl the strongest DNA origami denaturant, respectively. Despite different mechanisms of actions of the selected salts, DNA origami stability in each environment is observed to depend on DNA origami superstructure. This is especially pronounced for 3D DNA origami nanostructures, where mechanically more flexible designs show higher stability in both GdmCl and TPACl than more rigid ones. This is particularly remarkable as this general dependence has previously been observed under Mg2+-free conditions and may provide the possibility to optimize DNA origami design toward maximum stability in diverse chemical environments. Finally, it is demonstrated that melting temperature measurements may overestimate the stability of certain DNA origami nanostructures in certain chemical environments, so that such investigations should always be complemented by microscopic assessments of nanostructure integrity.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Daniel Dornbusch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Emilia Tomm
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
5
|
Linko V, Keller A. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301935. [PMID: 37093216 DOI: 10.1002/smll.202301935] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Programmable, custom-shaped, and nanometer-precise DNA origami nanostructures have rapidly emerged as prospective and versatile tools in bionanotechnology and biomedicine. Despite tremendous progress in their utilization in these fields, essential questions related to their structural stability under physiological conditions remain unanswered. Here, DNA origami stability is explored by strictly focusing on distinct molecular-level interactions. In this regard, the fundamental stabilizing and destabilizing ionic interactions as well as interactions involving various enzymes and other proteins are discussed, and their role in maintaining, modulating, or decreasing the structural integrity and colloidal stability of DNA origami nanostructures is summarized. Additionally, specific issues demanding further investigation are identified. This review - through its specific viewpoint - may serve as a primer for designing new, stable DNA objects and for adapting their use in applications dealing with physiological media.
Collapse
Affiliation(s)
- Veikko Linko
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, Aalto, 00076, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
6
|
Brăzdaru L, Staicu T, Albu Kaya MG, Chelaru C, Ghica C, Cîrcu V, Leca M, Ghica MV, Micutz M. 3D Porous Collagen Matrices-A Reservoir for In Vitro Simultaneous Release of Tannic Acid and Chlorhexidine. Pharmaceutics 2022; 15:pharmaceutics15010076. [PMID: 36678705 PMCID: PMC9865545 DOI: 10.3390/pharmaceutics15010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The treatment of wounds occurring accidentally or as a result of chronic diseases most frequently requires the use of appropriate dressings, mainly to ensure tissue regeneration/healing, at the same time as treating or preventing potential bacterial infections or superinfections. Collagen type I-based scaffolds in tandem with adequate antimicrobials can successfully fulfill these requirements. In this work, starting from the corresponding hydrogels, we prepared a series of freeze-dried atelocollagen type I-based matrices loaded with tannic acid (TA) and chlorhexidine digluconate (CHDG) as active agents with a broad spectrum of antimicrobial activity and also as crosslinkers for the collagen network. The primary aim of this study was to design an original and reliable algorithm to in vitro monitor and kinetically analyze the simultaneous release of TA and CHDG from the porous matrices into an aqueous solution of phosphate-buffered saline (PBS, pH 7.4, 37 °C) containing micellar carriers of a cationic surfactant (hexadecyltrimethylammonium bromide, HTAB) as a release environment that roughly mimics human extracellular fluids in living tissues. Around this central idea, a comprehensive investigation of the lyophilized matrices (morpho-structural characterization through FT-IR spectroscopy, scanning electron microscopy, swelling behavior, resistance against the collagenolytic action of collagenase type I) was carried out. The kinetic treatment of the release data displayed a preponderance of non-Fickian-Case II diffusion behavior, which led to a general anomalous transport mechanism for both TA and CHDG, irrespective of their concentrations. This is equivalent to saying that the release regime is not governed only by the gradient concentration of the releasing components inside and outside the matrix (like in ideal Fickian diffusion), but also, to a large extent, by the relaxation phenomena of the collagen network (determined, in turn, by its crosslinking degree induced by TA and CHDG) and the dynamic capacity of the HTAB micelles to solubilize the two antimicrobials. By controlling the degree of physical crosslinking of collagen with a proper content of TA and CHDG loaded in the matrix, a tunable, sustainable release profile can be obtained.
Collapse
Affiliation(s)
- Lavinia Brăzdaru
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Teodora Staicu
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Correspondence: (T.S.); (M.M.)
| | | | - Ciprian Chelaru
- Leather and Footwear Research Institute, 93 Ion Mincu St., 031215 Bucharest, Romania
| | - Corneliu Ghica
- National Institute of Materials Physics, 105 bis Atomistilor St., 077125 Magurele, Romania
| | - Viorel Cîrcu
- Department of Inorganic Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Minodora Leca
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia St., 020956 Bucharest, Romania
| | - Marin Micutz
- Department of Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Spl. Independenţei, 060021 Bucharest, Romania
- Correspondence: (T.S.); (M.M.)
