1
|
Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, Yi CL, Chen XQ. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe? Neurosci Bull 2023; 39:1481-1496. [PMID: 36884214 PMCID: PMC10533768 DOI: 10.1007/s12264-023-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Jing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian-Rong Liu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shang-Bin Yu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-La Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Di Rocco G, Bernini F, Battistuzzi G, Ranieri A, Bortolotti CA, Borsari M, Sola M. Hydrogen peroxide induces heme degradation and protein aggregation in human neuroglobin: roles of the disulfide bridge and hydrogen-bonding in the distal heme cavity. FEBS J 2023; 290:148-161. [PMID: 35866372 PMCID: PMC10087938 DOI: 10.1111/febs.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023]
Abstract
In the present study, human neuroglobin (hNgb) was found to undergo H2 O2 -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping. The absence of the disulfide bridge slows down the reaction further. Therefore, the disulfide bond-controlled accessibility of the heme site and the residues at position 44 and 67 affect the activation barrier of the reaction. Wild-type and mutated species form β-amyloid aggregates in the presence of H2 O2 producing globular structures. Furthermore, the C46A/C55A, Y44A, Y44F and Y44F/C46A/C55A variants yield potentially harmful fibrils. Finally, the nucleation and growth kinetics for the aggregation of the amyloid structures can be successfully described by the Finke-Watzky model.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marco Sola
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
3
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
4
|
Provasi D. Ligand-Binding Calculations with Metadynamics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2022:233-253. [PMID: 31396906 DOI: 10.1007/978-1-4939-9608-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
All-atom molecular dynamics simulations can capture the dynamic degrees of freedom that characterize molecular recognition, the knowledge of which constitutes the cornerstone of rational approaches to drug design and optimization. In particular, enhanced sampling algorithms, such as metadynamics, are powerful tools to dramatically reduce the computational cost required for a mechanistic description of the binding process. Here, we describe the essential details characterizing these simulation strategies, focusing on the critical step of identifying suitable reaction coordinates, as well as on the different analysis algorithms to estimate binding affinity and residence times. We conclude with a survey of published applications that provides explicit examples of successful simulations for several targets.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Impact of A90P, F106L and H64V mutations on neuroglobin stability and ligand binding kinetics. J Biol Inorg Chem 2018; 24:39-52. [DOI: 10.1007/s00775-018-1625-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
6
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
7
|
Colloc'h N, Carpentier P, Montemiglio LC, Vallone B, Prangé T. Mapping Hydrophobic Tunnels and Cavities in Neuroglobin with Noble Gas under Pressure. Biophys J 2017; 113:2199-2206. [PMID: 29108649 DOI: 10.1016/j.bpj.2017.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 01/27/2023] Open
Abstract
Internal cavities are crucial for conformational flexibility of proteins and can be mapped through noble gas diffusion and docking. Here we investigate the hydrophobic cavities and tunnel network in neuroglobin (Ngb), a hexacoordinated heme protein likely to be involved in neuroprotection, using crystallography under noble gas pressure, mostly at room temperature. In murine Ngb, a large internal cavity is involved in the heme sliding mechanism to achieve binding of gaseous ligands through coordination to the heme iron. In this study, we report that noble gases are hosted by two major sites within the internal cavity. We propose that these cavities could store oxygen and allow its relay in the heme proximity, which could correspond to NO location in the nitrite-reductase function of Ngb. Thanks to a recently designed pressurization cell using krypton at high pressure, a new gas binding site has been characterized that reveals an alternate pathway for gaseous ligands. A new gas binding site on the proximal side of the heme has also been characterized, using xenon pressure on a Ngb mutant (V140W) that binds CO with a similar rate and affinity to the wild-type, despite a reshaping of the internal cavity. Moreover, this study, to our knowledge, provides new insights into the determinants of the heme sliding mechanism, suggesting that the shift at the beginning of helix G precedes and drives this process.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie University, CERVOxy Team, Centre Cyceron, Caen, France.
