1
|
Li S, Chen J. Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates, and can undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and particularly structural propensities governs RNA phase behavior. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions with Mg2+. Representing each nucleotide using 6-7 beads, iConRNA accurately captures base stacking and pairing and includes explicit Mg2+. The model does not only reproduce major conformational properties of poly(rA) and poly(rU), but also correctly folds small structured RNAs and predicts their melting temperatures. With an effective model of explicit Mg2+, iConRNA successfully recapitulates experimentally observed lower critical solution temperature phase separation of poly(rA) and triplet repeats, and critically, the nontrivial dependence of phase transitions on RNA sequence, length, concentration, and Mg2+ level. Further mechanistic analysis reveals a key role of RNA folding in modulating phase separation as well as its temperature and ion dependence, besides other driving forces such as Mg2+-phosphate interactions, base stacking, and base pairing. These studies also support iConRNA as a powerful tool for direct simulation of RNA-driven phase transitions, enabling molecular studies of how RNA conformational dynamics and its response to complex condensate environment control the phase behavior and condensate material properties. SIGNIFICANCE STATEMENT Dynamic RNAs and proteins are major drivers of biomolecular phase separation that has been recently discovered to underlie numerous biological processes and be involved in many human diseases. Molecular simulation has an indispensable role to play in dissecting the driving forces and regulation of biomolecular phase separation. The current work describes a high-resolution coarse-grained RNA model that is capable of describing the structure dynamics and complex sequence, concentration, temperature and ion dependent phase transitions of flexible RNAs. The study further reveals a central role of RNA folding in coordinating Mg2+-phosphate interactions, base stacking, and base pairing to drive phase separation, paving the road for studies of RNA-mediated phase separation in relevant biological contexts.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Templeton C, Hamilton I, Russell R, Elber R. Impact of Ion-Mixing Entropy on Orientational Preferences of DNA Helices: FRET Measurements and Computer Simulations. J Phys Chem B 2023; 127:8796-8808. [PMID: 37815452 PMCID: PMC11341850 DOI: 10.1021/acs.jpcb.3c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Biological processes require DNA and RNA helices to pack together in specific interhelical orientations. While electrostatic repulsion between backbone charges is expected to be maximized when helices are in parallel alignment, such orientations are commonplace in nature. To better understand how the repulsion is overcome, we used experimental and computational approaches to investigate how the orientational preferences of DNA helices depend on the concentration and valence of mobile cations. We used Förster resonance energy transfer (FRET) to probe the relative orientations of two 24-bp helices held together via a freely rotating PEG linker. At low cation concentrations, the helices preferred more "cross"-like orientations over those closer to parallel, and this preference was reduced with increasing salt concentrations. The results were in good quantitative agreement with Poisson-Boltzmann (PB) calculations for monovalent salt (Na+). However, PB underestimated the ability of mixtures of monovalent and divalent ions (Mg2+) to reduce the conformational preference. As a complementary approach, we performed all-atom molecular dynamics (MD) simulations and found better agreement with the experimental results. While MD and PB predict similar electrostatic forces, MD predicts a greater accumulation of Mg2+ in the ion atmosphere surrounding the DNA. Mg2+ occupancy is predicted to be greater in conformations close to the parallel orientation than in conformations close to the crossed orientation, enabling a greater release of Na+ ions and providing an entropic gain (one bound ion for two released). MD predicts an entropy gain larger than that of PB because of the increased Mg2+ occupancy. The entropy changes have a negligible effect at low Mg2+ concentrations because the free energies are dominated by electrostatic repulsion. However, as the Mg2+ concentration increases, charge screening is more effective and the mixing entropy produces readily detectable changes in packing preferences. Our results underline the importance of mixing entropy of counterions in nucleic acid interactions and provide a new understanding on the impact of a mixed ion atmosphere on the packing of DNA helices.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
- Department of Physics, FU Berlin, 14195 Berlin, Germany
| | - Ian Hamilton
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ron Elber
- Institute for Computational Engineering and Science, Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Kührová P, Mlýnský V, Otyepka M, Šponer J, Banáš P. Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes. J Chem Inf Model 2023; 63:2133-2146. [PMID: 36989143 PMCID: PMC10091408 DOI: 10.1021/acs.jcim.2c01438] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 03/30/2023]
Abstract
RNA molecules play a key role in countless biochemical processes. RNA interactions, which are of highly diverse nature, are determined by the fact that RNA is a highly negatively charged polyelectrolyte, which leads to intimate interactions with an ion atmosphere. Although RNA molecules are formally single-stranded, canonical (Watson-Crick) duplexes are key components of folded RNAs. A double-stranded (ds) RNA is also important for the design of RNA-based nanostructures and assemblies. Despite the fact that the description of canonical dsRNA is considered the least problematic part of RNA modeling, the imperfect shape and flexibility of dsRNA can lead to imbalances in the simulations of larger RNAs and RNA-containing assemblies. We present a comprehensive set of molecular dynamics (MD) simulations of four canonical A-RNA duplexes. Our focus was directed toward the characterization of the influence of varying ion concentrations and of the size of the solvation box. We compared several water models and four RNA force fields. The simulations showed that the A-RNA shape was most sensitive to the RNA force field, with some force fields leading to a reduced inclination of the A-RNA duplexes. The ions and water models played a minor role. The effect of the box size was negligible, and even boxes with a small fraction of the bulk solvent outside the RNA hydration sphere were sufficient for the simulation of the dsRNA.