| |
Collapse
|
7
|
Hu Y, Chen M, Qin C, Zhang J, Lu A. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Carbohydr Polym 2022; 292:119650. [DOI: 10.1016/j.carbpol.2022.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
|
8
|
Hanke M, Hansen N, Tomm E, Grundmeier G, Keller A. Time-Dependent DNA Origami Denaturation by Guanidinium Chloride, Guanidinium Sulfate, and Guanidinium Thiocyanate. Int J Mol Sci 2022; 23:ijms23158547. [PMID: 35955680 PMCID: PMC9368935 DOI: 10.3390/ijms23158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Guanidinium (Gdm) undergoes interactions with both hydrophilic and hydrophobic groups and, thus, is a highly potent denaturant of biomolecular structure. However, our molecular understanding of the interaction of Gdm with proteins and DNA is still rather limited. Here, we investigated the denaturation of DNA origami nanostructures by three Gdm salts, i.e., guanidinium chloride (GdmCl), guanidinium sulfate (Gdm2SO4), and guanidinium thiocyanate (GdmSCN), at different temperatures and in dependence of incubation time. Using DNA origami nanostructures as sensors that translate small molecular transitions into nanostructural changes, the denaturing effects of the Gdm salts were directly visualized by atomic force microscopy. GdmSCN was the most potent DNA denaturant, which caused complete DNA origami denaturation at 50 °C already at a concentration of 2 M. Under such harsh conditions, denaturation occurred within the first 15 min of Gdm exposure, whereas much slower kinetics were observed for the more weakly denaturing salt Gdm2SO4 at 25 °C. Lastly, we observed a novel non-monotonous temperature dependence of DNA origami denaturation in Gdm2SO4 with the fraction of intact nanostructures having an intermediate minimum at about 40 °C. Our results, thus, provide further insights into the highly complex Gdm–DNA interaction and underscore the importance of the counteranion species.
Collapse
|
9
|
Hanke M, Dornbusch D, Hadlich C, Rossberg A, Hansen N, Grundmeier G, Tsushima S, Keller A, Fahmy K. Anion-specific structure and stability of guanidinium-bound DNA origami. Comput Struct Biotechnol J 2022; 20:2611-2623. [PMID: 35685373 PMCID: PMC9163702 DOI: 10.1016/j.csbj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
While the folding of DNA into rationally designed DNA origami nanostructures has been studied extensively with the aim of increasing structural diversity and introducing functionality, the fundamental physical and chemical properties of these nanostructures remain largely elusive. Here, we investigate the correlation between atomistic, molecular, nanoscopic, and thermodynamic properties of DNA origami triangles. Using guanidinium (Gdm) as a DNA-stabilizing but potentially also denaturing cation, we explore the dependence of DNA origami stability on the identity of the accompanying anions. The statistical analyses of atomic force microscopy (AFM) images and circular dichroism (CD) spectra reveals that sulfate and chloride exert stabilizing and destabilizing effects, respectively, already below the global melting temperature of the DNA origami triangles. We identify structural transitions during thermal denaturation and show that heat capacity changes ΔCp determine the temperature sensitivity of structural damage. The different hydration shells of the anions and their potential to form Gdm+ ion pairs in concentrated salt solutions modulate ΔCp by altered wetting properties of hydrophobic DNA surface regions as shown by molecular dynamics simulations. The underlying structural changes on the molecular scale become amplified by the large number of structurally coupled DNA segments and thereby find nanoscopic correlations in AFM images.
Collapse
|
10
|
Chen J, Dai Y, Gong X, Zhang G. Cation-amino acid interactions: Implications for protein destabilization. Biochem Biophys Res Commun 2021; 548:47-52. [PMID: 33631673 DOI: 10.1016/j.bbrc.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/04/2021] [Indexed: 11/28/2022]
Abstract
The mechanism for protein stabilization or destabilization has long been an open quest. In the present study, we have studied the interactions between amino acids and guanidinium (Gdm+)/ammonium (NH4+) ions by using low field nuclear magnetic resonance (LF-NMR), where Gdm+ and NH4+ are denaturant and stabilizer for proteins, respectively. It shows that Gdm+ favors to bind to the thiol group or the hydroxyl group on the side chain but weakly interacts with the α-carboxyl group. In contrast, NH4+ prefers to bind to the α-carboxyl group but slightly interacts with the thiol group or the hydroxyl group on the side chain of amino acids. 1HNMR reveals the hydrogen bonding between NH4+ and the α-carboxyl group, which is not involved in the interactions between Gdm+ and cysteine. Our study demonstrates that the strong interactions between the denaturant and the sulfur atom or the disulfide bond promote the direct binding of the denaturant toward proteins, leading to the destabilization.
Collapse
Affiliation(s)
- Jiantao Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yingkang Dai
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, PR China.