| | - Philippe Carpentier
- CEA/DRF/BIG/CBM/BioCat LCBM CNRS UMR 5249, Université Grenoble Alpes, Grenoble, France; European Synchrotron Radiation Facility, Grenoble, France
| | - Laura C Montemiglio
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, Paris, France
| |
Collapse
|
8
|
Lee JH, Park SJ, Hariharasudhan G, Kim MJ, Jung SM, Jeong SY, Chang IY, Kim C, Kim E, Yu J, Bae S, You HJ. ID3 regulates the MDC1-mediated DNA damage response in order to maintain genome stability. Nat Commun 2017; 8:903. [PMID: 29026069 PMCID: PMC5638908 DOI: 10.1038/s41467-017-01051-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
MDC1 plays a critical role in the DNA damage response (DDR) by interacting directly with several factors including γ-H2AX. However, the mechanism by which MDC1 is recruited to damaged sites remains elusive. Here, we show that MDC1 interacts with a helix–loop–helix (HLH)-containing protein called inhibitor of DNA-binding 3 (ID3). In response to double-strand breaks (DSBs) in the genome, ATM phosphorylates ID3 at serine 65 within the HLH motif, and this modification allows a direct interaction with MDC1. Moreover, depletion of ID3 results in impaired formation of ionizing radiation (IR)-induced MDC1 foci, suppression of γ-H2AX-bound MDC1, impaired DSB repair, cellular hypersensitivity to IR, and genomic instability. Disruption of the MDC1–ID3 interaction prevents accumulation of MDC1 at sites of DSBs and suppresses DSB repair. Thus, our study uncovers an ID3-dependent mechanism of recruitment of MDC1 to DNA damage sites and suggests that the ID3–MDC1 interaction is crucial for DDR. MDC1 is a key component of the DNA damage response and interacts with several factors such as γ-H2AX. Here the authors show that MDC1 interacts with ID3, facilitating MDC1 recruitment to sites of damage and repair of breaks.
Collapse
Affiliation(s)
- Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea. .,Department of Cellular and Molecular Medicine, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea.
| | - Seon-Joo Park
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea.,Department of Premedical Sciences, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea
| | - Cheolhee Kim
- College of Pharmacy, Chosun University, 375 Seosuk-dong, Gwangju, 501-759, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, 375 Seosuk-dong, Gwangju, 501-759, Republic of Korea
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea. .,Department of Pharmacology, Chosun University School of medicine, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
9
|
Torabifard H, Cisneros GA. Computational investigation of O 2 diffusion through an intra-molecular tunnel in AlkB; influence of polarization on O 2 transport. Chem Sci 2017; 8:6230-6238. [PMID: 28989656 PMCID: PMC5628400 DOI: 10.1039/c7sc00997f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
E. Coli AlkB catalyzes the direct dealkylation of various alkylated bases in damaged DNA. The diffusion of molecular oxygen to the active site in AlkB is an essential step for the oxidative dealkylation activity. Despite detailed studies on the stepwise oxidation mechanism of AlkB, there is no conclusive picture of how O2 molecules reach the active site of the protein. Yu et al. (Nature, 439, 879) proposed the existence of an intra-molecular tunnel based on their initial crystal structures of AlkB. We have employed computational simulations to investigate possible migration pathways inside AlkB for O2 molecules. Extensive molecular dynamics (MD) simulations, including explicit ligand sampling and potential of mean force (PMF) calculations, have been performed to provide a microscopic description of the O2 delivery pathway in AlkB. Analysis of intra-molecular tunnels using the CAVER software indicates two possible pathways for O2 to diffuse into the AlkB active site. Explicit ligand sampling simulations suggests that only one of these tunnels provides a viable route. The free energy path for an oxygen molecule to travel along each of these tunnels has been determined with AMBER and AMOEBA. Both PMFs indicate passive transport of O2 from the surface of the protein. However, the inclusion of explicit polarization shows a very large barrier for diffusion of the co-substrate out of the active site, compared with the non-polarizable potential. In addition, our results suggest that the mutation of a conserved residue along the tunnel, Y178, has dramatic effects on the dynamics of AlkB and on the transport of O2 along the tunnel.