Collapse
Affiliation(s)
- Petra Kührová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Poruba, Czech Republic
| | - Jiří Šponer
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
4
|
Chen YL, He W, Kirmizialtin S, Pollack L. Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100971. [PMID: 35936555 PMCID: PMC9351628 DOI: 10.1016/j.xcrp.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Department of Chemistry, New York University, New York, NY 10003, USA
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- These authors contributed equally
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
5
|
Behjatian A, Krishnan M. Electrostatic free energies carry structural information on nucleic acid molecules in solution. J Chem Phys 2022; 156:134201. [DOI: 10.1063/5.0080008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last several decades, a range of experimental techniques from x-ray crystallography and atomic force microscopy to nuclear magnetic resonance and small angle x-ray scattering have probed nucleic acid structure and conformation with high resolution both in the condensed state and in solution. We present a computational study that examines the prospect of using electrostatic free energy measurements to detect 3D conformational properties of nucleic acid molecules in solution. As an example, we consider the conformational difference between A- and B-form double helices whose structures differ in the values of two key parameters—the helical radius and rise per basepair. Mapping the double helix onto a smooth charged cylinder reveals that electrostatic free energies for molecular helices can, indeed, be described by two parameters: the axial charge spacing and the radius of a corresponding equivalent cylinder. We show that electrostatic free energies are also sensitive to the local structure of the molecular interface with the surrounding electrolyte. A free energy measurement accuracy of 1%, achievable using the escape time electrometry (ET e) technique, could be expected to offer a measurement precision on the radius of the double helix of approximately 1 Å. Electrostatic free energy measurements may, therefore, not only provide information on the structure and conformation of biomolecules but could also shed light on the interfacial hydration layer and the size and arrangement of counterions at the molecular interface in solution.
Collapse
Affiliation(s)
- Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
6
|
Fingerhut BP, Schauss J, Kundu A, Elsaesser T. Contact pairs of RNA with magnesium ions-electrostatics beyond the Poisson-Boltzmann equation. Biophys J 2021; 120:5322-5332. [PMID: 34715079 PMCID: PMC8715182 DOI: 10.1016/j.bpj.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
The electrostatic interaction of RNA with its aqueous environment is most relevant for defining macromolecular structure and biological function. The attractive interaction of phosphate groups in the RNA backbone with ions in the water environment leads to the accumulation of positively charged ions in the first few hydration layers around RNA. Electrostatics of this ion atmosphere and the resulting ion concentration profiles have been described by solutions of the nonlinear Poisson-Boltzmann equation and atomistic molecular dynamics (MD) simulations. Much less is known on contact pairs of RNA phosphate groups with ions at the RNA surface, regarding their abundance, molecular geometry, and role in defining RNA structure. Here, we present a combined theoretical and experimental study of interactions of a short RNA duplex with magnesium (Mg2+) ions. MD simulations covering a microsecond time range give detailed hydration geometries as well as electrostatics and spatial arrangements of phosphate-Mg2+ pairs, including both pairs in direct contact and separated by a single water layer. The theoretical predictions are benchmarked by linear infrared absorption and nonlinear two-dimensional infrared spectra of the asymmetric phosphate stretch vibration which probes both local interaction geometries and electric fields. Contact pairs of phosphate groups and Mg2+ ions are identified via their impact on the vibrational frequency position and line shape. A quantitative analysis of infrared spectra for a range of Mg2+-excess concentrations and comparison with fluorescence titration measurements shows that on average 20-30% of the Mg2+ ions interacting with the RNA duplex form contact pairs. The experimental and MD results are in good agreement. In contrast, calculations based on the nonlinear Poisson-Boltzmann equation fail in describing the ion arrangement, molecular electrostatic potential, and local electric field strengths correctly. Our results underline the importance of local electric field mapping and molecular-level simulations to correctly account for the electrostatics at the RNA-water interface.
Collapse
|
7
|
Fingerhut BP. The mutual interactions of RNA, counterions and water - quantifying the electrostatics at the phosphate-water interface. Chem Commun (Camb) 2021; 57:12880-12897. [PMID: 34816825 PMCID: PMC8640580 DOI: 10.1039/d1cc05367a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The structure and dynamics of polyanionic biomolecules, like RNA, are decisively determined by their electric interactions with the water molecules and the counterions in the environment. The solvation dynamics of the biomolecules involves a subtle balance of non-covalent and many-body interactions with structural fluctuations due to thermal motion occurring in a femto- to subnanosecond time range. This complex fluctuating many particle scenario is crucial in defining the properties of biological interfaces with far reaching significance for the folding of RNA structures and for facilitating RNA-protein interactions. Given the inherent complexity, suited model systems, carefully calibrated and benchmarked by experiments, are required to quantify the relevant interactions of RNA with the aqueous environment. In this feature article we summarize our recent progress in the understanding of the electrostatics at the biological interface of double stranded RNA (dsRNA) and transfer RNA (tRNA). Dimethyl phosphate (DMP) is introduced as a viable and rigorously accessible model system allowing the interaction strength with water molecules and counterions, their relevant fluctuation timescales and the spatial reach of interactions to be established. We find strong (up to ≈90 MV cm-1) interfacial electric fields with fluctuations extending up to ≈20 THz and demonstrate how the asymmetric stretching vibration νAS(PO2)- of the polarizable phosphate group can serve as the most sensitive probe for interfacial interactions, establishing a rigorous link between simulations and experiment. The approach allows for the direct interfacial observation of interactions of biologically relevant Mg2+ counterions with phosphate groups in contact pair geometries via the rise of a new absorption band imposed by exchange repulsion interactions at short interatomic distances. The systematic extension to RNA provides microscopic insights into the changes of the hydration structure that accompany the temperature induced melting of the dsRNA double helix and quantify the ionic interactions in the folded tRNA. The results show that pairs of negatively charged phosphate groups and Mg2+ ions represent a key structural feature of RNA embedded in water. They highlight the importance of binding motifs made of contact pairs in the electrostatic stabilization of RNA structures that have a strong impact on the surface potential and enable the fine tuning of the local electrostatic properties which are expected to be relevant for mediating the interactions between biomolecules.