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
11
|
Johnson EC, Gresham IJ, Prescott SW, Nelson A, Wanless EJ, Webber GB. The direction of influence of specific ion effects on a pH and temperature responsive copolymer brush is dependent on polymer charge. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Neal JF, Saha A, Zerkle MM, Zhao W, Rogers MM, Flood AH, Allen HC. Molecular Recognition and Hydration Energy Mismatch Combine To Inform Ion Binding Selectivity at Aqueous Interfaces. J Phys Chem A 2020; 124:10171-10180. [DOI: 10.1021/acs.jpca.0c09568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jennifer F. Neal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ankur Saha
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mia M. Zerkle
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mickey M. Rogers
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amar H. Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Heather C. Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Lteif S, Abou Shaheen S, Schlenoff JB. The Thiouronium Group for Ultrastrong Pairing Interactions between Polyelectrolytes. J Phys Chem B 2020; 124:10832-10840. [PMID: 33174752 DOI: 10.1021/acs.jpcb.0c07456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various charged groups may be used as a repeat unit in polyelectrolytes to provide physical interactions between oppositely charged polymers leading to phase separation. The materials formed thus are termed polyelectrolyte complexes or coacervates (PECs). The strength of pairing between positive, Pol+, and negative, Pol-, repeat units depends on the specific identity of the monomer repeat unit. In this work, the pairing strength of the thiouronium group, a cation closely related to guanidinium, is evaluated using a polythiouronium polyelectrolyte. Polymers containing guanidinium, notably polyarginine, a peptide, are known for their unusual behavior, such as the formation of like-charge ion pairs and hydrogen bonding. It is shown here that some of this behavior is carried over to polythiouroniums, which results in exceptionally strong interactions with polyanions such as polysulfonates and polycarboxylates. The resilience of the polythiouronium/Pol- interaction was evaluated using the buildup of polyelectrolyte multilayers at various salt concentrations and by breaking up preformed PECs with high concentrations of added salt. The thiouronium group even interacts strongly enough with polymeric zwitterions to enable complexation with this nominally weakly interacting, net-neutral polymer.
Collapse
Affiliation(s)
- Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
14
|
Competitive specific ion effects in mixed salt solutions on a thermoresponsive polymer brush. J Colloid Interface Sci 2020; 586:292-304. [PMID: 33189318 DOI: 10.1016/j.jcis.2020.10.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Grafted poly(ethylene glycol) methyl ether methacrylate (POEGMA) copolymer brushes change conformation in response to temperature ('thermoresponse'). In the presence of different ions the thermoresponse of these coatings is dramatically altered. These effects are complex and poorly understood with no all-inclusive predictive theory of specific ion effects. As natural environments are composed of mixed electrolytes, it is imperative we understand the interplay of different ions for future applications. We hypothesise anion mixtures from the same end of the Hofmeister series (same-type anions) will exhibit non-additive and competitive behaviour. EXPERIMENTS The behaviour of POEGMA brushes, synthesised via surface-initiated ARGET-ATRP, in both single and mixed aqueous electrolyte solutions was characterised with ellipsometry and neutron reflectometry as a function of temperature. FINDINGS In mixed fluoride and chloride aqueous electrolytes (salting-out ions), or mixed thiocyanate and iodide aqueous electrolytes (salting-in ions), a non-monotonic concentration-dependent influence of the two anions on the thermoresponse of the brush was observed. A new term, δ, has been defined to quantitively describe synergistic or antagonistic behaviour. This study determined the specific ion effects imparted by salting-out ions are dependent on available solvent molecules, whereas the influence of salting-in ions is dependent on the interactions of the anions and polymer chains.
Collapse
|
15
|
Dasari S, Mallik BS. Solubility and solvation free energy of a cardiovascular drug, LASSBio-294, in ionic liquids: A computational study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
17
|
The Hofmeister series: Specific ion effects in aqueous polymer solutions. J Colloid Interface Sci 2019; 555:615-635. [PMID: 31408761 DOI: 10.1016/j.jcis.2019.07.067] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Specific ion effects in aqueous polymer solutions have been under active investigation over the past few decades. The current state-of-the-art research is primarily focused on the understanding of the mechanisms through which ions interact with macromolecules and affect their solution stability. Hence, we herein first present the current opinion on the sources of ion-specific effects and review the relevant studies. This includes a summary of the molecular mechanisms through which ions can interact with polymers, quantification of the affinity of ions for the polymer surface, a thermodynamic description of the effects of salts on polymer stability, as well as a discussion on the different forces that contribute to ion-polymer interplay. Finally, we also highlight future research issues that call for further scrutiny. These include fundamental questions on the mechanisms of ion-specific effects and their correlation with polymer properties as well as a discussion on the specific ion effects in more complex systems such as mixed electrolyte solutions.