Collapse
Affiliation(s)
- Hedieh Torabifard
- Department of Chemistry , Wayne State University , Detroit , MI 48202 , USA
| | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , TX 76203 , USA .
| |
Collapse
|
10
|
Colloc'h N, Sacquin-Mora S, Avella G, Dhaussy AC, Prangé T, Vallone B, Girard E. Determinants of neuroglobin plasticity highlighted by joint coarse-grained simulations and high pressure crystallography. Sci Rep 2017; 7:1858. [PMID: 28500341 PMCID: PMC5431840 DOI: 10.1038/s41598-017-02097-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 11/09/2022] Open
Abstract
Investigating the effect of pressure sheds light on the dynamics and plasticity of proteins, intrinsically correlated to functional efficiency. Here we detail the structural response to pressure of neuroglobin (Ngb), a hexacoordinate globin likely to be involved in neuroprotection. In murine Ngb, reversible coordination is achieved by repositioning the heme more deeply into a large internal cavity, the “heme sliding mechanism”. Combining high pressure crystallography and coarse-grain simulations on wild type Ngb as well as two mutants, one (V101F) with unaffected and another (F106W) with decreased affinity for CO, we show that Ngb hinges around a rigid mechanical nucleus of five hydrophobic residues (V68, I72, V109, L113, Y137) during its conformational transition induced by gaseous ligand, that the intrinsic flexibility of the F-G loop appears essential to drive the heme sliding mechanism, and that residue Val 101 may act as a sensor of the interaction disruption between the heme and the distal histidine.
Collapse
Affiliation(s)
- Nathalie Colloc'h
- ISTCT CNRS UNICAEN CEA Normandie Univ., CERVOxy team, centre Cyceron, 14000, Caen, France.
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Giovanna Avella
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy.,BIOGEM Research Institute, Ariano Irpino, Italy
| | - Anne-Claire Dhaussy
- CRISTMAT UMR 6508 CNRS ENSICAEN UNICAEN Normandie Univ., 6 bd du Maréchal Juin, 14050, Caen, France
| | - Thierry Prangé
- LCRB, UMR 8015 CNRS Université Paris Descartes, 4 avenue de l'Observatoire, 75270, Paris, France
| | - Beatrice Vallone
- Instituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, 5 piazzale Aldo Moro, 00185, Roma, Italy
| | - Eric Girard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France.
| |
Collapse
|
11
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
12
|
Ebert MCCJC, Dürr SL, A. Houle A, Lamoureux G, Pelletier JN. Evolution of P450 Monooxygenases toward Formation of Transient Channels and Exclusion of Nonproductive Gases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian C. C. J. C. Ebert
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Simon L. Dürr
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| | - Armande A. Houle
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Guillaume Lamoureux
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montreal H4B 1R6, Canada
| | - Joelle N. Pelletier
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
13
|
Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:59-80. [PMID: 27567484 DOI: 10.1016/bs.apcsb.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins.
Collapse
|
14
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
15
|
Bocahut A, Delannoy JY, Long DR, Sotta P. Modeling Molecular Relaxation Mechanisms in Amorphous Polymers: Application to Polyamides. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b01963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Bocahut
- Advanced Polymers and Materials Department, Solvay, UMR5268, and ‡Laboratoire
Polymères et Matériaux Avancés, CNRS/Solvay,
UMR5268, Axel’One, 87 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Jean-Yves Delannoy
- Advanced Polymers and Materials Department, Solvay, UMR5268, and ‡Laboratoire
Polymères et Matériaux Avancés, CNRS/Solvay,
UMR5268, Axel’One, 87 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Didier R. Long
- Advanced Polymers and Materials Department, Solvay, UMR5268, and ‡Laboratoire
Polymères et Matériaux Avancés, CNRS/Solvay,
UMR5268, Axel’One, 87 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Paul Sotta
- Advanced Polymers and Materials Department, Solvay, UMR5268, and ‡Laboratoire
Polymères et Matériaux Avancés, CNRS/Solvay,
UMR5268, Axel’One, 87 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| |
Collapse
|
16
|
Yang Y, Allemand F, Guca E, Vallone B, Delbecq S, Roumestand C. (1)H, (15)N and (13)C backbone resonance assignments of murine met-neuroglobin, free and in complex with cyanide. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:153-156. [PMID: 24830543 DOI: 10.1007/s12104-014-9563-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Neuroglobin is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. We report here the resonance assignment of murine met-Neuroglobine, free and in complex with cyanide.
