1
|
Atar M, Taspinar Ö, Hanft S, Goldfuss B, Schmalz HG, Griesbeck AG. Hydrogen Peroxide Sensors Based on Fluorescence Quenching of the 2-AminobenzimidazoleFluorophore. J Org Chem 2019; 84:15972-15977. [PMID: 31769288 DOI: 10.1021/acs.joc.9b02262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fluorescence emission of the parent 2-aminobenzimidazole (ABZ, 1), the mono- and disubstituted derivatives (2, 3), 2-aminonaphthoimidazole (4), and 4-amino dinaphthodiazepine 5 (λem = 315-400 nm) is strongly quenched in the presence of aqueous hydrogen peroxide. The quenching process is dual: for diazepine 5, quenching is dynamic at lower H2O2 concentrations with linear reduction of the fluorescence lifetime from 4.3 to 2.6 ns. At higher H2O2 concentrations, a second species appears in the absorption and emission spectra with fluorescence lifetimes of 1.3 ns, indicating the formation of a new (ground-state) hydrogen-bonded ABZ-H2O2 complex (static quenching). Sensors 1 and 2 show also dual quenching that fits with a static 1:1 and 1:2 model with K1:1 = 8(11) M-1 and K1:2 = 21(147) M-1 for 1(2). The formation of a 1:2 complex (1:(H2O2)2) is also supported by density functional theory (DFT) calculations and spectra simulations.
Collapse
Affiliation(s)
- Murat Atar
- Department of Chemistry , University of Cologne , 50939 Köln , Germany
| | - Ömer Taspinar
- Department of Chemistry , University of Cologne , 50939 Köln , Germany
| | - Sebastian Hanft
- Department of Chemistry , University of Cologne , 50939 Köln , Germany
| | - Bernd Goldfuss
- Department of Chemistry , University of Cologne , 50939 Köln , Germany
| | | | - Axel G Griesbeck
- Department of Chemistry , University of Cologne , 50939 Köln , Germany
| |
Collapse
|
2
|
Katagi T. Direct photolysis mechanism of pesticides in water. JOURNAL OF PESTICIDE SCIENCE 2018; 43:57-72. [PMID: 30363143 PMCID: PMC6140697 DOI: 10.1584/jpestics.d17-081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/13/2018] [Indexed: 05/14/2023]
Abstract
Photodegradation is one of the most important abiotic transformations for pesticides in the aquatic environment, and the high energy of sunlight causes characteristic reactions such as bond scission, cyclization, and rearrangement, which are scarcely observed in hydrolysis and microbial degradation. This review deals with direct photolysis via excitation of a pesticide by absorbing natural or artificial sunlight in order to know its basic photochemistry, and indirect photolysis meaning either sensitization by dissolved organic matters or oxidation by reactive oxygen species is basically excluded. Several experimental approaches including spectroscopic techniques together with theoretical calculations are first discussed from the viewpoint of the reaction mechanisms in direct photolysis. Then, the typical photoreactions of pesticides are summarized by chemical classes and/or functional groups and discussed as far as possible in relation to their mechanisms.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
3
|
Thiaré D, Khonté A, Diop A, Cissé L, Coly A, Tine A, Delattre F. Determination of ground and excited state dipole moments of amino-benzimidazole by solvatochromic shift methods and theoretical calculations. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.07.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Abstract
In this chapter, most of the reported work deals with the photochemistry of carbonyl compounds; however, the photoreactions of other functions, such as the photo-Claisen rearrangement or the photocleavage of cyclic ethers, are also included. In the present volume, time coverage is 2010–2011, and only original research articles are quoted. In general, reviews or purely theoretical calculations are not systematically included. As usually, the material is organized according to established types of reactions (e.g., Norrish I/II, hydrogen abstraction, Paternò-Büchi, photoelimination, photo-Fries/photo-Claisen, etc.). After presenting the basic photochemical aspects, more specific findings are reported. They include synthetic applications, stereoselectivity, and biological or technological implications. Next, the attention is focused on photochemical reactions in anisotropic media, including (micro)heterogeneous or supramolecular systems, solid matrixes or fully organized crystals. Finally, mechanistic studies based on direct experimental evidence are highlighted, especially when transient absorption spectroscopy or related ultrafast detection are employed.
Collapse
Affiliation(s)
- M. Consuelo Jiménez
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC Universidad Politécnica de Valencia camino de Vera s/n, E-46022 Valencia Spain
| | - Miguel A. Miranda
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC Universidad Politécnica de Valencia camino de Vera s/n, E-46022 Valencia Spain
| |
Collapse
|
5
|
Jornet D, Bartovský P, Domingo LR, Tormos R, Miranda MA. Experimental and Theoretical Studies on the Mechanism of Photochemical Hydrogen Transfer from 2-Aminobenzimidazole to nπ* and ππ*Aromatic Ketones. J Phys Chem B 2010; 114:11920-6. [DOI: 10.1021/jp1053327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dolors Jornet
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, E-46022 Valencia, Spain, and Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E 46100 Burjassot, Valencia, Spain
| | - Pavel Bartovský
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, E-46022 Valencia, Spain, and Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E 46100 Burjassot, Valencia, Spain
| | - Luis R. Domingo
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, E-46022 Valencia, Spain, and Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E 46100 Burjassot, Valencia, Spain
| | - Rosa Tormos
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, E-46022 Valencia, Spain, and Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E 46100 Burjassot, Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, E-46022 Valencia, Spain, and Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, E 46100 Burjassot, Valencia, Spain
| |
Collapse
|