Collapse
|
8
|
He W, Chen YL, Pollack L, Kirmizialtin S. The structural plasticity of nucleic acid duplexes revealed by WAXS and MD. SCIENCE ADVANCES 2021; 7:7/17/eabf6106. [PMID: 33893104 PMCID: PMC8064643 DOI: 10.1126/sciadv.abf6106] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA's diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, NY, USA
| | - Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Ferreira I, Amarante TD, Weber G. Salt dependent mesoscopic model for RNA at multiple strand concentrations. Biophys Chem 2021; 271:106551. [PMID: 33662903 DOI: 10.1016/j.bpc.2021.106551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Mesoscopic models can be used for the description of the thermodynamic properties of RNA duplexes. With the use of experimental melting temperatures, its parametrization can provide important insights into its hydrogen bonds and stacking interactions as has been done for high sodium concentrations. However, the RNA parametrization for lower salt concentrations is still missing due to the limited amount of published melting temperature data. While the Peyrard-Bishop (PB) parametrization was found to be largely independent of strand concentrations, it requires that all temperatures are provided at the same strand concentrations. Here we adapted the PB model to handle multiple strand concentrations and in this way we were able to make use of an experimental set of temperatures to model the hydrogen bond and stacking interactions at low and intermediate sodium concentrations. For the parametrizations we make a distinction between terminal and internal base pairs, and the resulting potentials were qualitatively similar as we obtained previously for DNA. The main difference from DNA parameters, was the Morse potentials at low sodium concentrations for terminal r(AU) which is stronger than d(AT), suggesting higher hydrogen bond strength.
Collapse
Affiliation(s)
- Izabela Ferreira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tauanne D Amarante
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophys J 2019; 117:1116-1124. [PMID: 31466697 DOI: 10.1016/j.bpj.2019.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
RNAs are one of the most charged polyelectrolytes in nature, and understanding their electrostatics is fundamental to their structure and biological functions. An effective way to characterize the electrostatic field generated by nucleic acids is to quantify interactions between nucleic acids and ions that surround the molecules. These ions form a loosely associated cloud referred to as an ion atmosphere. Although theoretical and computational studies can describe the ion atmosphere around RNAs, benchmarks are needed to guide the development of these approaches, and experiments to date that read out RNA-ion interactions are limited. Here, we present ion counting studies to quantify the number of ions surrounding well-defined model systems of RNA and DNA duplexes. We observe that the RNA duplex attracts more cations and expels fewer anions compared to the DNA duplex, and the RNA duplex interacts significantly stronger with the divalent cation Mg2+, despite their identical total charge. These experimental results suggest that the RNA duplex generates a stronger electrostatic field than DNA, as is predicted based on the structural differences between their helices. Theoretical calculations using a nonlinear Poisson-Boltzmann equation give excellent agreement with experiments for monovalent ions but underestimate Mg2+-DNA and Mg2+-RNA interactions by 20%. These studies provide needed stringent benchmarks to use against other all-atom theoretical models of RNA-ion interactions, interactions that likely must be accurately accounted for in structural, dynamic, and energetic terms to confidently model RNA structure, interactions, and function.
Collapse
|
11
|
Xi K, Wang FH, Xiong G, Zhang ZL, Tan ZJ. Competitive Binding of Mg 2+ and Na + Ions to Nucleic Acids: From Helices to Tertiary Structures. Biophys J 2019; 114:1776-1790. [PMID: 29694858 DOI: 10.1016/j.bpj.2018.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.
Collapse
Affiliation(s)
- Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Gui Xiong
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhong-Liang Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Remsing RC, Klein ML. Exponential Scaling of Water Exchange Rates with Ion Interaction Strength from the Perspective of Dynamic Facilitation Theory. J Phys Chem A 2019; 123:1077-1084. [PMID: 30609371 DOI: 10.1021/acs.jpca.8b09667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Richard C. Remsing
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
Abstract
Noncoding RNA molecules take part in many biological processes, while metal ions play crucial roles in helping RNAs to perform their functions. However, the statics and dynamics of these metal ions around RNA molecules are still not well understood. In this work, we report a detailed molecular dynamics study of the type-I preQ_{1}-bound riboswitch aptamer domain (PRAD) at different ionic conditions (K^{+}, Na^{+}, and Mg^{2+}). The results show that the structural properties and flexibility of the PRAD molecule greatly influence the distributions and dynamics of metal ions around it. Simultaneously, Na^{+} ions show a stronger competitiveness with Mg^{2+} ions than K^{+} ions, and the three types of metal ions have different modes of interaction with the RNA molecule. Furthermore, we have also investigated specific binding sites of metal ions on the PRAD molecule and found that the dynamics and hydration structures of metal ions located at the ion-binding sites were obviously affected by the RNA structure near these ion-binding sites. These results may be useful to understand the role of the metal ions in noncoding RNA functions.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
14
|
Chen YL, Lee T, Elber R, Pollack L. Conformations of an RNA Helix-Junction-Helix Construct Revealed by SAXS Refinement of MD Simulations. Biophys J 2018; 116:19-30. [PMID: 30558889 DOI: 10.1016/j.bpj.2018.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
RNA is involved in a broad range of biological processes that extend far beyond translation. Many of RNA's recently discovered functions rely on folding to a specific conformation or transitioning between conformations. The RNA structure contains rigid, short basepaired regions connected by more flexible linkers. Studies of model constructs such as small helix-junction-helix (HJH) motifs are useful in understanding how these elements work together to determine RNA conformation. Here, we reveal the full ensemble of solution structures assumed by a model RNA HJH. We apply small-angle x-ray scattering and an ensemble optimization method to selectively refine models generated by all-atom molecular dynamics simulations. The expectation of a broad distribution of helix orientations, at and above physiological ionic strength, is not met. Instead, this analysis shows that the HJH structures are dominated by two distinct conformations at moderate to high ionic strength. Atomic structures, selected from the molecular dynamics simulations, reveal strong base-base interactions in the junction that critically constrain the conformational space available to the HJH molecule and lead to a surprising re-extension at high salt. These results are corroborated by comparison with previous single-molecule fluorescence resonance energy transfer experiments on the same constructs.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Tongsik Lee
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas; Institute of Computational Sciences and Engineering, University of Texas at Austin, Austin, Texas
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
15
|
Naleem N, Bentenitis N, Smith PE. A Kirkwood-Buff derived force field for alkaline earth halide salts. J Chem Phys 2018; 148:222828. [PMID: 29907021 DOI: 10.1063/1.5019454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.