Collapse
Affiliation(s)
- Yinshan Yang
- CNRS UMR 5048, Centre de Biochimie Structurale, Université de Montpellier I and II, 29 rue de Navacelles, 34090, Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Morozov AN, Roach JP, Kotzer M, Chatfield DC. A possible mechanism for redox control of human neuroglobin activity. J Chem Inf Model 2014; 54:1997-2003. [PMID: 24855999 PMCID: PMC4114473 DOI: 10.1021/ci5002108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin (Ngb) promotes neuron survival under hypoxic/ischemic conditions. In vivo and in vitro assays provide evidence for redox-regulated functioning of Ngb. On the basis of X-ray crystal structures and our MD simulations, a mechanism for redox control of human Ngb (hNgb) activity via the influence of the CD loop on the active site is proposed. We provide evidence that the CD loop undergoes a strand-to-helix transition when the external environment becomes sufficiently oxidizing, and that this CD loop conformational transition causes critical restructuring of the active site. We postulate that the strand-to-helix mechanics of the CD loop allows hNgb to utilize the lability of Cys46/Cys55 disulfide bonding and of the Tyr44/His64/heme propionate interaction network for redox-controlled functioning of hNgb.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Guimarães BG, Hamdane D, Lechauve C, Marden MC, Golinelli-Pimpaneau B. The crystal structure of wild-type human brain neuroglobin reveals flexibility of the disulfide bond that regulates oxygen affinity. ACTA ACUST UNITED AC 2014; 70:1005-14. [PMID: 24699645 DOI: 10.1107/s1399004714000078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022]
Abstract
Neuroglobin plays an important function in the supply of oxygen in nervous tissues. In human neuroglobin, a cysteine at position 46 in the loop connecting the C and D helices of the globin fold is presumed to form an intramolecular disulfide bond with Cys55. Rupture of this disulfide bridge stabilizes bi-histidyl haem hexacoordination, causing an overall decrease in the affinity for oxygen. Here, the first X-ray structure of wild-type human neuroglobin is reported at 1.74 Å resolution. This structure provides a direct observation of two distinct conformations of the CD region containing the intramolecular disulfide link and highlights internal cavities that could be involved in ligand migration and/or are necessary to enable the conformational transition between the low and high oxygen-affinity states following S-S bond formation.
Collapse
Affiliation(s)
- Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190 Gif-sur-Yvette, France
| | - Djemel Hamdane
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christophe Lechauve
- Inserm U779, Université Paris XI, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Michael C Marden
- Inserm U779, Université Paris XI, 78 Rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Omar SA, Webb AJ. Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol 2014; 73:57-69. [PMID: 24486197 DOI: 10.1016/j.yjmcc.2014.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Inorganic nitrite, a metabolite of endogenously produced nitric oxide (NO) from NO synthases (NOS), provides the largest endocrine source of directly bioavailable NO. The conversion of nitrite to NO occurs mainly through enzymatic reduction, mediated by a range of proteins, including haem-globins, molybdo-flavoproteins, mitochondrial proteins, cytochrome P450 enzymes, and NOS. Such nitrite reduction is particularly favoured under hypoxia, when endogenous formation of NO from NOS is impaired. Under normoxic conditions, the majority of these nitrite reductases also scavenge NO, or diminish its bioavailability via reactive oxygen species (ROS) production, suggesting an intricate balance. Moreover, nitrite, whether produced endogenously, or derived from exogenous nitrite or nitrate administration (including dietary sources via the Nitrate-Nitrite-NO pathway) beneficially modulates many key cardiovascular pathological processes. In this review, we highlight the landmark studies which revealed nitrite's function in biological systems, and inspect its evolving role in cardiovascular protection. Whilst these effects have mainly been ascribed to the activity of one or more nitrite reductases, we also discuss newly-identified mechanisms, including nitrite anhydration, the involvement of s-nitrosothiols, nitro-fatty acids, and direct nitrite normoxic signalling, involving modification of mitochondrial structure and function, and ROS production. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Sami A Omar
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, 4th Floor North Wing, St. Thomas' Hospital, London SE1 7EH, UK; Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, 4th Floor North Wing, St. Thomas' Hospital, London SE1 7EH, UK; Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
21
|
Sacquin-Mora S. Motions and mechanics: investigating conformational transitions in multi-domain proteins with coarse-grain simulations. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.843176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
22
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
23
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
24
|
Newhouse EI, Newhouse JS, Alam M. Molecular dynamics study of hell's gate globin I (HGbI) from a methanotrophic extremophile: oxygen migration through a large cavity. J Mol Model 2013; 19:2265-71. [PMID: 23377896 DOI: 10.1007/s00894-012-1739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022]
Abstract
Hell's gate globin I (HGbI), a heme-containing protein from the extremophile Methylacidiphilum infernorum, has fast oxygen-binding/slow release characteristics due to its distal residues Gln and Tyr. The combination of Gln/Tyr distal iron coordination, adaptation to extreme environmental conditions, and lack of a D helix suggests that ligand migration in HGbI differs from other previously studied globins. Locally enhanced molecular dynamics trajectories of oxygen migration indicate a large internal cavity. This may increase the tendency of oxygen to exit from portals other than the most direct exit from the space near the heme. Oxygen may reside transiently in shallow surface depressions around the exits. Such surface trapping may enhance both oxygen uptake by increasing contact time between molecules, and decrease release by increasing the probability of oxygen reentry from the vicinity of the portal.