Collapse
|
18
|
Balamurugan K, Prakash M, Subramanian V. Theoretical Insights into the Role of Water Molecules in the Guanidinium-Based Protein Denaturation Process in Specific to Aromatic Amino Acids. J Phys Chem B 2019; 123:2191-2202. [PMID: 30672268 DOI: 10.1021/acs.jpcb.8b08968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent interactions between the guanidinium cation (Gdm+) and aromatic amino acids (AAs) in the water molecules have been studied using quantum chemical calculation and molecular dynamics (MD) simulations. Our studies show that there are two different modes of interactions between Gdm+ and AAs with and without water molecules. It is observed that nonhydrated Gdm+ interacts with AAs through N-H···π interactions, whereas hydrated clusters of Gdm+ are stabilized by stacking interactions with the help of the water-mediated hydrogen bond. Thus, different hydration patterns have significant effects on the predominant cation···π interactions in AAs-Gdm+ complexes. Findings from MD simulation elicit that the interaction pattern of Gdm+ with AAs varies as Phe < Tyr < Trp. Both the QM and MD calculations show a similar trend in the interaction of AAs with Gdm+. Moreover, the interaction of AAs with Gdm+ depends on the spatial orientation of AAs in the protein and the concomitant local structure, that is, the AAs present in the unstructured region of protein such as coils and bends exhibit higher binding for Gdm+ when compared to the AAs present in the structured region of the protein such as the α-helix and the β-sheet. Our study clearly reveals that H-bonded water molecules and the hydration pattern of Gdm+ as well as the positional presence of these AAs in the protein structure context play determining roles in the denaturation of protein by the Gdm+ cation.
Collapse
Affiliation(s)
- Kanagasabai Balamurugan
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600 020 , India
| | - Muthuramalingam Prakash
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600 020 , India
| | - Venkatesan Subramanian
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600 020 , India.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-CLRI Campus , Chennai 600 020 , India
| |
Collapse
|
19
|
Abstract
The ability of polyvalent anions to influence protein-protein interactions and protein net charge was investigated through solubility and turbidity experiments, determination of osmotic second virial coefficients ( B22), and ζ-potential values for lysozyme solutions. B22 values showed that all anions reduce protein-protein repulsion between positively charged lysozyme molecules, and those anions with higher net valencies are more effective. The polyvalent anions pyrophosphate and tripolyphosphate were observed to induce protein reentrant condensation, which has been previously observed with negatively charged proteins in the presence of trivalent cations. Reentrant condensation is a phenomenon in which low concentrations of polyvalent ions induce protein precipitation, but further increasing polyvalent ion concentration causes the protein precipitate to resolubilize. Interestingly, citrate does not induce lysozyme reentrant condensation despite having a similar charge, size, and shape to pyrophosphate. We observe qualitative differences in protein behavior when compared against negatively charged proteins in solutions of trivalent cations. The polyphosphate ions induce a much stronger protein-protein attraction, which correlates with the occurrence of a liquid-gel transition that replaces the liquid-liquid transition observed with trivalent cations. The results indicate that solutions of polyphosphate ions provide a model system for exploring the link between the protein-phase diagram and model interaction potentials and also highlight the importance that ion-specific effects can have on protein solubility.
Collapse
Affiliation(s)
- Jordan W Bye
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| |
Collapse
|
20
|
Ekholm V, Vazdar M, Mason PE, Bialik E, Walz MM, Öhrwall G, Werner J, Rubensson JE, Jungwirth P, Björneholm O. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing. J Chem Phys 2018; 148:144508. [PMID: 29655316 DOI: 10.1063/1.5024348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO42- ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO42- ions. Since SO42- ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO42- ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO42-, the TPA+ ions are instead enriched at the surface.
Collapse
Affiliation(s)
- Victor Ekholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Mario Vazdar
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Philip E Mason
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Erik Bialik
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Marie-Madeleine Walz
- Department of Cell and Molecular Biology, Computational Biology and Bioinformatics, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Gunnar Öhrwall
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Josephina Werner
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
21
|
Wang Y, Liu L, Chen P, Zhang L, Lu A. Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 2018; 20:14223-14233. [DOI: 10.1039/c8cp01268g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrophobic cations accumulate at the cellulose interface, favouring the physical dissolution of cellulose in aqueous quaternary ammonium hydroxides.
Collapse
Affiliation(s)
- Yang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lijuan Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Pan Chen
- Wallenberg Wood Science Center, and the Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
- State Key Laboratory of Pulp and Paper Engineering
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Ang Lu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
22
|
Goyal S, Chattopadhyay A, Kasavajhala K, Priyakumar UD. Role of Urea–Aromatic Stacking Interactions in Stabilizing the Aromatic Residues of the Protein in Urea-Induced Denatured State. J Am Chem Soc 2017; 139:14931-14946. [DOI: 10.1021/jacs.7b05463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Siddharth Goyal
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Aditya Chattopadhyay
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Koushik Kasavajhala
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Center for Computational
Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| |
Collapse
|
23
|
|
24
|
Das Mahanta D, Samanta N, Mitra RK. Decisive Role of Hydrophobicity on the Effect of Alkylammonium Chlorides on Protein Stability: A Terahertz Spectroscopic Finding. J Phys Chem B 2017; 121:7777-7785. [DOI: 10.1021/acs.jpcb.7b04088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasish Das Mahanta
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Nirnay Samanta
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Rajib Kumar Mitra
- Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
25
|
Do guanidinium and tetrapropylammonium ions specifically interact with aromatic amino acid side chains? Proc Natl Acad Sci U S A 2017; 114:1003-1008. [PMID: 28096375 DOI: 10.1073/pnas.1618071114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many ions are known to affect the activity, stability, and structural integrity of proteins. Although this effect can be generally attributed to ion-induced changes in forces that govern protein folding, delineating the underlying mechanism of action still remains challenging because it requires assessment of all relevant interactions, such as ion-protein, ion-water, and ion-ion interactions. Herein, we use two unnatural aromatic amino acids and several spectroscopic techniques to examine whether guanidinium chloride, one of the most commonly used protein denaturants, and tetrapropylammonium chloride can specifically interact with aromatic side chains. Our results show that tetrapropylammonium, but not guanidinium, can preferentially accumulate around aromatic residues and that tetrapropylammonium undergoes a transition at ∼1.3 M to form aggregates. We find that similar to ionic micelles, on one hand, such aggregates can disrupt native hydrophobic interactions, and on the other hand, they can promote α-helix formation in certain peptides.