Collapse
Affiliation(s)
- Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid Campus Dr. North, Manhattan, Kansas 66506-0401, USA
| |
Collapse
|
16
|
Fischer NM, Polêto MD, Steuer J, van der Spoel D. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations. Nucleic Acids Res 2018; 46:4872-4882. [PMID: 29718375 PMCID: PMC6007214 DOI: 10.1093/nar/gky221] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/16/2018] [Accepted: 04/23/2018] [Indexed: 01/11/2023] Open
Abstract
The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.
Collapse
Affiliation(s)
- Nina M Fischer
- Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - Marcelo D Polêto
- Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Bento Gonçalves 9500, BR-91500-970 Porto Alegre, Brazil
| | - Jakob Steuer
- Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
- Department of Chemistry, University of Konstanz, Universitätstraße 10, D-78457 Konstanz, Germany
| | - David van der Spoel
- Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
17
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
18
|
Ivanović MT, Bruetzel LK, Shevchuk R, Lipfert J, Hub JS. Quantifying the influence of the ion cloud on SAXS profiles of charged proteins. Phys Chem Chem Phys 2018; 20:26351-26361. [DOI: 10.1039/c8cp03080d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MD simulations and Poisson–Boltzmann calculations predict ion cloud effects on SAXS experiments.
Collapse
Affiliation(s)
- Miloš T. Ivanović
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| | - Linda K. Bruetzel
- Ludwig-Maximilian-Universität München, Department of Physics
- 80799 München
- Germany
| | - Roman Shevchuk
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| | - Jan Lipfert
- Ludwig-Maximilian-Universität München, Department of Physics
- 80799 München
- Germany
| | - Jochen S. Hub
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics
- 37077 Göttingen
- Germany
| |
Collapse
|
19
|
Lee Y, Thirumalai D, Hyeon C. Ultrasensitivity of Water Exchange Kinetics to the Size of Metal Ion. J Am Chem Soc 2017; 139:12334-12337. [PMID: 28853881 DOI: 10.1021/jacs.7b04198] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal ions play a vital role in many biological processes. An important factor in these processes is the dynamics of exchange between ion bound-water molecules and the bulk. Although structural and dynamical properties of labile waters bound to metal ions, such as Na+ and Ca2+, can be elucidated using molecular dynamics simulations, direct evaluation of rates of exchange of waters rigidly bound to high charge density Mg2+, has been elusive. Here, we report a universal relationship, allowing us to determine the water exchange time on metal ions as a function of valence and hydration radius. The proposed relationship, which covers times spanning 14 orders of magnitude, highlights the ultrasensitivity of water lifetime to the ion size, as exemplified by divalent ions, Ca2+ (∼100 ps) and Mg2+ (∼1.5 μs). We show that even when structures, characterized by radial distributions are similar, a small difference in hydration radius leads to a qualitatively different (associative or dissociative) mechanism of water exchange. Our work provides a theoretical basis for determination of hydration radius, which is critical for accurately modeling the water dynamics around multivalent ions, and hence in describing all electrostatically driven events such as ribozyme folding and catalysis.
Collapse
Affiliation(s)
- Yuno Lee
- Korea Institute for Advanced Study , Seoul 02455, Korea
| | - D Thirumalai
- Department of Chemistry, University of Texas , Austin, Texas 78712-1224, United States
| | | |
Collapse
|
20
|
Sun LZ, Zhang JX, Chen SJ. MCTBI: a web server for predicting metal ion effects in RNA structures. RNA (NEW YORK, N.Y.) 2017; 23:1155-1165. [PMID: 28450533 PMCID: PMC5513060 DOI: 10.1261/rna.060947.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/16/2017] [Indexed: 05/27/2023]
Abstract
Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing-Xiang Zhang
- School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
21
|
Casalino L, Magistrato A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Meisburger SP, Sutton JL, Chen H, Pabit SA, Kirmizialtin S, Elber R, Pollack L. Polyelectrolyte properties of single stranded DNA measured using SAXS and single-molecule FRET: Beyond the wormlike chain model. Biopolymers 2016; 99:1032-45. [PMID: 23606337 DOI: 10.1002/bip.22265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/11/2013] [Indexed: 12/28/2022]
Abstract
Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with wormlike chain models, but nonbase-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and divalent salt. We report measurements of the form factor and interparticle interactions using SAXS, end-to-end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent molecular dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers.
Collapse
Affiliation(s)
- Steve P Meisburger
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY
| | | | | | | | | | | | | |
Collapse
|
23
|
Gebala M, Giambasu GM, Lipfert J, Bisaria N, Bonilla S, Li G, York DM, Herschlag D. Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. J Am Chem Soc 2015; 137:14705-15. [PMID: 26517731 PMCID: PMC4739826 DOI: 10.1021/jacs.5b08395] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that "count" the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation-anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation-anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4-P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to a reevaluation of the strengths and limitations of Poisson-Boltzmann theory and highlights the need for next-generation atomic-level models of the ion atmosphere.
