Benetti G, Gandolfi M, Van Bael MJ, Gavioli L, Giannetti C, Caddeo C, Banfi F. Photoacoustic Sensing of Trapped Fluids in Nanoporous Thin Films: Device Engineering and Sensing Scheme.
ACS APPLIED MATERIALS & INTERFACES 2018;
10:27947-27954. [PMID:
30039696 DOI:
10.1021/acsami.8b07925]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Accessing fluid infiltration in nanogranular coatings is an outstanding challenge, of relevance for applications ranging from nanomedicine to catalysis. A sensing platform, allowing quantifying the amount of fluid infiltrated in a nanogranular ultrathin coating, with thickness in the 10-40 nm range, is here proposed and theoretically investigated by multiscale modeling. The scheme relies on impulsive photoacoustic excitation of hypersonic mechanical breathing modes in engineered gas-phase-synthesized nanogranular metallic ultrathin films and time-resolved acousto-optical read-out of the breathing modes frequency shift upon liquid infiltration. A superior sensitivity, exceeding 26 × 103 cm2/g, is predicted upon equivalent areal mass loading of a few ng/mm2. The capability of the present scheme to discriminate among different infiltration patterns is discussed. The platform is an ideal tool to investigate nanofluidics in granular materials and naturally serves as a distributed nanogetter coating, integrating fluid sensing capabilities. The proposed scheme is readily extendable to other nanoscale and mesoscale porous materials.
Collapse