Collapse
|
25
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Conformational dynamics in human neuroglobin: effect of His64, Val68, and Cys120 on ligand migration. Biochemistry 2012; 51:9984-94. [PMID: 23176629 DOI: 10.1021/bi301016u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroglobin belongs to the family of hexacoordinate hemoglobins and has been implicated in the protection of neuronal tissue under hypoxic and ischemic conditions. Here we present transient absorption and photoacoustic calorimetry studies of CO photodissociation and bimolecular rebinding to neuroglobin focusing on the ligand migration process and the role of distal pocket residues (His64 and Val68) and two Cys residues (Cys55 and Cys120). Our results indicate that His64 has a minor impact on the migration of CO between the distal heme pocket and protein exterior, whereas the Val68 side chain regulates the transition of the photodissociated ligand between the distal pocket and internal hydrophobic cavities, which is evident from the increased geminate quantum yield in this mutated protein (Φ(gem) = 0.32 for WT and His64Gln, and Φ(gem) = 0.85 for Val68Phe). The interface between helix G and the A-B loop provides an escape pathway for the photodissociated ligand, which is evident from a decrease in the reaction enthalpy for the transition between the CO-bound hNgb and five-coordinate hNgb in the Cys120Ser mutant (ΔH = -3 ± 4 kcal mol(-1)) compared to that of the WT protein (ΔH = 20 ± 4 kcal mol(-1)). The extensive electrostatic/hydrogen binding network that includes heme propionate groups, Lys67, His64, and Tyr44 not only restricts the heme binding but also modulates the energetics of binding of CO to the five-coordinate hNgb as substitution of His64 with Gln leads to an endothermic association of CO with the five-coordinate hNgb (ΔH = 6 ± 3 kcal mol(-1)).
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
26
|
Giordano D, Boron I, Abbruzzetti S, Van Leuven W, Nicoletti FP, Forti F, Bruno S, Cheng CHC, Moens L, di Prisco G, Nadra AD, Estrin D, Smulevich G, Dewilde S, Viappiani C, Verde C. Biophysical characterisation of neuroglobin of the icefish, a natural knockout for hemoglobin and myoglobin. Comparison with human neuroglobin. PLoS One 2012; 7:e44508. [PMID: 23226490 PMCID: PMC3513292 DOI: 10.1371/journal.pone.0044508] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe(2+) form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms.
Collapse
Affiliation(s)
| | - Ignacio Boron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Stefania Abbruzzetti
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Wendy Van Leuven
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Francesco P. Nicoletti
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Flavio Forti
- Facultat de Farmacia, Departament de Fisicoquímica and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Stefano Bruno
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | - C-H. Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Luc Moens
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | | | - Alejandro D. Nadra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Sesto Fiorentino (FI), Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Bari, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, PPES, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Cristiano Viappiani
- Department of Physics, University of Parma, NEST Istituto Nanoscienze-CNR, Parma, Italy
| | - Cinzia Verde
- Institute of Protein Biochemistry, CNR, Naples, Italy
| |
Collapse
|
27
|
Bjørlykke GA, Kvamme BO, Slinde E, Raae AJ. Cloning, expression and purification of Atlantic salmon (Salmo salar, L.) neuroglobin. Protein Expr Purif 2012; 86:151-6. [DOI: 10.1016/j.pep.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022]
|
28
|
Bocahut A, Derrien V, Bernad S, Sebban P, Sacquin-Mora S, Guittet E, Lescop E. Heme orientation modulates histidine dissociation and ligand binding kinetics in the hexacoordinated human neuroglobin. J Biol Inorg Chem 2012; 18:111-22. [PMID: 23135388 PMCID: PMC3535368 DOI: 10.1007/s00775-012-0956-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/21/2012] [Indexed: 11/05/2022]
Abstract
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.