Collapse
Affiliation(s)
- Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - George M. Giambasu
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig Maximilian University of Munich, 80799 Munich, Germany
| | - Namita Bisaria
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - Steve Bonilla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Guangchao Li
- School of Earth, Energy and Environment Sciences, Stanford University, Stanford, California 94305, United States
| | - Darrin M. York
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Izadi S, Aguilar B, Onufriev AV. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation. J Chem Theory Comput 2015; 11:4450-9. [PMID: 26575935 PMCID: PMC5217485 DOI: 10.1021/acs.jctc.5b00483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate yet efficient computational models of solvent environment are central for most calculations that rely on atomistic modeling, such as prediction of protein-ligand binding affinities. In this study, we evaluate the accuracy of a recently developed generalized Born implicit solvent model, GBNSR6 (Aguilar et al. J. Chem. Theory Comput. 2010, 6, 3613-3639), in estimating the electrostatic solvation free energies (ΔG(pol)) and binding free energies (ΔΔG(pol)) for small protein-ligand complexes. We also compare estimates based on three different explicit solvent models (TIP3P, TIP4PEw, and OPC). The two main findings are as follows. First, the deviation (RMSD = 7.04 kcal/mol) of GBNSR6 binding affinities from commonly used TIP3P reference values is comparable to the deviations between explicit models themselves, e.g. TIP4PEw vs TIP3P (RMSD = 5.30 kcal/mol). A simple uniform adjustment of the atomic radii by a single scaling factor reduces the RMS deviation of GBNSR6 from TIP3P to within the above "error margin" - differences between ΔΔG(pol) estimated by different common explicit solvent models. The simple radii scaling virtually eliminates the systematic deviation (ΔΔG(pol)) between GBNSR6 and two out of the three explicit water models and significantly reduces the deviation from the third explicit model. Second, the differences between electrostatic binding energy estimates from different explicit models is disturbingly large; for example, the deviation between TIP4PEw and TIP3P estimates of ΔΔG(pol) values can be up to ∼50% or ∼9 kcal/mol, which is significantly larger than the "chemical accuracy" goal of ∼1 kcal/mol. The absolute ΔG(pol) calculated with different explicit models could differ by tens of kcal/mol. These discrepancies point to unacceptably high sensitivity of binding affinity estimates to the choice of common explicit water models. The absence of a clear "gold standard" among these models strengthens the case for the use of accurate implicit solvation models for binding energetics, which may be orders of magnitude faster.
Collapse
Affiliation(s)
- Saeed Izadi
- Department of Biomedical Engineering and Mechanics, Department of Computer Science, and Departments of Computer Science and Physics, Virginia Tech , Blacksburg, Virginia 24060, United States
| | - Boris Aguilar
- Department of Biomedical Engineering and Mechanics, Department of Computer Science, and Departments of Computer Science and Physics, Virginia Tech , Blacksburg, Virginia 24060, United States
| | - Alexey V Onufriev
- Department of Biomedical Engineering and Mechanics, Department of Computer Science, and Departments of Computer Science and Physics, Virginia Tech , Blacksburg, Virginia 24060, United States
| |
Collapse
|
25
|
Kirmizialtin S, Johnson KA, Elber R. Enzyme Selectivity of HIV Reverse Transcriptase: Conformations, Ligands, and Free Energy Partition. J Phys Chem B 2015. [PMID: 26225641 DOI: 10.1021/acs.jpcb.5b05467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomically detailed simulations of HIV RT are performed to investigate the contributions of the conformational transition to the overall rate and specificity of enzyme catalysis. A number of different scenarios are considered within Milestoning theory to provide a more complete picture of the process of opening and closing the enzyme. We consider the open to closed transition in the absence of and with the correct and incorrect substrates. We also consider the free energy profile and the kinetics of the conformational change after the chemistry step in which a new base was added to the DNA, but the DNA was not yet displaced. We partition the free energy along the reaction coordinate and analyze the importance of different protein domains. Strikingly, significant influence on the free energy profile is detected for amino acids far from the active site. The overall long-range impact is about 50 percent of the total. We also illustrate that the overall rate is not necessarily determined by the highest free energy barrier along the reaction path (with respect to the free enzyme and substrate) and that the specificity is not necessarily determined by the same reaction step that determines the rate.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Chemistry Program, New York University at Abu Dhabi , PO Box 129188, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
26
|
Cardenas AE, Shrestha R, Webb LJ, Elber R. Membrane permeation of a peptide: it is better to be positive. J Phys Chem B 2015; 119:6412-20. [PMID: 25941740 DOI: 10.1021/acs.jpcb.5b02122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A joint experimental and computational study investigates the translocation of a tryptophan molecule through a phospholipid membrane. Time dependent spectroscopy of the tryptophan side chain determines the rate of permeation into 150 nm phospholipid vesicles. Atomically detailed simulations are conducted to calculate the free energy profiles and the permeation coefficient. Different charging conditions of the peptide (positive, negative, or zwitterion) are considered. Both experiment and simulation reproduce the qualitative trend and suggest that the fastest permeation is when the tryptophan is positively charged. The permeation mechanism, which is revealed by molecular dynamics simulations, is of a translocation assisted by a local defect. The influence of long-range electrostatic interactions, such as the membrane dipole potential on the permeation process, is not significant.