Collapse
|
26
|
Liu L, Kou R, Liu G. Ion specificities of artificial macromolecules. SOFT MATTER 2016; 13:68-80. [PMID: 27906410 DOI: 10.1039/c6sm01773h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial macromolecules are well-defined synthetic polymers, with a relatively simple structure as compared to naturally occurring macromolecules. This review focuses on the ion specificities of artifical macromolecules. Ion specificities are influenced by solvent-mediated indirect ion-macromolecule interactions and also by direct ion-macromolecule interactions. In aqueous solutions, the role of water-mediated indirect ion-macromolecule interactions will be discussed. The addition of organic solvents to aqueous solutions significantly changes the ion specificities due to the formation of water-organic solvent complexes. For direct ion-macromolecule interactions, we will discuss specific ion-pairing interactions for charged macromolecules and specific ion-neutral site interactions for uncharged macromolecules. When the medium conditions change from dilute solutions to crowded environments, the ion specificities can be modified by either the volume exclusion effect, the variation of dielectric constant, or the interactions between ions, macromolecules, and crowding agents.
Collapse
Affiliation(s)
- Lvdan Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| | - Ran Kou
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| | - Guangming Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, P. R. China 230026.
| |
Collapse
|
27
|
Leontidis E. Chaotropic salts interacting with soft matter: Beyond the lyotropic series. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Meuzelaar H, Panman MR, Woutersen S. Guanidinium-Induced Denaturation by Breaking of Salt Bridges. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Meuzelaar H, Panman MR, Woutersen S. Guanidinium-Induced Denaturation by Breaking of Salt Bridges. Angew Chem Int Ed Engl 2015; 54:15255-9. [DOI: 10.1002/anie.201508601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/11/2022]
|
30
|
Carrazana-García JA, Cabaleiro-Lago EM, Campo-Cacharrón A, Rodríguez-Otero J. A theoretical study of ternary indole-cation-anion complexes. Org Biomol Chem 2015; 12:9145-56. [PMID: 25296040 DOI: 10.1039/c4ob01879f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous interactions of an anion and a cation with a π system were investigated by MP2 and M06-2X theoretical calculations. Indole was chosen as a model π system for its relevance in biological environments. Two different orientations of the anion, interacting with the N-H and with the C-H groups of indole, were considered. The four cations (Na(+), NH4(+), C(NH2)3(+) and N(CH3)4(+)) and the four anions (Cl(-), NO3(-), HCOO(-) and BF4(-)) included in the study are of biological interest. The total interaction energy of the ternary complexes was calculated and separated into its two- and three-body components and all of them are further divided into their electrostatic, exchange, repulsion, polarization and dispersion contributions using the local molecular orbital-energy decomposition analysis (LMO-EDA) methodology. The binding energy of the indole-cation-anion complexes depends on both ions, with the cation having the strongest effect. The intense cation-anion attraction determines the geometric and energetic features in all ternary complexes. These structures, with both ions on the same side of the π system, show an anti-cooperative interaction. However, the interaction is not only determined by electrostatics, but also the polarization contribution is important. Specific interactions like the one established between the anion and the N-H group of indole or the proton transfer between an acidic cation and a basic anion play a significant role in the energetics and the structure of particular complexes. The presence of the polar solvent as modelled with the polarizable continuum model (PCM) does not seem to have a significant effect on the geometry of the ternary complexes, but drastically weakens the interaction energy. Also, the strength of the interaction is reduced at a faster rate when the anion is pushed away, compared to the results obtained in the gas phase. The combination of PCM with the addition of one water molecule indicates that the PCM method properly reproduces the main energetic and geometrical changes, even at the quantitative level, but the explicit hydration allows refining the solvent effect and detecting cases that do not follow the general trend.