Collapse
Affiliation(s)
- Anthony Bocahut
- Laboratoire de Chimie Physique, UMR 8000, CNRS, Université Paris-Sud 11, Bât. 350, 91405 Orsay, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Shadrina MS, English AM, Peslherbe GH. Effective Simulations of Gas Diffusion Through Kinetically Accessible Tunnels in Multisubunit Proteins: O2 Pathways and Escape Routes in T-state Deoxyhemoglobin. J Am Chem Soc 2012; 134:11177-84. [DOI: 10.1021/ja300903c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Ann M. English
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Gilles H. Peslherbe
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
30
|
Zhang P, Małolepsza E, Straub JE. Dynamics of Methionine Ligand Rebinding in Cytochrome c. J Phys Chem B 2012; 116:6980-90. [DOI: 10.1021/jp300783j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ping Zhang
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| | - Edyta Małolepsza
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| | - John E. Straub
- Department
of Chemistry, Boston University, Boston,
Massachusetts 02215, United States
| |
Collapse
|
31
|
Drummond ML, Wilson AK, Cundari TR. Carbon Dioxide Migration Pathways in Proteins. J Phys Chem Lett 2012; 3:830-833. [PMID: 26286405 DOI: 10.1021/jz3001085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Some of the most important biological processes, such as carbon fixation, are dependent on protein-gas interactions. The motion of CO2 through the enzyme phosphoenolpyruvate carboxykinase was investigated using extensive all-atom molecular dynamics simulations. Three discrete migration pathways were located, suggesting the protein directs the movement of CO2. The chemical nature of these pathways is discussed, as are their biotechnological ramifications.
Collapse
Affiliation(s)
- Michael L Drummond
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| | - Angela K Wilson
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| | - Thomas R Cundari
- Center for Advanced Scientific Computing and Modeling (CASCaM), Department of Chemistry, University of North Texas, Denton, Texas 76203-5070, United States
| |
Collapse
|
32
|
Bocahut A, Bernad S, Sebban P, Sacquin-Mora S. Frontier Residues Lining Globin Internal Cavities Present Specific Mechanical Properties. J Am Chem Soc 2011; 133:8753-61. [DOI: 10.1021/ja202587a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony Bocahut
- Laboratoire de Biochimie Théorique, UMR 9080 CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Bernad
- Laboratoire de Chimie Physique, CNRS UMR8000, Bât. 350, Université Paris-sud, 91405 Orsay, France
| | - Pierre Sebban
- Laboratoire de Chimie Physique, CNRS UMR8000, Bât. 350, Université Paris-sud, 91405 Orsay, France
- Université des Sciences et des Technologies de Hanoi, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UMR 9080 CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
33
|
Forti F, Boechi L, Estrin DA, Marti MA. Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins. J Comput Chem 2011; 32:2219-31. [DOI: 10.1002/jcc.21805] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 03/06/2011] [Indexed: 12/30/2022]
|
34
|
Anselmi M, Di Nola A, Amadei A. Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations. J Phys Chem B 2011; 115:2436-46. [PMID: 21332165 DOI: 10.1021/jp110833v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroglobin (Ngb) is a globular protein that reversibly binds small ligands at the six coordination position of the heme. With respect to other globins similar to myoglobin, Ngb displays some peculiarities as the topological reorganization of the internal cavities coupled to the sliding of the heme, or the binding of the endogenous distal histidine to the heme in the absence of an exogenous ligand. In this Article, by using multiple (independent) molecular dynamics trajectories (about 500 ns in total), the migration pathways of photolized carbon monoxide (CO) within solvated Ngb were analyzed, and a quantitative description of CO migration and corresponding kinetics was obtained. MD results, combined with quantum mechanical calculations on the CO-heme binding-unbinding reaction step in Ngb, allowed construction of a quantitative model representing the relevant steps of CO migration and rebinding.