Collapse
Affiliation(s)
- Alfredo E Cardenas
- †Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rebika Shrestha
- †Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- †Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- †Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic Acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:7.9.1-27. [PMID: 25631536 DOI: 10.1002/0471142700.nc0709s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
28
|
Pan F, Roland C, Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res 2014; 42:13981-96. [PMID: 25428372 PMCID: PMC4267617 DOI: 10.1093/nar/gku1107] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/30/2022] Open
Abstract
The ion atmosphere around nucleic acids is an integral part of their solvated structure. However, detailed aspects of the ionic distribution are difficult to probe experimentally, and comparative studies for different structures of the same sequence are almost non-existent. Here, we have used large-scale molecular dynamics simulations to perform a comparative study of the ion distribution around (5'-CGCGCGCGCGCG-3')2 dodecamers in solution in B-DNA, A-RNA, Z-DNA and Z-RNA forms. The CG sequence is very sensitive to ionic strength and it allows the comparison with the rare but important left-handed forms. The ions investigated include Na(+), K(+) and Mg(2 +), with various concentrations of their chloride salts. Our results quantitatively describe the characteristics of the ionic distributions for different structures at varying ionic strengths, tracing these differences to nucleic acid structure and ion type. Several binding pockets with rather long ion residence times are described, both for the monovalent ions and for the hexahydrated Mg[(H2O)6](2+) ion. The conformations of these binding pockets include direct binding through desolvated ion bridges in the GpC steps in B-DNA and A-RNA; direct binding to backbone oxygens; binding of Mg[(H2O)6](2+) to distant phosphates, resulting in acute bending of A-RNA; tight 'ion traps' in Z-RNA between C-O2 and the C-O2' atoms in GpC steps; and others.
Collapse
Affiliation(s)
- Feng Pan
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
29
|
Ovanesyan Z, Medasani B, Fenley MO, Guerrero-García GI, de la Cruz MO, Marucho M. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: theory, simulations, and experiments. J Chem Phys 2014; 141:225103. [PMID: 25494770 PMCID: PMC4265039 DOI: 10.1063/1.4902407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022] Open
Abstract
The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.
Collapse
Affiliation(s)
- Zaven Ovanesyan
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| | - Bharat Medasani
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| | - Marcia O Fenley
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Guillermo Iván Guerrero-García
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí, Mexico
| | - Mónica Olvera de la Cruz
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003, USA
| |
Collapse
|
30
|
Robbins TJ, Ziebarth JD, Wang Y. Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamics simulation and a Poisson-Boltzmann approach. Biopolymers 2014; 101:834-48. [PMID: 24443090 PMCID: PMC4102171 DOI: 10.1002/bip.22461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/22/2013] [Accepted: 01/15/2014] [Indexed: 12/15/2022]
Abstract
The ion atmosphere created by monovalent (Na(+) ) or divalent (Mg(2+) ) cations surrounding a B-form DNA duplex were examined using atomistic molecular dynamics (MD) simulations and the nonlinear Poisson-Boltzmann (PB) equation. The ion distributions predicted by the two methods were compared using plots of radial and two-dimensional cation concentrations and by calculating the total number of cations and net solution charge surrounding the DNA. Na(+) ion distributions near the DNA were more diffuse in PB calculations than in corresponding MD simulations, with PB calculations predicting lower concentrations near DNA groove sites and phosphate groups and a higher concentration in the region between these locations. Other than this difference, the Na(+) distributions generated by the two methods largely agreed, as both predicted similar locations of high Na(+) concentration and nearly identical values of the number of cations and the net solution charge at all distances from the DNA. In contrast, there was greater disagreement between the two methods for Mg(2+) cation concentration profiles, as both the locations and magnitudes of peaks in Mg(2+) concentration were different. Despite experimental and simulation observations that Mg(2+) typically maintains its first solvation shell when interacting with nucleic acids, modeling Mg(2+) as an unsolvated ion during PB calculations improved the agreement of the Mg(2+) ion atmosphere predicted by the two methods and allowed for values of the number of bound ions and net solution charge surrounding the DNA from PB calculations that approached the values observed in MD simulations.
Collapse
|
31
|
Yoon J, Lin JC, Hyeon C, Thirumalai D. Dynamical Transition and Heterogeneous Hydration Dynamics in RNA. J Phys Chem B 2014; 118:7910-9. [DOI: 10.1021/jp500643u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeseong Yoon
- Korea Institute for Advanced Study, 130-722 Seoul, Korea
| | - Jong-Chin Lin
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | | | - D. Thirumalai
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
32
|
Giambaşu GM, Luchko T, Herschlag D, York DM, Case DA. Ion counting from explicit-solvent simulations and 3D-RISM. Biophys J 2014; 106:883-94. [PMID: 24559991 PMCID: PMC3944826 DOI: 10.1016/j.bpj.2014.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022] Open
Abstract
The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20-25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na(+) binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability.
Collapse
Affiliation(s)
- George M Giambaşu
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey
| | - Tyler Luchko
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California
| | - Darrin M York
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey.
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
33
|
Dynamic void distribution in myoglobin and five mutants. Sci Rep 2014; 4:4011. [PMID: 24500195 PMCID: PMC3915302 DOI: 10.1038/srep04011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/16/2014] [Indexed: 11/09/2022] Open
Abstract
Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins.