Collapse
Affiliation(s)
- Jorge A Carrazana-García
- Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela, Campus de Lugo, Avenida Alfonso X El Sabio s/n, Lugo 27002, Lugo, Spain.
| | | | | | | |
Collapse
|
31
|
Heiles S, Cooper RJ, DiTucci MJ, Williams ER. Hydration of guanidinium depends on its local environment. Chem Sci 2015; 6:3420-3429. [PMID: 28706704 PMCID: PMC5490459 DOI: 10.1039/c5sc00618j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023] Open
Abstract
Hydration of gaseous guanidinium (Gdm+) with up to 100 water molecules attached was investigated using infrared photodissociation spectroscopy in the hydrogen stretch region between 2900 and 3800 cm-1. Comparisons to IR spectra of low-energy computed structures indicate that at small cluster size, water interacts strongly with Gdm+ with three inner shell water molecules each accepting two hydrogen bonds from adjacent NH2 groups in Gdm+. Comparisons to results for tetramethylammonium (TMA+) and Na+ enable structural information for larger clusters to be obtained. The similarity in the bonded OH region for Gdm(H2O)20+vs. Gdm(H2O)100+ and the similarity in the bonded OH regions between Gdm+ and TMA+ but not Na+ for clusters with <50 water molecules indicate that Gdm+ does not significantly affect the hydrogen-bonding network of water molecules at large size. These results indicate that the hydration around Gdm+ changes for clusters with more than about eight water molecules to one in which inner shell water molecules only accept a single H-bond from Gdm+. More effective H-bonding drives this change in inner-shell water molecule binding to other water molecules. These results show that hydration of Gdm+ depends on its local environment, and that Gdm+ will interact with water even more strongly in an environment where water is partially excluded, such as the surface of a protein. This enhanced hydration in a limited solvation environment may provide new insights into the effectiveness of Gdm+ as a protein denaturant.
Collapse
Affiliation(s)
- Sven Heiles
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Richard J Cooper
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Matthew J DiTucci
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| | - Evan R Williams
- Department of Chemistry , University of California , B42 Hildebrand Hall , Berkeley , CA 94720 , USA .
| |
Collapse
|
32
|
Metrick MA, MacDonald G. Hofmeister ion effects on the solvation and thermal stability of model proteins lysozyme and myoglobin. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Cui D, Ou SC, Patel S. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface. J Phys Chem B 2015; 119:164-78. [PMID: 25536388 PMCID: PMC4291035 DOI: 10.1021/jp507203g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/21/2014] [Indexed: 01/16/2023]
Abstract
The notion of direct interaction between denaturing cosolvent and protein residues has been proposed in dialogue relevant to molecular mechanisms of protein denaturation. Here we consider the correlation between free energetic stability and induced fluctuations of an aqueous-hydrophobic interface between a model hydrophobically associating protein, HFBII, and two common protein denaturants, guanidinium cation (Gdm(+)) and urea. We compute potentials of mean force along an order parameter that brings the solute molecule close to the known hydrophobic region of the protein. We assess potentials of mean force for different relative orientations between the protein and denaturant molecule. We find that in both cases of guanidinium cation and urea relative orientations of the denaturant molecule that are parallel to the local protein-water interface exhibit greater stability compared to edge-on or perpendicular orientations. This behavior has been observed for guanidinium/methylguanidinium cations at the liquid-vapor interface of water, and thus the present results further corroborate earlier findings. Further analysis of the induced fluctuations of the aqueous-hydrophobic interface upon approach of the denaturant molecule indicates that the parallel orientation, displaying a greater stability at the interface, also induces larger fluctuations of the interface compared to the perpendicular orientations. The correlation of interfacial stability and induced interface fluctuation is a recurring theme for interface-stable solutes at hydrophobic interfaces. Moreover, observed correlations between interface stability and induced fluctuations recapitulate connections to local hydration structure and patterns around solutes as evidenced by experiment (Cooper et al., J. Phys. Chem. A 2014, 118, 5657.) and high-level ab initio/DFT calculations (Baer et al., Faraday Discuss 2013, 160, 89).
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Shu-Ching Ou
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
34
|
Kumar A, Rani A, Venkatesu P. A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of α-chymotrypsin. NEW J CHEM 2015. [DOI: 10.1039/c4nj01596g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct interactions between the anion and the catalytic amino acid residues lead to denaturation of CT.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | - Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
| | | |
Collapse
|
35
|
Cooper RJ, Heiles S, DiTucci MJ, Williams ER. Hydration of Guanidinium: Second Shell Formation at Small Cluster Size. J Phys Chem A 2014; 118:5657-66. [DOI: 10.1021/jp506429a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Richard J. Cooper
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Sven Heiles
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew J. DiTucci
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R. Williams
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
36
|
Cui D, Ou S, Peters E, Patel S. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces. J Phys Chem B 2014; 118:4490-504. [PMID: 24701961 PMCID: PMC4010293 DOI: 10.1021/jp4105294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/03/2014] [Indexed: 11/29/2022]
Abstract
We explore anion-induced interface fluctuations near protein-water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler ( J. Phys. Chem. B 2010 , 114 , 1954 - 1958 ). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein-water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid-vapor interfaces. We find that as in the case of a pure liquid-vapor interface, at the hydrophobic protein-water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid-vapor interfaces, we find that iodide induces larger fluctuations of the protein-water interface than chloride.