Collapse
|
35
|
Barducci A, Bonomi M, Parrinello M. Metadynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.31] [Citation(s) in RCA: 712] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alessandro Barducci
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Lugano, Switzerland
| | - Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Lugano, Switzerland
| | - Michele Parrinello
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Lugano, Switzerland
| |
Collapse
|
36
|
Biarnés X, Bongarzone S, Vargiu AV, Carloni P, Ruggerone P. Molecular motions in drug design: the coming age of the metadynamics method. J Comput Aided Mol Des 2011; 25:395-402. [PMID: 21327922 DOI: 10.1007/s10822-011-9415-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 01/28/2011] [Indexed: 01/25/2023]
Abstract
Metadynamics is emerging as a useful free energy method in physics, chemistry and biology. Recently, it has been applied also to investigate ligand binding to biomolecules of pharmacological interest. Here, after introducing the basic idea of the method, we review applications to challenging targets for pharmaceutical intervention. We show that this methodology, especially when combined with a variety of other computational approaches such as molecular docking and/or molecular dynamics simulation, may be useful to predict structure and energetics of ligand/target complexes even when the targets lack a deep binding cavity, such as DNA and proteins undergoing fibrillation in neurodegenerative diseases. Furthermore, the method allows investigating the routes of molecular recognition and the associated binding energy profiles, providing a molecular interpretation to experimental data.
Collapse
Affiliation(s)
- Xevi Biarnés
- International School for Advanced Studies, Trieste, Italy
| | | | | | | | | |
Collapse
|
37
|
Time resolved thermodynamics associated with ligand photorelease in heme peroxidases and globins: Open access channels versus gated ligand release. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1065-76. [PMID: 21278003 DOI: 10.1016/j.bbapap.2011.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
|
38
|
Xu J, Yin G, Du W. Distal mutation modulates the heme sliding in mouse neuroglobin investigated by molecular dynamics simulation. Proteins 2010; 79:191-202. [DOI: 10.1002/prot.22872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Arroyo-Mañez P, Bikiel DE, Boechi L, Capece L, Di Lella S, Estrin DA, Martí MA, Moreno DM, Nadra AD, Petruk AA. Protein dynamics and ligand migration interplay as studied by computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1054-64. [PMID: 20797453 DOI: 10.1016/j.bbapap.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Since proteins are dynamic systems in living organisms, the employment of methodologies contemplating this crucial characteristic results fundamental to allow revealing several aspects of their function. In this work, we present results obtained using classical mechanical atomistic simulation tools applied to understand the connection between protein dynamics and ligand migration. Firstly, we will present a review of the different sampling schemes used in the last years to obtain both ligand migration pathways and the thermodynamic information associated with the process. Secondly, we will focus on representative examples in which the schemes previously presented are employed, concerning the following: i) ligand migration, tunnels, and cavities in myoglobin and neuroglobin; ii) ligand migration in truncated hemoglobin members; iii) NO escape and conformational changes in nitrophorins; iv) ligand selectivity in catalase and hydrogenase; and v) larger ligand migration: the P450 and haloalkane dehalogenase cases. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Pau Arroyo-Mañez
- Departamento de Química Inorgánica, Analítica y Química-Física (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. Probing the role of the internal disulfide bond in regulating conformational dynamics in neuroglobin. Biophys J 2010; 99:L16-8. [PMID: 20643048 PMCID: PMC2905123 DOI: 10.1016/j.bpj.2010.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/05/2010] [Accepted: 04/19/2010] [Indexed: 11/20/2022] Open
Abstract
In this report, we demonstrate that the internal disulfide bridge in human neuroglobin modulates structural changes associated with ligand photo-dissociation from the heme active site. This is evident from time-resolved photothermal studies of CO photo-dissociation, which reveal a 13.4+/-0.9 mL mol(-1) volume expansion upon ligand photo-release from human neuroglobin, whereas the CO dissociation from rat neuroglobin leads to a significantly smaller volume change (DeltaV=4.6+/-0.3 mL mol(-1)). Reduction of the internal disulfide bond in human neuroglobin leads to conformational changes (reflected by DeltaV) nearly identical to those observed for rat Ngb. Our data favor the hypothesis that the disulfide bond between Cys46 and Cys55 modulates the functioning of human neuroglobin.
Collapse
Affiliation(s)
- Luisana Astudillo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| | - Sophie Bernad
- University Paris-Sud, Laboratoire de Chimie-Physique, Faculté d'Orsay, Orsay cedex, France
- CNRS, Orsay, France
| | - Valérie Derrien
- University Paris-Sud, Laboratoire de Chimie-Physique, Faculté d'Orsay, Orsay cedex, France
- CNRS, Orsay, France
| | - Pierre Sebban
- University Paris-Sud, Laboratoire de Chimie-Physique, Faculté d'Orsay, Orsay cedex, France
- CNRS, Orsay, France
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida
| |
Collapse
|