Collapse
|
34
|
Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N. Choline ion interactions with DNA atoms explain unique stabilization of A-T base pairs in DNA duplexes: a microscopic view. J Phys Chem B 2013; 118:379-89. [PMID: 24171395 DOI: 10.1021/jp406647b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Under physiological conditions, G-C base pairs are more stable than A-T base pairs. In a previous study, we showed that in the hydrated ionic liquid of choline dihydrogen phosphate, the stabilities of these base pairs are reversed. In the present study, we elucidated the unique binding interactions of choline ions with DNA atoms from a microscopic viewpoint using molecular dynamics simulations. Three times more choline ions bind to the DNA duplex than sodium ions. Sodium ions bind closely but not stably; in contrast, the choline ions bind through multiple hydrogen bonding networks with DNA atoms stably. The affinity of choline ion for the minor groove of A-T base pairs is more than 2 times that for other groove areas. In the narrow A-T minor groove, choline ion has high affinity for the ribose atoms of thymine. Choline ions also destabilize the formation of hydrogen bonds between G-C base pairs by binding to base atoms preferentially for both of duplex and single-strand DNA, which are associated with the bonds between G-C base pairs. Our new finding will not only lead to better control of DNA stability for use in DNA nanodevices, but also provide new insight into the stability of DNA duplexes under crowding conditions found in living cells.
Collapse
Affiliation(s)
- Miki Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | |
Collapse
|
35
|
Halder S, Bhattacharyya D. RNA structure and dynamics: a base pairing perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:264-83. [PMID: 23891726 DOI: 10.1016/j.pbiomolbio.2013.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson-Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson-Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.
Collapse
Affiliation(s)
- Sukanya Halder
- Biophysics division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | |
Collapse
|
36
|
Li PTX. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding. Biochemistry 2013; 52:4991-5001. [PMID: 23842027 DOI: 10.1021/bi400646x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The folding and stability of RNA tertiary interactions depend critically on cationic conditions. It is usually difficult, however, to isolate such effects on tertiary interactions from those on the entire RNA. By manipulating conformations of single RNA molecules using optical tweezers, we distinguished individual steps of breaking and forming of a two-base-pair kissing interaction from those of secondary folding. The binding of metal ions to the small tertiary structure appeared to be saturable with an apparent Kd of 160 mM for K(+) and 1.5 mM for Mg(2+). The kissing formation was estimated to be associated with binding of ~2-3 diffuse K(+) or Mg(2+) ions. At their saturated binding, Mg(2+) provided ~3 kcal/mol more stabilizing energy to the structure than K(+). Furthermore, the cations change the unkissing forces significantly more than the kissing ones. For example, the presence of Mg(2+) ions increased the average unkissing force from 21 pN to 44 pN, surprisingly high for breaking merely two base pairs; in contrast, the mean kissing force was changed by only 4.5 pN. Interestingly, the differential salt effects on the transition forces were not caused by different changes in the height of the kinetic barriers but were instead attributed to how different molecular structures respond to the applied force. Our results showed the importance of diffuse cation binding to the stability of tertiary interaction and demonstrated the utility of mechanical unfolding in studying tertiary interactions.
Collapse
Affiliation(s)
- Pan T X Li
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY , Albany, New York 12222, United States
| |
Collapse
|
37
|
Abstract
An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field.
Collapse
Affiliation(s)
- Di Pierro Michele
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin TX 78712
| | | |
Collapse
|
38
|
Henriksen NM, Roe DR, Cheatham TE. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations. J Phys Chem B 2013; 117:4014-27. [PMID: 23477537 PMCID: PMC3775460 DOI: 10.1021/jp400530e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.
Collapse
Affiliation(s)
- Niel M. Henriksen
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daniel R. Roe
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
39
|
Pabit SA, Sutton JL, Chen H, Pollack L. Role of ion valence in the submillisecond collapse and folding of a small RNA domain. Biochemistry 2013; 52:1539-46. [PMID: 23398396 DOI: 10.1021/bi3016636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Following the addition of ions to trigger folding, RNA molecules undergo a transition from rigid, extended states to a compact ensemble. Determining the time scale for this collapse provides important insights into electrostatic contributions to RNA folding; however, it can be challenging to isolate the effects of purely nonspecific collapse, e.g., relaxation due to backbone charge compensation, from the concurrent formation of some tertiary contacts. To solve this problem, we decoupled nonspecific collapse from tertiary folding using a single-point mutation to eliminate tertiary contacts in the small RNA subdomain known as tP5abc. Microfluidic mixing with microsecond time resolution and Förster resonance energy transfer detection provides insight into the ionic strength-dependent transition from extended to compact ensembles. Differences in reaction rates are detected when folding is initiated by monovalent or divalent ions, consistent with equilibrium measurements illustrating the enhanced screening of divalent ions relative to monovalent ions at the same ionic strength. Ion-driven collapse is fast, and a comparison of the collapse time of the wild-type and mutant tP5abc suggests that site binding of Mg(2+) occurs on submillisecond time scales.
Collapse
Affiliation(s)
- Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
40
|
Robbins TJ, Wang Y. 88 Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamic simulation and Poisson–Boltzmann approach. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Robbins TJ, Wang Y. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations. J Biomol Struct Dyn 2012; 31:1311-23. [PMID: 23153112 DOI: 10.1080/07391102.2012.732344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.
Collapse
Affiliation(s)
- Timothy J Robbins
- a Department of Chemistry , University of Memphis , Memphis , TN , 38152 , USA
| | | |
Collapse
|
42
|
Yoo J, Aksimentiev A. Competitive Binding of Cations to Duplex DNA Revealed through Molecular Dynamics Simulations. J Phys Chem B 2012; 116:12946-54. [DOI: 10.1021/jp306598y] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jejoong Yoo
- Department of Physics, University of Illinois at Urbana−Champaign,
1110 West Green Street, Urbana, Illinois 61801, United States
- Center for the Physics of Living
Cells
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana−Champaign,
1110 West Green Street, Urbana, Illinois 61801, United States
- Center for the Physics of Living
Cells
- Beckman Institute for
Advanced
Science and Technology
| |
Collapse
|
43
|
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B 2012; 116:9899-916. [DOI: 10.1021/jp3014817] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavlína Košinová
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Michal Otyepka
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacky University, tr. 17
listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
44
|
Vander Meulen KA, Butcher SE. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 2012; 40:2140-51. [PMID: 22058128 PMCID: PMC3300012 DOI: 10.1093/nar/gkr894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/23/2023] Open
Abstract
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.