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Shuching Ou
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Eric Peters
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry and Department of Chemical and Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
|
38
|
Dempsey CE, Wright D, Colenso CK, Sessions RB, Hancox JC. Assessing hERG pore models as templates for drug docking using published experimental constraints: the inactivated state in the context of drug block. J Chem Inf Model 2014; 54:601-12. [PMID: 24471705 PMCID: PMC3977586 DOI: 10.1021/ci400707h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Many
structurally and therapeutically diverse drugs interact with
the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced
‘long QT syndrome’. Drug binding to hERG is often stabilized
by inactivation gating. In the absence of a crystal structure, hERG
pore homology models have been used to characterize drug interactions.
Here we assess potentially inactivated states of the bacterial K+ channel, KcsA, as templates for inactivated state hERG pore
models in the context of drug binding using computational docking.
Although Flexidock and GOLD docking produced low energy score poses
in the models tested, each method selected a MthK K+ channel-based
model over models based on the putative inactivated state KcsA structures
for each of the 9 drugs tested. The variety of docking poses found
indicates that an optimal arrangement for drug binding of aromatic
side chains in the hERG pore can be achieved in several different
configurations. This plasticity of the drug “binding site”
is likely to be a feature of the hERG inactivated state. The results
demonstrate that experimental data on specific drug interactions can
be used as structural constraints to assess and refine hERG homology
models.
Collapse
Affiliation(s)
- Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University of Bristol , University Walk, Bristol BS8 1TD, U.K
| | | | | | | | | |
Collapse
|
39
|
Wang L, Guo Y, Li P, Song Y. Anion-Specific Effects on the Assembly of Collagen Layers Mediated by Magnesium Ion on Mica Surface. J Phys Chem B 2014; 118:511-8. [DOI: 10.1021/jp405035x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Wang
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Yan Guo
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Pengcheng Li
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| | - Yonghai Song
- Key Laboratory
of Functional
Small Organic Molecule, Ministry of Education, College of Chemistry
and Chemical Engineering, Jiangxi Normal University, 99 Ziyang
Road, Nanchang 330022, China
| |
Collapse
|
40
|
Why Do Tetrapropylammonium Chloride and Sulphate Salts Destabilize the Native State of Globular Proteins? ScientificWorldJournal 2014; 2014:870106. [PMID: 24616650 PMCID: PMC3925590 DOI: 10.1155/2014/870106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 11/25/2022] Open
Abstract
It has recently been shown that aqueous solutions of tetrapropylammonium chloride and sulphate salts destabilize the folded conformation of Trp-peptides (Dempsey et al., 2011). This result is rationalized by the application of a statistical thermodynamic approach (Graziano, 2010). It is shown that the magnitude of the solvent-excluded volume effect, the main contribution for the native state stability, decreases in both aqueous 2 M TPACl solution and aqueous 1 M TPA2SO4 solution. This happens because TPA+ ions are so large in size and interact so weakly with water molecules, due to their very low charge density, to be able to counteract the electrostrictive effect of chloride and sulphate ions on the water structure, so that the density of their aqueous solutions is smaller or only slightly larger than that of water.
Collapse
|
41
|
Štěpánková V, Paterová J, Damborský J, Jungwirth P, Chaloupková R, Heyda J. Cation-Specific Effects on Enzymatic Catalysis Driven by Interactions at the Tunnel Mouth. J Phys Chem B 2013; 117:6394-402. [DOI: 10.1021/jp401506v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veronika Štěpánková
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
- International Clinical Research
Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jana Paterová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Damborský
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
- International Clinical Research
Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radka Chaloupková
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Masaryk University, Kamenice
5/A13, 625 00 Brno, Czech Republic
| | - Jan Heyda
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
42
|
Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD. Effects of Salts from the Hofmeister Series on the Conformational Stability, Aggregation Propensity, and Local Flexibility of an IgG1 Monoclonal Antibody. Biochemistry 2013; 52:3376-89. [DOI: 10.1021/bi400232p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ranajoy Majumdar
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - Prakash Manikwar
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - John M. Hickey
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - Hardeep S. Samra
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - Hasige A. Sathish
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - Steven M. Bishop
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - C. Russell Middaugh
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - David B. Volkin
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - David D. Weis
- Department
of Chemistry and R.