Collapse
Affiliation(s)
- Kirk A. Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| |
Collapse
|
45
|
Kirmizialtin S, Pabit S, Meisburger S, Pollack L, Elber R. RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations. Biophys J 2012; 102:819-28. [PMID: 22385853 PMCID: PMC3283807 DOI: 10.1016/j.bpj.2012.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/22/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023] Open
Abstract
RNA molecules play critical roles in many cellular processes. Traditionally viewed as genetic messengers, RNA molecules were recently discovered to have diverse functions related to gene regulation and expression. RNA also has great potential as a therapeutic and a tool for further investigation of gene regulation. Metal ions are an integral part of RNA structure and should be considered in any experimental or theoretical study of RNA. Here, we report a multidisciplinary approach that combines anomalous small-angle x-ray scattering and molecular-dynamics (MD) simulations with explicit solvent and ions around RNA. From experiment and simulation results, we find excellent agreement in the number and distribution of excess monovalent and divalent ions around a short RNA duplex. Although similar agreement can be obtained from a continuum description of the solvent and mobile ions (by solving the Poisson-Boltzmann equation and accounting for finite ion size), the use of MD is easily extended to flexible RNA systems with thermal fluctuations. Therefore, we also model a short RNA pseudoknot and find good agreement between the MD results and the experimentally derived solution structures. Surprisingly, both deviate from crystal structure predictions. These favorable comparisons of experiment and simulations encourage work on RNA in all-atom dynamic models.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Steve P. Meisburger
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Ron Elber
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
46
|
Kirmizialtin S, Silalahi A, Elber R, Fenley M. The ionic atmosphere around A-RNA: Poisson-Boltzmann and molecular dynamics simulations. Biophys J 2012; 102:829-38. [PMID: 22385854 PMCID: PMC3283773 DOI: 10.1016/j.bpj.2011.12.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 10/28/2022] Open
Abstract
The distributions of different cations around A-RNA are computed by Poisson-Boltzmann (PB) equation and replica exchange molecular dynamics (MD). Both the nonlinear PB and size-modified PB theories are considered. The number of ions bound to A-RNA, which can be measured experimentally, is well reproduced in all methods. On the other hand, the radial ion distribution profiles show differences between MD and PB. We showed that PB results are sensitive to ion size and functional form of the solvent dielectric region but not the solvent dielectric boundary definition. Size-modified PB agrees with replica exchange molecular dynamics much better than nonlinear PB when the ion sizes are chosen from atomistic simulations. The distribution of ions 14 Å away from the RNA central axis are reasonably well reproduced by size-modified PB for all ion types with a uniform solvent dielectric model and a sharp dielectric boundary between solvent and RNA. However, this model does not agree with MD for shorter distances from the A-RNA. A distance-dependent solvent dielectric function proposed by another research group improves the agreement for sodium and strontium ions, even for shorter distances from the A-RNA. However, Mg(2+) distributions are still at significant variances for shorter distances.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry and Biochemistry, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Alexander R.J. Silalahi
- Department of Physics and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Ron Elber
- Department of Chemistry and Biochemistry, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Marcia O. Fenley
- Department of Physics and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| |
Collapse
|
47
|
|
48
|
Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc Natl Acad Sci U S A 2011; 109:799-804. [PMID: 22203973 DOI: 10.1073/pnas.1119057109] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dynamic RNA molecules carry out essential processes in the cell including translation and splicing. Base-pair interactions stabilize RNA into relatively rigid structures, while flexible non-base-paired regions allow RNA to undergo conformational changes required for function. To advance our understanding of RNA folding and dynamics it is critical to know the flexibility of these un-base-paired regions and how it depends on counterions. Yet, information about nucleic acid polymer properties is mainly derived from studies of ssDNA. Here we measure the persistence lengths (l(p)) of ssRNA. We observe valence and ionic strength-dependent differences in l(p) in a direct comparison between 40-mers of deoxythymidylate (dT(40)) and uridylate (rU(40)) measured using the powerful combination of SAXS and smFRET. We also show that nucleic acid flexibility is influenced by local environment (an adjoining double helix). Our results illustrate the complex interplay between conformation and ion environment that modulates nucleic acid function in vivo.
Collapse
|
49
|
Abstract
We have carried out Brownian dynamics calculations to investigate the effect of DNA-ion interaction on ion transport in a nanopore. We calculated the self-diffusion coefficient of monovalent ions in the presence of DNA in a nanopore and compared the result with that through an open pore, that is, without the presence of DNA. We find that the self-diffusion coefficient of the co-ions is essentially unaffected by the DNA. The self-diffusion coefficient of the counterions, on the other hand, is significantly reduced depending on the ion concentration. At high ion concentration, around 1 M, the effect of DNA on counterion diffusion is relatively small, causing a slight reduction in counterion diffusion coefficient. At low concentrations of a few millimolar, the effect is much larger, resulting in a reduction in counterion diffusion coefficient by a factor of about 2.5. The variation in the self-diffusion of the counterion is well described by accounting for the contributions from two components: the adsorbed counterions and the free counterions. Detailed dynamics of the DNA-counterion interaction is characterized by the varying length of the transient adsorption time of the counterions to the DNA charge sites and the exchange rate with the environment. This variation in counterion adsorption time is attributed to the ionic electric screening effect, which is in turn determined by the ion concentration.
Collapse
Affiliation(s)
- Shengting Cui
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA
| |
Collapse
|
50
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|