N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
43
|
Zhang L, Zhang J. Specific Ion–Protein Interactions Dictate Solubility Behavior of a Monoclonal Antibody at Low Salt Concentrations. Mol Pharm 2012; 9:2582-90. [DOI: 10.1021/mp300183a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Le Zhang
- Department of Analytical
and Formulation Sciences,
Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799,
United States
| | - Jifeng Zhang
- Department of Analytical
and Formulation Sciences,
Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799,
United States
| |
Collapse
|
44
|
Mason PE, Wernersson E, Jungwirth P. Accurate Description of Aqueous Carbonate Ions: An Effective Polarization Model Verified by Neutron Scattering. J Phys Chem B 2012; 116:8145-53. [DOI: 10.1021/jp3008267] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip E. Mason
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| | - Erik Wernersson
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610
Prague 6, Czech Republic
| |
Collapse
|
45
|
Collins KD. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys Chem 2012; 167:43-59. [DOI: 10.1016/j.bpc.2012.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/13/2023]
|
46
|
Oliveira JCA, Feldt J, Galamba N, Mata RA. Study of Specific Ion–Amino Acid Interactions through the Use of Local Correlation Methods. J Phys Chem A 2012; 116:5464-71. [DOI: 10.1021/jp301516b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- João C. A. Oliveira
- Institut für Physikalische
Chemie, Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Jonas Feldt
- Institut für Physikalische
Chemie, Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| | - Nuno Galamba
- Grupo de Física Matemática, Universidade de Lisboa, Av. Professor Gama Pinto 2,
1649-003 Lisboa, Portugal
| | - Ricardo A. Mata
- Institut für Physikalische
Chemie, Universität Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany
| |
Collapse
|
47
|
Duval JFL, Bera S, Michot LJ, Daillant J, Belloni L, Konovalov O, Pontoni D. X-ray reflectivity at polarized liquid-Hg-aqueous-electrolyte interface: challenging macroscopic approaches for ion-specificity issues. PHYSICAL REVIEW LETTERS 2012; 108:206102. [PMID: 23003158 DOI: 10.1103/physrevlett.108.206102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 06/01/2023]
Abstract
We report Angstrom-resolved x-ray reflectivity analysis of externally polarized liquid-Hg surface in contact with molar LiCl, LiBr, and MgSO4 aqueous electrolytes. Interpretation of reflectivity curves demonstrates a dependence of Hg-surface layering on both applied potential and ion nature. It further highlights how interfacial polarization degree impacts electron density profiles at a molecular scale. These profiles indicate accumulation of anions and cations at the Hg surface. Upon decrease of the potential from the point of zero charge, anions are gradually expelled from the Hg surface. The study challenges traditional thermodynamic approaches for deriving countercharge composition at the Hg-electrolyte-solution interface from macroscopic Hg-surface tension data. It further dismisses the long-standing approximation that assimilates the Hg surface to a smooth, perfect chemically inert conductor with a uniformly smeared-out surface charge density.
Collapse
Affiliation(s)
- Jérôme F L Duval
- Laboratoire Environnement et Minéralurgie, Université de Lorraine, CNRS-INPL UMR 7569, B.P. 40, 54501 Vandoeuvre Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ion specific influences on the stability and unfolding transitions of a naturally aggregating protein; RecA. Biophys Chem 2012; 163-164:56-63. [DOI: 10.1016/j.bpc.2012.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/13/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
49
|
Crevenna A, Naredi-Rainer N, Lamb D, Wedlich-Söldner R, Dzubiella J. Effects of Hofmeister ions on the α-helical structure of proteins. Biophys J 2012; 102:907-15. [PMID: 22385862 PMCID: PMC3283803 DOI: 10.1016/j.bpj.2012.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/20/2023] Open
Abstract
The molecular conformation of proteins is sensitive to the nature of the aqueous environment. In particular, the presence of ions can stabilize or destabilize (denature) protein secondary structure. The underlying mechanisms of these actions are still not fully understood. Here, we combine circular dichroism (CD), single-molecule Förster resonance energy transfer, and atomistic computer simulations to elucidate salt-specific effects on the structure of three peptides with large α-helical propensity. CD indicates a complex ion-specific destabilization of the α-helix that can be rationalized by using a single salt-free computer simulation in combination with the recently introduced scheme of ion-partitioning between nonpolar and polar peptide surfaces. Simulations including salt provide a molecular underpinning of this partitioning concept. Furthermore, our single-molecule Förster resonance energy transfer measurements reveal highly compressed peptide conformations in molar concentrations of NaClO(4) in contrast to strong swelling in the presence of GdmCl. The compacted states observed in the presence of NaClO(4) originate from a tight ion-backbone network that leads to a highly heterogeneous secondary structure distribution and an overall lower α-helical content that would be estimated from CD. Thus, NaClO(4) denatures by inducing a molten globule-like structure that seems completely off-pathway between a fully folded helix and a coil state.
Collapse
Affiliation(s)
- Alvaro H. Crevenna
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nikolaus Naredi-Rainer
- Physical Chemistry, Department for Chemistry and Biochemistry and Center for Nano Science (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Don C. Lamb
- Physical Chemistry, Department for Chemistry and Biochemistry and Center for Nano Science (CeNS), Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Roland Wedlich-Söldner
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joachim Dzubiella
- Physics Department T37, Technische Universität München, Garching, Germany
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Lo Nostro P, Ninham BW. Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 2012; 112:2286-322. [PMID: 22251403 DOI: 10.1021/cr200271j] [Citation(s) in RCA: 695] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pierandrea Lo Nostro
- Department of Chemistry and CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.
| | | |
Collapse
|